Как измерить сопротивление мегаомметром

Как проверить изоляцию кабеля мегаомметром

как измерить сопротивление мегаомметром

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:

  • атмосферные условияЗимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
  • процесс укладки кабеляНеосторожные движения при монтаже могут вызвать излом или повредить оболочку.
  • физический износ с течением времени
  • воздействие агрессивной среды
  • завышенное напряжение при эксплуатации

Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

  • работать с прибором имеет право персонал с 3-й группой по электробезопасности
  • при испытании удалите всех посторонних от испытуемого кабеля
  • перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
  • проводить замеры изоляции кабеля рекомендуется при положительных температурах
  • не прикасайтесь к проводам прибора при измерениях

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжениеПоэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования.Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд.

    Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;

  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт.

Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.

Советы по работе с мегаомметром:

  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

Источник: https://domikelectrica.ru/kak-proverit-izolyaciyu-kabelya-megaommetrom/

Как прозвонить кабель мегаомметром

как измерить сопротивление мегаомметром

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки.

Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб.

Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Источник: https://myturcija.ru/info/kak-prozvonit-kabel-megaommetrom/

Как измерить сопротивление кабеля с помощью мегаомметра

как измерить сопротивление мегаомметром

Всем, кто хоть немного знаком с азами электричества известно, что у каждого кабеля есть своё сопротивление, от этого показателя зависит полноценная работа прибора и его срок службы, в случае незначительных повреждений или изменения показателей сопротивления изоляции необходимо произвести замену или ремонт изоляционного слоя. Во избежание проблем и для предотвращения аварийных ситуаций, показатели сопротивления изоляции необходимо регулярно контролировать, для этого существует специальный прибор для измерения сопротивления – мегаомметр.

Зачем нужно измерять сопротивление изоляции

Ответ на этот вопрос очень прост – для того, чтобы вовремя определить и устранить неисправности проводки. Для измерения задаётся номинальная величина сопротивления определённого материала и прибор показывает реальное сопротивление изоляции.

Подобные проверки должны быть регулярными, потому как помогают вовремя выявить повреждение электропровода, а это опасность возгорания и порчи оборудования. Когда кабель уже повреждён никакая проверка ему уже не понадобиться, измерять сопротивление нужно потому как это поможет:

  • предотвратить замыкание проводки;
  • порчу оборудования;
  • предотвратить возможное возгорание;
  • сделать проводку более безопасной;
  • продлить сроки её эксплуатации.

Что может испортить изоляцию и снизить её сопротивление

Не существует проводки у которой нет сноса, множество различных факторов постоянно влияют на её работу, и рано или поздно приводят изоляцию в негодность. Основные факторы понижающие сопротивление изоляции это:

  • Перепады напряжения.
  • Повышенная влажность.
  • Окружающая среда.
  • Температурные колебания.
  • Механические повреждения.

Измерить с помощью мегаомметра можно сопротивление любой изоляции с напряжением не менее 60 В.

Измерение сопротивления

Мегаомметр должен быть в арсенале у каждого электрика, потому как при работе с электрическими цепями просто необходимо контролировать показания сети.

На сегодняшний день есть несколько моделей мегаомметра: ручного и автоматического типа. Достоверность показаний прибора также нужно периодически проверять. Покупая прибор необходимо требовать всю документацию подтверждающую его исправность.

Мегаомметры бывают различной мощности, выбирать необходимый прибор нужно с учётом особенностей проводки.

Как правильно проводить замеры

Начиная с этапа производства кабеля проверяется сопротивление его изоляции. Далее необходимо провести замеры перед монтажом кабеля и перед запуском цепи, если есть отклонения от нормы, значит необходим ремонт, об этом более подробнее говорится в этой статье.

Также обязательно измерять сопротивление во время проведения ремонтных работ и на стадии запуска сети после ремонта. Обязательно периодически контролировать показания сопротивления сети и в работающей электрической проводке или приборе, для проведения профилактических работ.

Для того чтобы провести измерения необходимо соблюдать ряд правил:

  • сеть должна быть обесточена;
  • устанавливаются необходимые показатели сопротивления (если показатели неизвестны, ставят максимальное сопротивление);
  • нужно замкнуть все элементы цепи;
  • цепь нужно заземлить;
  • провести замер сопротивления (в течение 1 минуты);
  • после замера вновь заземлить цепь;
  • отключить питание сети.

Допустимое значение сопротивления приборов не должно превышать 0,05 ОМ на 1 кВт мощности, для каждого прибора или проводки свои показатели сопротивления.

Проведение регулярных замеров сопротивления изоляции – это необходимая мера безопасности, позволяющая избежать ряд проблем. Проверять сопротивление необходимо регулярно, не реже чем 1 раз в год.

Подготовительные этапы исходно-разрешительной документации (ИРД)

Благоприятный строительный проект, или же будь то реконструкция, или переоснащение технической части, берет свое начало с регистрации ИРД (исходно-разрешительной документации). Данный разрешительный тип документации оформляется в соответствии со статьей 44-51 ГКРФ.

Список категорий:

Источник: http://stroidom-shop.ru/bez-rubriki/kak-izmerit-soprotivlenie-kabelya-s-pomoshhyu-megaommetra.html

Измерение сопротивления мегаомметром

Измерительные приборы при работе с электрическими сетями играют важную роль для обеспечения безопасности обслуживающего персонала, а также для осуществления контроля состояния электроприборов и схем их подключения.

Это же касается и прибора, именуемого мегаомметр (ранее «мегомметр»), предназначенного для измерения сопротивлений, имеющих очень высокие значения. Данная публикация содержит информацию о том, что представляет собой мегаомметр, сферы применения, порядок работы с ним.

В статье расскажем про измерение сопротивления мегаомметром, рассмотрим пошаговую инструкцию.

Внешний вид прибора с динамо машиной, приводимой в действие вручную

Назначение прибора, конструкция, принцип работы

Название прибора говорит само за себя: «мега» — означает 106 или 1 млн., «омметр» — измерение сопротивления. Таким образом, становится ясно, что с помощью устройства доступны измерения сопротивлений в миллионы Ом или тысячи кОм. Где и кому могут понадобиться такие показатели? В основном это изоляция и все, что с ней связано, то есть средства, исключающие действие электротока там, где это не нужно по электрической схеме или недопустимо с точки зрения безопасности.

Кабеля, передающие электроэнергию, выводные трансформаторные изоляторы, обмотки электродвигателей приборов, машин и механизмов, должны обладать надежной изоляцией, способной исключить контакт проводников между собой, а также с корпусом устройства, предотвратить короткое замыкание или поражение человека электротоком. Соответственно значение сопротивