Что такое якорь в электродвигателе

Как проверить якорь электродвигателя в домашних условиях?

Якорь электродвигателя относится к вращающейся части, на которой собирается грязь, образуется нагар. При неисправностях можно провести диагностику в домашних условиях визуально и при помощи мультиметра. На трущихся поверхностях не должно быть сколов, царапин и трещин. При обнаружении таковых проводят меры по их устранению.

Типичные неисправности

Якорь электродвигателя при нормальных режимах работы не подвергается износу. Заменяют только щетки, замеряя допустимую длину. Но при длительных нагрузках обмотки статора начинают нагреваться, что приводит к образованию нагара.

Из-за механических воздействий якорь электродвигателя может перекоситься при повреждении подшипниковых узлов. Двигатель будет работать, но постепенный износ ламелей или пластин приведет к окончательному выходу его из строя. Но для спасения недешевого оборудования часто достаточно провести профилактический ремонт и прибором можно будет пользоваться длительное время.

К негативным факторам, влияющим на якорь электродвигателя, относят попадание влаги на металлические поверхности. Критичным является длительное воздействие влажности и появление ржавчины. Из-за рыжих скоплений и грязи происходит повышение трения, это увеличивает токовую нагрузку. Контактные части греются, припой может отслаиваться, создавая периодическую искру.

В сервисном центре могут помочь, но это потребует определённых затрат. С поломкой можно справиться и самостоятельно, ознакомившись с вопросом: как проверить якорь электродвигателя в домашних условиях. Для диагностики понадобится прибор, замеряющий сопротивление и инструменты.

Как проводится диагностика неисправности?

Проверка якоря электродвигателя начинается с определения самой неисправности. Полный выход из строя этого узла происходит из-за рассыпавшихся щеток коллектора, разрушения слоя диэлектрика между пластинами, а также за счет короткого замыкания в электрической цепи. В случае искрения внутри прибора делают вывод об износе или повреждении токосъемников.

Искрение щеток начинается из-за появления зазора в месте контакта с коллектором. Этому предшествует падение прибора, высокая нагрузка на вал при заклинивании, а также нарушение целостности припоя на выводах обмоток.

Неисправность на работающем электродвигателе проявляется типичными состояниями:

  • Искрение основной признак неисправности.
  • Гул и трение при вращении якоря.
  • Ощутимая вибрация при работе.
  • Смена направления вращения при прохождении якорем траектории менее оборота.
  • Появление запаха оплавляющейся пластмассы либо сильный нагрев корпуса.

Что делать при появлении перечисленных отклонений в работе?

Частота вращения якоря электродвигателя поддерживается постоянной. При холостых оборотах неисправность может не проявляться. Под нагрузкой трение компенсируется увеличением тока, протекающего через обмотки. Если стали заметны отклонения в работе болгарки, дрели, стартера, то нужно снять подачу напряжения.

Дальнейшая эксплуатация приборов может привести к пожару или к поражению человека электрическим током. Первым делом рекомендуется осмотреть корпус изделия, оценить проводку на целостность, отсутствие оплавленных частей и повреждения изоляции. На ощупь проверяют температуру всех частей прибора. Рукой пробуют вращать якорь, он должен перемещаться легко, без заеданий. Если механические части целые и нет загрязнений переходят к разборке.

Диагностика внутренних частей

Обмотка якоря электродвигателя не должна иметь нагара, тёмных пятен, похожих на последствия перегрева. Поверхность контактных частей и области зазора не должна быть зосоренной. Мелкие частицы снижают мощность двигателя и повышают ток. Не стоит производить разборку приборов с включенной в сеть вилкой в целях безопасности проведения работ.

Рекомендуется проводить съемку процесса разборки для исключения сложностей при обратном процессе. Либо можно записывать на листок каждый шаг своих действий. Допускается некоторый износ щеток, ламелей. Но при обнаружении царапин следует выяснить причину их происхождения. Возможно, этому поспособствовала трещина в корпусе, которую можно заметить только при нагрузке.

Работа омметром

Искренние могло происходить из-за пропадания электрического контакта в одной из ламелей. Для замера сопротивления рекомендуется ставить щупы со стороны токосъемников. Вращая вал двигателя, наблюдают за показаниями циферблата. На экране должны быть нулевые значения. Если проскакивают цифры даже в несколько Ом, то это говорит о нагаре. При появлении бесконечного значения судят об обрыве в цепи.

Независимо от результатов далее следует проверить сопротивление между каждыми соседними ламелями. Оно должно быть одинаковым для каждого замера. При отклонениях нужно осмотреть все соединения катушек и поверхность прилегания щёток. Сами щетки должны иметь равномерный износ. При сколах и трещинах они подлежат замене.

Катушки соединяются с сердечником проводкой, которая могла отслоиться. Припой часто не выдерживает ударов от падений. У стартера ток через контакты может достигать 50А, что приводит к прогоранию некачественных соединений. Внешним осмотром определяют места повреждений. Если не обнаружили неисправности, то проводят замер сопротивления между ламелью и самой катушкой.

Если нет омметра?

При отсутствии мультиметра потребуется источник питания 12 Вольт и лампочка на соответствующее напряжение. У любого автолюбителя с таким набором не возникнет проблем. На вилку электроприбора подключают плюсовую и минусовую клеммы. В разрыв ставится лампа накаливания. Результат наблюдают визуально.

Вал якоря вращают рукой, лампа горит без скачков яркости. Если наблюдается затухание судят о неисправном двигателе. Скорее всего, произошло межвитковое замыкание. Полное пропадание свечения свидетельствует об обрыве в цепи. Причинами могут быть неконтакт щеток, обрыв в обмотке или отсутствие сопротивления в одной из ламелей.

Как «оживить» неисправный прибор?

Ремонт якоря электродвигателя начинают только после полной уверенности в неисправности узла. Царапины и сколы на ламелях убирают круговой проточкой поверхности. Нагар и копоть можно снять чистящими средствами для контактных электрических соединений. Разбитые подшипники перепрессовывают и меняют на новые. Важно соблюсти балансировку вала при сборке.

Вращение должно быть лёгким и без шума. Поврежденную изоляцию восстанавливают, можно использовать обычную изоленту. Соединения, вызывающие подозрения, лучше пропаять заново. При проблемах с катушками якоря рекомендуется прибегнуть к перемотке, которую можно выполнить самостоятельно.

Восстановление катушек

Перемотать якорь электродвигателя можно в условиях гаража, только требуется быть осторожным при нанесении каждого витка. Медная проводка подбирается аналогичной намотанной. Сечение нельзя менять, это приведёт к нарушению скоростных режимов работы двигателя. Бумага диэлектрическая потребуется для отделения обмоток. Катушки в конце заливают лаком.

Потребуется паяльник и навыки его использования. Места соединений обрабатывают кислотой, для нанесения оловянно-свинцового припоя пользуются канифолью. При демонтировании старой обмотки подсчитывают количество витков и наносят аналогичное количество новой намотки.

Корпус должен быть очищен от старого лака и других включений. Для этого подходит напильник, наждачка или горелка. Для якоря изготавливают гильзы, материалом служит электротехнический картон. Полученные заготовки укладывают в пазы. Намотанные катушки следует делать правыми витками. Выводы со стороны коллектора перематывают капроновой нитью.

Каждый провод припаивается к соответствующей ламели. Сборка должна заканчиваться очередными замерами сопротивления контактных соединений. Если все в норме и нет коротких замыканий можно проверять работу электродвигателя под напряжением.

Источник: https://zelo.club/kak-proverit-yakor-elektrodvigatelya-v-domashnix-usloviyax.html

Ротор статор якорь – Ротор и статор электродвигателя: определение, виды, назначение


Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным.

Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений.

Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля.

И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться.

Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

ЭТО ИНТЕРЕСНО:  Что делает конденсатор в цепи

Материалы по теме:

Источник: https://esr-energy.ru/raznoe/rotor-stator-yakor-rotor-i-stator-elektrodvigatelya-opredelenie-vidy-naznachenie.html

Как проверить якорь электродвигателя?

Несмотря на надежность и долговечность, электродвигатели время от времени выходят из строя. Установить причину поломки и исправить ее можно самостоятельно – вам понадобится тестер, знания и немного терпения. Как проверить якорь электродвигателя в домашних условиях вы узнаете, прочитав эту статью. Мы рассмотрим два типа двигателей, чаще всего использующихся в быту и на производстве.

Коллекторные синхронные двигатели

Именно они применяются в бытовых устройствах (миксерах, стиральных машинах, электродрелях и т.п.), поэтому рассчитаны на работу от сети 220В. Их «сердце» — это якорь, состоящий из неподвижного статора и обмотки на валу. Если причина неполадок кроется в нем, начинать проверку следует с визуального осмотра.

При обнаружении:

  • перегоревших или оборванных обмоток;
  • запаха гари;
  • активного искрения;
  • оплавленных ламелей коллектора;
  • выхода из строя подшипников;
  • отсоединения проводков;

Если на первый взгляд дефекты не заметны, для более точного обследования придется вооружиться мультиметром. Проверка проходит поэтапно:

  • Прозвоните попарные выводы обмоток статора к ламелям. Показания сопротивления на каждом должны совпадать.
  • Проверьте сопротивление между корпусом якоря и ламелями – в идеале оно стремится к бесконечности.
  • Прозвоните выводы, чтобы проверить целостность обмотки.
  • Проверьте состояние цепи между выводами якорной обмотки и корпусом статора.

Наличие пробоя на корпус – знак, что двигатель требует замены сломанных деталей и полного ремонта. Подключать его к сети в этом случае запрещено.

Асинхронные двигатели

Асинхронные электродвигатели широко применяются не только в промышленности (на станках, в компрессорах, насосах), но и в быту (в холодильниках, стиральных машинах некоторых моделей). При их неисправности визуальный осмотр следует начинать с обмоток статора, играющих роль якоря.

Перед тем, как прозвонить якорь электродвигателя, необходимо проверить другие узлы и детали (так как причина может быть в их повреждении) – кабели подключения, магнитные пускатели, тепловое реле, конденсатор, а также проверить наличие напряжения. Если все в порядке, убедитесь в том, что электропитание отсутствует, и разберите двигатель.

Причины, по которым обмотки статора перестают работать, чаще всего следующие:

  • обрыв витков;
  • большая влажность;
  • межвитковое замыкание.

Если при осмотре не выявлены неполадки, дальнейшая диагностика проводится с помощью мультиметра. В агрегатах на 380В, которые подключаются «треугольником» или «звездой», каждая обмотка проверяется по отдельности.

Отклонение значения сопротивления на них должно быть не более 5%. Затем обмотки прозваниваются на корпус и друг с другом. Сопротивление должно стремиться к бесконечности, другие показания говорят о том, что присутствует пробой обмоток между собой или на корпус.

Эта проблема решается путем полной перемотки.

В электродвигателях на 220В достаточно прозвонить рабочую и пусковую обмотки. Сопротивление у первой должно быть в полтора раза ниже, чем у второй.

Самый сложный этап проверки – поиск межвиткового замыкания, поскольку при визуальном осмотре выявить его не представляется возможным. Нужно воспользоваться специальным измерителем индуктивности. Если значение на всех обмотках одинаково – неполадки отсутствуют. Наиболее низкое значение на какой-либо из обмоток указывает на ее повреждение.

Сопротивление изоляции обмоток проверяется мегомметром на 1000В, который подключается к отдельному источнику питания. Один провод подсоединяется к корпусу агрегата в месте, которое не окрашено, другой – к каждому выводу обмотки поочередно.

Значение должно быть больше 0.5 Мом, меньший показатель говорит о том, что двигатель необходимо просушить. При проведении измерений старайтесь не касаться проводов и будьте предельно внимательны.

Во избежание несчастных случаев обесточьте двигатель и строго соблюдайте все меры предосторожности.

Теперь вы знаете, как проверить якорь электродвигателя тестером, и можете без привлечения специалиста выявить причину неполадок и устранить ее, сэкономив деньги и время.

Источник: https://szemo.ru/press-tsentr/article/proverka-yakorya-elektrodvigatelya/

Конструкция электродвигателя постоянного тока: видео — Asutpp

Как известно, электродвигатель постоянного тока – это устройство, которое с помощью двух своих основных деталей конструкции может преобразовывать электрическую энергию в механическую. К таким основным деталям относятся:

  1. статор – неподвижная/статическая часть двигателя, которая вмещает в себе обмотки возбуждения на которые поступает питание;
  2. ротор – вращающаяся часть двигателя, которая отвечает за механические вращения.

Кроме вышеупомянутых основных деталей конструкции электродвигателя постоянного тока, существуют также и вспомогательные детали, такие как:

  1. хомут;
  2. полюса;
  3. обмотка возбуждения;
  4. обмотка якоря;
  5. коллектор;
  6. щётки.

Конструкция электродвигателя постоянного тока

В совокупности все эти детали составляют цельную конструкцию электродвигателя постоянного тока. А теперь давайте более подробно рассмотрим основные детали электродвигателя.

Ярмо ДПТ

Ярмо ДПТ

Ярмо электродвигателя постоянного тока, которое изготавливают в основном из чугуна или стали, является неотъемлемой частью статора или статической частью электродвигателя.

Его основная функция состоит в формировании специального защитного покрытия для более утончённых внутренних деталей двигателя, а также обеспечение поддержки для обмотки якоря.

Кроме того, ярмо служит защитным покрытием для магнитных полюсов и обмотки возбуждения ДПТ, обеспечивая тем самым поддержку для всей системы возбуждения.

Полюса

Полюса двигателя постоянного тока

Магнитные полюса электродвигателя постоянного тока – это корпусные детали, которые крепятся болтами к внутренней стенке статора. Конструкция магнитных полюсов содержит в своей основе только две детали, а именно – сердечник полюса и полюсный наконечник, которые состыкованы друг к другу под влиянием гидравлического давления и прикреплённые к статору.

Конструкция и сборка электродвигателя постоянного тока

Несмотря на это, эти две части предназначены для разных целей.

Полюсный сердечник, например, имеет маленькую площадь поперечного сечения и используется, чтобы удерживать полюсный наконечник на ярмо, тогда как полюсный наконечник, имея относительно большую площадь поперечного сечения, используется для распространения магнитного потока созданного над воздушным зазором между статором и ротором, чтобы уменьшить потерю магнитного сопротивления. Кроме того, полюсный наконечник имеет множество канавок для обмоток возбуждения, которые и создают магнитный поток возбуждения.

Обмотка возбуждения

Обмотка возбуждения

Обмотки возбуждения электродвигателя постоянного тока выполнены вместе с катушками возбуждения (медный провод) навитыми на канавки полюсных наконечников таким образом, что когда ток возбуждения проходит сквозь обмотку, у смежных полюсов возникает противоположная полярность. По существу, обмотки возбуждения выступают в роли некоего электромагнита, способного создать поток возбуждения, внутри которого вращался бы ротор электродвигателя, а потом легко и эффективно его остановить.

Обмотка якоря

Обмотка якоря электродвигателя постоянного тока

Обмотка якоря электродвигателя постоянного тока прикреплена к ротору или вращающейся части механизма, и, как результат, попадает под действие изменяющегося магнитного поля на пути его вращения, что напрямую приводит к потерям на намагничивание.

По этой причине ротор делают из нескольких низко-гистерезисных пластин электротехнической стали, чтобы снизить магнитные потери, типа потери на гистерезис и потери на вихревые токи соответственно. Ламинированные стальные пластины состыковывают друг к другу, чтобы тело якоря получило цилиндрическую структуру.

Тело якоря состоит из канавок (пазов), сделанных из того же материала, что и сердечник, к которому закреплены обмотки якоря и несколько равномерно распределённых по периферии якоря витков медного провода. Пазы канавок имеют пористые клинообразные спаи, чтобы в последствие источаемой во время вращения ротора большой центробежной силы, а также при наличии тока питания и магнитного возбуждения, предотвратить загибания проводника.

Существует два типа конструкции обмотки якоря электродвигателя постоянного тока:

  • петлевая обмотка (у данном случае количество параллельных путей тока между переходниками (А) равно количеству полюсов (Р), то есть А = Р.
  • волновая обмотка (у данном случае количество параллельных путей тока между переходниками (А) всегда равно 2, независимо от количества полюсов, то есть конструкции машины выполнены соответствующим образом).

Коллектор

Коллектор ДПТ

Коллектор электродвигателя постоянного тока – это цилиндрическая структура из состыкованных между собой, но изолированных слюдой, медных сегментов. Если речь идет об ДПТ, то коллектор здесь используется в основном как средство коммутирования или передачи через щётки электродвигателя тока питания от сети на смонтированные во вращающейся структуре обмотки якоря.

Щётки

Щётки электродвигателя постоянного тока

Щётки электродвигателя постоянного тока изготавливают из углеродных или графитных структур, создавая над вращающимся коллектором скользящий контакт или ползунок.

Щётки используют для передачи электрического тока от внешнего контура на вращающуюся форму коллектора, где дальше он поступает на обмотки якоря.

Коллектор и щётки электродвигателя используют, в общем, для передачи электрической энергии от статического электрического контура на область с механическим вращением, или просто ротор.

Источник: https://asutpp.ru/konstrukciya-elektrodvigatelya-postoyannogo-toka.html

Виды электродвигателей

Электродвигатель — специальное устройство, которое преобразует электрическую энергию в механическую. 

Принципы работы

Любой электрический двигатель работает по принципу электромагнитной индукции, состоящий из двух основных частей ротором  и статором или индуктором. В электрических двигателей небольшой мощностью используют постоянные магниты.

Ротор — это подвижная часть, для синхронных и асинхронных двигателей переменного тока. Может быть короткозамкнутый или с обмоткой (фазный). Роторы с обмоткой применяют для регулировки  вращения и уменьшения пусковых токов асинхронных двигателей (например: крановые электродвигатели).

Статор — это неподвижная часть, для синхронных и асинхронных двигателей переменного тока.

Якорь — это подвижная часть, для двигателей постоянного тока (например: электроинструмент).

Индуктор — это неподвижная часть, в электродвигателях постоянного тока).

Виды электрических двигателей 

Двигатели можно поделить на две основных группы: магнитоэлектрические и гистерезисные. Магнитоэлектрические наиболее распространены, в отличии от гистерезисных и активно применяются в производстве, разделяются на двигатели переменного и постоянного тока. Существуют универсальные двигатели питающие одновременно двумя видами тока. 

Электродвигатель постоянного тока имеют щеточно-коллекторный узел, обеспечивающий контакт цепей неподвижной и подвижной частях двигателя, бывают бесколлекторные и коллекторные. Также коллекторные двигатели подразделяются на: с самовозбуждением и с независимым возбуждением (постоянных магнитов и электромагнитов).

Бесколлекторные электродвигатели состоят из датчика положения ротором, инвертора (преобразователь силовой полупроводниковый) и преобразователя координат, похожи на синхронные электродвигатели.

Электродвигатели переменного тока

Разделяются на синхронные и асинхронные двигатели. Основное отличие в том, что в синхронных двигателях ротор движется с равной скоростью электромагнитной силой вращения статора, а в асинхронных поле движется быстрее ротора.

Делятся по количествам фаз:

  • однофазные (имеют фазосдвигающую цепь или пусковую обмотку, или запускаются вручную);
  • двухфазные (конденсаторные);
  • трехфазные;
  • многофазные.

Источник: https://ural-esk.ru/vidy_elektrodvigateley.html

Проверка якоря тестером – рекомендации специалистов

Даже при бережном отношении и правильной эксплуатации техника может выходить из строя под влиянием различных факторов. Среди поломок узлов и деталей электрической системы болгарки чаще всего встречаются неисправности якоря коллекторного электродвигателя. Он может выходить из строя вследствие износа, перегрева или неустойчивого напряжения в сети.

Если во время эксплуатации угловая шлифмашина внезапно перестала работать, включать ее и пытаться отремонтировать самостоятельно не стоит, а вот диагностировать причину вполне под силу даже мастеру-самоучке. Проверка якоря болгарки тестером может выполняться в домашних условиях. Для этого, кроме основного инструмента, потребуются специальные приспособления.

Вы можете проконсультироваться со специалистами интернет-магазина «ToolParts», чтобы узнать, как прозвонить якорь мультиметром. Необходимая информация предоставляется бесплатно.

Проверка якоря болгарки тестером – возможные результаты диагностики

Среди наиболее распространенных причин выхода оборудования из строя чаще всего встречается межвитковое замыкание якоря болгарки. Его можно обнаружить – прозвонить – с помощью тестера.

Мультиметр представляет собой электроизмерительный прибор, который включает функции амперметра, вольтметра и омметра. Им можно не только проверить наличие межвиткового замыкания в обмотке болгарки, но и измерить сопротивление между ламелями. Более простым прибором является тестер.

Проверяя с его помощью якорь углошлифовальной машины, можно обнаружить неисправности, вызванные вследствие короткого замыкания.

Как прозвонить якорь мультиметром?

Для выполнения этой процедуры вам понадобится сам измерительный электроприбор и инструменты, чтобы произвести разборку устройства. Как прозвонить якорь мультиметром – инструкция:

  1. Подготовьте рабочую поверхность. Места должно быть достаточно, чтобы расположить необходимые инструменты и изъятые из прибора детали.
  2. Выполните разборку болгарки и достаньте якорь.
  3. Очистите деталь от грязи и пыли.
  4. Пользуясь рекомендациями в представленном видео, вы сможете самостоятельно прозвонить якорь мультиметром.

На начальном этапе диагностики значение измерительного прибора выставляется на отметке 200 кОм. Если в вашем мультиметре нет такой шкалы, то можно ограничиться и 20 кОм.

Для прозвона якоря один щуп измерительного прибора прикладывается на массу, а вторым касаются к каждой из пластин. Если на шкале аналогового мультиметра или экране цифрового не появляются никакие показатели, скорее всего в обмотке якоря есть межвитковое замыкание.

Точно диагностировать проблему можно с помощью специального прибора, который имеется у профессиональных слесарей.

Особенности выполнения проверки якоря болгарки тестером

Диагностическая процедура поможет точно определить неисправность детали электродвигателя. Выполнить проверку якоря болгарки тестером позволит прибор, который имеется в арсенале инструментов многих электриков-любителей. С помощью тестера можно проверять не только якоря болгарок, но и статорные обмотки других электромоторов. В представленном ниже видео можно увидеть один из таких самодельных измерительных приборов в действии.

При включении тестера в сеть загорается индикатор. Красный свет без прикладывания технического приспособления к якорю означает готовность устройства к выполнению проверки.

Рабочая активная поверхность измерительного прибора имеет две точки соприкосновения с исследуемой. Одна из них – это катушка генератора, вторая – катушка завитков связи.

Во время проверки якоря болгарки тестером подставлять эту поверхность необходимо к исследуемому пазу. Проследите, чтобы датчики не выходили за пластины якоря одновременно с обеих сторон.

Если электродеталь исправна или перемотана, то во время ее проверки тестером напротив каждого из пазов индикатор будет гореть зеленым светом. При наличии неисправности в якоре угловой шлифовальной машины, в частности, межвиткового замыкания, в месте его локализации на индикаторе прибора будет отмечаться красный свет.

Будьте внимательны при выполнении диагностической процедуры, чтобы добиться правильного соприкосновения поверхностей при проверке якоря болгарки тестером. Не следует исключать из причин выхода угловой шлифовальной машины из строя механические повреждения, которые можно заметить визуально без прозвона мультиметром. Они могут быть как значительными, так и мелкими.

Вы можете заметить поломку при осмотре, разобрав болгарку. Диагностировать такие неисправности необходимо до проверки якоря на межвитковое замыкание.

Если вы не имеете опыта разборки электроинструмента или подготовки к работе с измерительными приборами для прозвона якоря мультиметром и не уверены в собственных силах, не стоит вмешиваться в конструкцию болгарки.

Не экспериментируйте, чтобы не повредить угловую шлифовальную машину.

В таком случае для обнаружения причины поломки электроинструмента и выполнения проверки якоря болгарки тестером лучше обратиться в сервисный центр или к квалифицированным слесарям, которые специализируются на ремонте оборудования.

ЭТО ИНТЕРЕСНО:  Как подобрать автомат по мощности

Какие проблемы в работе прибора можно обнаружить при проверке якоря болгарки тестером

Если вы обладаете достаточными знаниями для выполнения правильной разборки электроинструмента, то в ряде случаев сможете собственноручно диагностировать причину поломки устройства.

Проверка якоря болгарки тестером на межвитковое замыкание позволит определить дальнейшие действия относительно обнаружения неисправностей или ремонта техники. Если деталь не повреждена, но инструмент по-прежнему не работает, обращайтесь за помощью к квалифицированным специалистам.

Проверка якоря болгарки тестером позволила точно обнаружить причину выхода оборудования из строя? Ремонт техники при наличии необходимого инструмента можно выполнить самостоятельно в таких случаях:

  • поврежденную в верхних видимых слоях обмотку можно попытаться запаять. Такой якорь прослужит еще некоторое время. После запайки его необходимо проверить или прозвонить мультиметром;
  • при межвитковом замыкании требуется перемотка обмотки или же замена якоря.

Диагностика поломки и ремонт угловой шлифовальной машины может выполняться под напряжением. Эту работу, ради собственной безопасности, перепоручите профессионалам.

Рекомендации по поводу того, как прозвонить якорь мультиметром, вы можете получить у менеджеров интернет-магазина «ToolParts». На сайте надежного поставщика представлены якоря, стартера, конденсаторы, подшипники, диски и прочие детали для различных инструментов.

Доступные цены на нашу продукцию позволят вам недорого отремонтировать дрель, перфоратор, бензопилу, мотокосу и другое, необходимое в хозяйстве оборудование. Также покупайте в магазине «ToolParts» запчасти для ремонта бытовой техники, в частности, пылесоса.

Вы можете сделать заказ на сайте в любой удобный момент или оформить покупку в телефонном режиме в рабочее время. Доставка товаров совершается во все населенные пункты Украины.

Источник: https://toolparts.com.ua/novosti/proverka-iakoria-testerom-rekomendatsii-spetsialistov

Что такое ротор и статор в электродвигателе

Вы здесь: Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую).

Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга.

В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое якорь в электродвигателе — Спецтехника

Обязательно наложите бандаж на обмотку. Делать это лучше всего рядом с коллектором, чтобы можно было удобней производить крепеж витков катушек. Многие не знают, что такое бандаж. Фактически, это пара витков толстой нитки, которая должна быть плотно намотана и завязана. Капроновую нить лучше не применять, ведь она может оплавиться в процессе работы двигателя. Лучше всего использовать изделия из хлопчатобумажного материла.

После окончания работ обязательно проверьте перемотанный якорь на наличие обрывов или межвитковых замыканий. Делать это необходимо до того, как якорь будет пропитан, в противном случае заменить обмотку будет сложнее. Пропитку необходимо производить с целью крепления витков катушки. Ее можно выполнить при помощи эпоксидной смолы или лака.

Последний этап – проточка. Именно от качества выполнения этой работы зависит, как сильно будет искрить перемотанный якорь. При этом биения не должны превышать 0,05 мм. После завершения проточки необходимо снова провести проверку на факт наличия замыканий между витками и на корпус.

Техника часто подвергается перегрузкам и механическим повреждениям. Стоит всего раз уронить или что-нибудь пролить на инструмент, как на обмотке ротора появляется ржавчина, а сам якорь смещается. Последствия плачевны: электродвигатель перегревается, искрит и вибрирует. Работа с таким инструментом опасна.

Если у вас есть навыки ремонта техники и минимальный набор инструментов, то устранить неисправность поможет перемотка якоря в домашних условиях. Дело в том, что именно обмотка принимает на себя первые «удары» неправильной эксплуатации. Жилы проводника разрываются и обгорают. Их замена продлит жизнь техники и увеличит производительность двигателя.

Прежде чем приступать к ремонту, подготовьте инструменты и материалы:

Чтобы не делать лишнюю работу, важно правильно выявить причину поломки техники. Для этого осмотрите инструмент и проверьте, поступает ли ток на коллектор и кнопку пуска, при помощи мультиметра или индикатора. Если все в порядке, то нужно осмотреть прибор изнутри.

Отключите инструмент от питания, и разберите корпус. Понюхайте ротор. Если произошло межвитковое замыкание, то изоляционное покрытие оплавляется и источает резкий запах.

Когда внешних признаков неисправности нет, стоит проверить ламели якоря мультиметром. Переключите прибор в режим омметра, и выставьте диапазон в 200 Ом. Двумя щупами «прозвоните» соседние ламели. Смена сопротивления свидетельствует о поломке в катушке.

Омметр можно заменить лампочкой. Подключите плюс и минус клеммы на вилку прибора, а в разрыв поставьте лампу. Вращайте вал якоря рукой. Если лампочка «моргает», значит, произошло межвитковое замыкание. Лампа не горит? Значит, произошел обрыв цепи или отсутствует сопротивление в одной из ламелей.

Замена обмотки и новая изоляция предотвратят перегорание двигателя. Чтобы продлить срок эксплуатации электродвигателя, перемотку ротора рекомендуется проводить не реже чем раз в два года.

Инструкция: как перемотать обмотку якоря

Перед перемоткой нужно зафиксировать основные показатели двигателя. Посчитайте и запишите: количество пазов якоря и ламелей коллектора. Определите шаг намотки. Наиболее распространенный шаг 1–6 — когда катушка укладывается в начальный паз, затем в 7 и закрепляется на 1 пазу.

В некоторых заводских обмотках применяется сброс вправо или влево. Например, при намотке и сбросе вправо, катушка уходит вправо от начального паза. Так, при количестве пазов якоря 12, шаге намотки 1–6 и сбросе вправо, обмотка закладывается в 1 паз, затем в 8 и после намотки н

i-perf.ru

Как правильно перемотать якорь электродвигателя

Как вы понимаете, в нашей жизни нет ничего вечного, особенно это касается электроинструментов. Поломка электроинструментов происходит в самое неподходящее время. В основном причиной неисправности является поломка электродвигателя, причиной поломки может быть механическое повреждение или замыкание, очень часто выходит из строя якорь.

Но не спешите избавляться от техники, которая вам служила много лет, есть шанс реанимировать инструмент. Обратите внимание на такую услугу, как перемотка электродвигателей от neringa-service.ru.

Но можно отремонтировать якорь электродвигателя своими руками. В этой статье мы рассмотрим один из важных моментов в ремонте электродвигателя, этапы перемотки якоря электродвигателя.

Подготовительные работы

Разбираем и осматриваем составляющие электродвигателя, особое внимание уделяя обмотке. Устанавливаем, сколько витков обмотки якоря и производим замер сопротивления изоляции. Теперь можно приступать к основному процессу.

Специфика работы

Все операции нужно проводить аккуратно, не спеша:

  • Удаляем обмотку и снимаем коллектор.
  • Выполняем очистку коллектора.
  • Для установки концов новой намотанной катушки делаем пазы в якоре.
  • В паз якоря необходимо установить гильзу (гильзу можно изготовить из электротехнического картона).
  • Производим обмотку не нарушая последовательности, витки необходимо делать до заполнения пазов якоря (укладку необходимо производить против часовой стрелки, со стороны вала).
  • Укладываем изоляцию на обмотку (изготавливается из хлопчатобумажного материала).
  • Пропитываем изоляцию с помощью лака или эпоксидной смолы.
  • Проверяем амперметром переменного тока якорь.
  • Протачиваем якорь.
  • На специальном станке фрезеруем межламельное пространство.
  • Производим балансировку, чистку и шлифовку якоря.
  • Якорь повторно проверяем на наличие замыканий и обрывов.
  • Собираем все составляющие электродвигателя.
  • По окончании выполнения всех работ необходимо убедиться, нет ли замыкания на корпусе и обмотке электродвигателя.

В заключение необходимо отметить, что все работы необходимо выполнять очень внимательно, не допускать попадания пыли и сторонних предметов в обмотку якоря. После проточки якоря биения не должны превышать 0,05 мм. Все токарные работы и балансировку выполнять на исправных станках.

В последующем, во избежание повторных ремонтов, необходимо правильно эксплуатировать и хранить электроинструменты.

Источник: https://mzoc.ru/prochie/chto-takoe-yakor-v-elektrodvigatele.html

Ремонт якоря электродвигателя любой мощности и частоты вращения | ЗАО «ПромЭлектроРемонт»

Перемотка якоря электродвигателя – это один из видов ремонта коллекторных промышленных и бытовых двигателей постоянного и переменного тока, осуществляемого нашей компанией.

Необходимость отремонтировать электросиловой агрегат такого типа возникает в процессе его длительной эксплуатации. В отличие от асинхронных, в коллекторных двигателях присутствуют трущиеся части – токоподводящие щётки и коллектор.

Эта их конструктивная особенность определяет периодичность текущего и капитального ремонта двигателя согласно плану ППР.

В ряде случаев перед тем, как отремонтировать якорь электродвигателя, приходится выявить причины отказа с помощью инструментальных методов. Это могут быть межвитковое замыкание или обрыв в нижних слоях обмотки якоря. С помощью проверки сопротивления удаётся определить такую причину. Единственный способ восстановления функциональности при этом – перемотка якоря эл двигателя.

Ремонт якоря электродвигателя

Планово-предупредительный ремонт якоря электродвигателя проводят по истечению определённого срока его эксплуатации. Как правило он включает восстановление подвижной контактной группы (коллектора). В случаях внезапных отказов или значительных отклонений в работе электродвигателя может быть проведен срочный ремонт якоря электродвигателя. Основанием для такого ремонта может послужить одна из причин или их сочетание:

  • сильное искрение в месте контакта щёток с коллектором;
  • снижение мощности двигателя;
  • повышенный нагрев корпуса.

Чтобы отремонтировать якорь электродвигателя, его необходимо предварительно демонтировать. После этого снятый с двигателя якорь внимательно осматривают на предмет выявления выгораний, оплавлений, обрывов, других видимых дефектов. При визуальном осмотре обращают внимание на целостность обмоток (локальное почернение), на степень загрязнения поверхностей графитовой пылью, на посторонние (характерные) запахи подгорания изоляции.

Где перемотать якорь электродвигателя

Качественно перемотать якорь электродвигателя можно только с использованием специального оборудования. Эта технологическая операция по степени сложности аналогичная перемотке статора. Наш цех имеет необходимую оснастку и оборудование для перемотки якорей коллекторных электродвигателей.

Якорь – это подвижный конструктивный элемент, вращающийся с высокой угловой скоростью. В этой связи на него воздействуют значительные центробежные силы. Поэтому перемотка якоря электродвигателя должна дополняться его качественной балансировкой. После перемотки эл двигателя, пропитки и сушки необходимо провести заключительную операцию – динамическую балансировку якоря на специальном балансировочном станке. Пренебрежение этим приведёт к значительной вибрации, разрушению подшипников и якоря.

На работы по перемотке якоря электродвигателя цена будет всегда ниже, чем на приобретение нового электросилового агрегата. Во многих случаях восстановление якоря электродвигателя – это единственный способ отремонтировать электропривод, так как подбор нового коллекторного двигателя может быть затруднителен по причине особенностей установочного места.

Стоимость ремонта якоря электродвигателя в Москве на производственных мощностях нашей компании зависит от типа двигателя, характера повреждений и срочности работ. С примерными ценами можно ознакомиться в прайс-листе на странице сайта.

Цены на ремонт якоря электродвигателя

Мощность, (кВт) Частота вращения,об/мин
3000 1500 1000 750
До 1,5 2740 2806 3417 4057
2.2 3090 3245 4154 4897
3 3642 3901 4973 5179
4 5012 4652 5413 6804
5.5 5296 5301 5978 7511
7.5 6630 6919 7312 11021
11 8139 8147 9937 13182
15 12088 12049 11737 14803
18,5 13001 13345 15217 24450
22 15057 15805 23408 25522
30 17648 18202 25857 29275
37 23803 25949 30677 40080
45 29055 28737 38389 48070
55 34546 32811 41481 60759
75 44670 48812 64472 82899
90 47893 51078 78166 99898
110 67202 73052 95759 122517
132 80848 87962 114110 147423
160 98012 106439 138740 179116
200 123101 132548 173924 ———-
250 154120 167435 ———- ———
320 237156 ————— ———- ————
кВт 3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин

КОЭФФИЦИЕНТЫ ПРИМЕНЯЕМЫЕ ПРИ РАСЧЕТЕ:

  • Однофазные-1.5;
  • Иностранного производства -1.5;
  • Взрывобезопасные – 1.3;
  • Срочный – 1.5;
  • Двухскоростные – 1.5; Двухскоростные с независимыми обмотками – 2.
  • Старого образца типа АО, А, ВАО -1,5

Источник: https://remonteldv.ru/remont-yakorya-elektrodvigatelya

Якорь стартера: сердце системы электропуска двигателя

» Статьи » Якорь стартера: сердце системы электропуска двигателя

В каждом автомобиле есть специальный узел для запуска двигателя — стартер. Важным компонентом стартера является якорь — ротор электродвигателя, крутящий момент которого обеспечивает пуск мотора. О том, что такое якорь стартера, как он устроен и работает, а также о его ТО и ремонте читайте в статье.

ЭТО ИНТЕРЕСНО:  Как запустить шаговый двигатель

Назначение якоря стартера

Во всех современных автомобилях используется система электропуска двигателя, в основе которой лежит электрический стартер — электромотор постоянного тока специальной конструкции, приводящий во вращение коленчатый вал двигателя и его основные системы.

Как и во всяком электродвигателе, в стартере есть неподвижная часть — статор, и подвижная — ротор, который по давно сложившейся традиции принято называть якорем.

Статор представляет собой многовитковую обмотку (которая называется обмоткой возбуждения), расположенную на стенке корпуса стартера, а якорь является более сложной и функциональной деталью.

Якорь стартера выполняет несколько функций:

  • Создание магнитного поля, которое при взаимодействии с магнитным полем статора (обмотки возбуждения) приводит якорь во вращение;
  • Передача крутящего момента на коленчатый вал двигателя;
  • Объединение всех компонентов — обмотки, коллектора, деталей привода — в единую конструкцию.

Несмотря на разнообразие существующих сегодня стартеров, они имеют принципиально одинаковые якоря, причем конструкция якоря за последние полвека не претерпела принципиальных изменений.

Типы и конструкция якорей стартера

Конструктивно якорь стартера состоит из четырех основных деталей:

  • Вал якоря;
  • Сердечник;
  • Обмотка;
  • Коллекторный узел;

Вал якоря является несущим элементом якоря. Он изготавливается из стали, в его двух или трех точках выполняются посадочные места под подшипники (это могут быть подшипники скольжения — втулки, или подшипники качения). На удлиненной стороне вала выполняются шлицы для передачи крутящего момента на привод стартера, эти шлицы в зависимости от типа привода могут быть прямыми или косозубым (спиралеобразным).

Сердечник собирается из пакета металлических пластин, жестко монтируемых на валу. Сердечник имеет цилиндрическую форму, на его внешней поверхности выполнены пазы для прокладки витков обмотки. Монтаж сердечника выполняется на шлицы, выполненные на валу, это обеспечивает конструкции необходимую жесткость и предотвращает от проворачивания сердечника на валу при больших нагрузках.

Обмотка выполняется толстым медным проводом большого сечения, причем возможны два варианта: неизолированный провод прямоугольного сечения и изолированный провод круглого сечения. Прямоугольный провод используется в якорях стартеров большой мощности, так как по ним во время пуска двигателя могут протекать токи в 600-800 и более ампер. Изолированный провод применяется в обмотках маломощных стартеров.

В якорях с обмоткой из прямоугольного провода изоляция выполняется из гибкого листового материала, которым обматываются проводники в пазах сердечника. Обмотка является одновитковой, так как она состоит из некоторого количества проводников (обычно не более 12-15), проложенных в сердечнике петлями, каждая такая петля является одним витком.

Части обмотки, выходящие за сердечник (со стороны коллектора и с обратной стороны) зафиксированы бандажами — кольцами из изоляционного материала с пропиткой смолами, скобами и т.д.

Коллекторный узел служит для подачи тока на витки обмотки в таком порядке, чтобы вокруг обмотки возникало магнитное поле определенной формы. Коллектор состоит из ряда медных пластин, с которыми соединены концы витков обмотки (соединение выполняется пайкой).

Между пластинами якоря предусмотрены зазоры, заполненные изолирующим материалом с высоким показателем диэлектрической проницаемости.

Медные контакты имеют низкое электрическое сопротивление, поэтому хорошо передают ток на обмотку, также они имеют хороший контакт с медно-графитовыми щетками.

В настоящее время существует два типа коллекторов:

  • Цилиндрический — коллектор выполнен в виде цилиндра, на наружной поверхности которого расположены контактные площадки;
  • Торцевой — коллектор выполнен в виде круга, сегментами которого являются контактные площадки.

Соответственно, в стартере с цилиндрическим коллектором щетки имеют радиальное расположение (упираются в коллектор по радиусам), в стартере с торцевым якорем щетки расположены вдоль оси якоря. Цилиндрический коллектор более надежен, однако торцевой коллектор экономит место и позволяет уменьшить габариты стартера.

Якорь в сборе устанавливается в корпус стартера, он удерживается двумя или тремя подшипникам — два подшипника в торцах вала (в задней стенке корпуса стартера и в передней крышке привода стартера), еще один подшипник используется в качестве промежуточной опоры для якорей увеличенной длины. Обычно используются подшипники скольжения (втулки), так как они более просты, надежны и могут без труда выдерживать значительные нагрузки. В не которых стартерах применяются подшипники качения — роликовые или шариковые.

Вопросы ТО и ремонта якоря стартера

Стартер современных легковых автомобилей обычно не нуждается в специальном техническом обслуживании — необходимо лишь периодически проверять его крепление и общее состояние. В грузовых автомобилях используются более мощные стартеры, поэтому каждые ТО-2 обязательно проверяется состояние коллектора и щеток, при необходимости они очищаются от загрязнений. По мере износа заменяются щетки стартера, а также проводится регулировка привода.

Якорь стартера прост по конструкции и надежен, однако в нем могут возникать различные неисправности:

  • Деформация вала и, как следствие, заклинивание якоря в корпусе стартера;
  • Обрыв витков обмотки;
  • Пробой изоляции витков обмотки, что может привести к межвитковому замыканию или замыканию обмотки на якорь (и, соответственно, на массу);
  • Повреждение и износ коллектора, в том числе распайка соединений пластин с проводниками, расплавление пластин коллектора;
  • Механический износ или поломка шлицев под привод стартера.

Во всех этих случаях наблюдаются характерные признаки, свидетельствующие о проблеме.

Например, при деформации якоря стартер может не работать или создавать шум (при задевании обмоткой статора или корпуса), при замыканиях витков снижается мощность стартера или он работает неравномерно, при износе коллектора также снижается эффективность работы стартера и т.д. Однако точно определить причину неисправности можно только при разборке стартера, смотре якоря и его проверки специальными приборами.

Большинство неисправностей якоря сложно устранить самостоятельно без специальных измерительных приборов и инструментов, поэтому при любых поломках имеет смысл обратиться к специалистам. Чаще всего бывает дешевле и проще заменить вышедший из строя якорь на новый, что сэкономит немало времени и сил.

Для продления ресурса стартера и его якоря следует придерживаться известных рекомендаций по бережному пуску двигателя, а при первых признаках неисправности следует обратиться в автосервис, так как поломка стартера может привести к самым неприятным последствиям.

Источник: https://autoars.ru/articles/?id=97

Коллекторный электродвигатель постоянного тока

Дмитрий Левкин

Статор (постоянный магнит)

Рисунок 1 — Электродвигатель постоянного тока с постоянными магнитами в разрезе

Ротор — вращающаяся часть электрической машины.

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Принцип работы коллекторного двигателя

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Схема коллекторного двигателя с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения.

При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора. КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора.

С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря.

При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью.

Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным.

Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа < Iном) и магнитная система двигателя не насыщена (Ф ~ Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Важно: Недопустимо включать двигатели последовательного возбуждения в сеть в режиме холостого хода (без нагрузки на валу) или с нагрузкой менее 25% от номинальной, так как при малых нагрузках частота вращения якоря резко возрастает, достигая значений, при которых возможно механическое разрушение двигателя, поэтому в приводах с двигателями последовательного возбуждения недопустимо применять ременную передачу, при обрыве которой двигатель переходит в режим холостого хода. Исключение составляют двигатели последовательного возбуждения мощностью до 100—200 Вт, которые могут работать в режиме холостого хода, так как их мощность механических и магнитных потерь при больших частотах вращения соизмерима с номинальной мощностью двигателя.

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки.

Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой.

В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной.

Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения.

Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки.

Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения.

Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы).

Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Механические характеристики коллекторных двигателей постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z — суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

Смотрите также

Источник: https://engineering-solutions.ru/motorcontrol/brushdcmotor/

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]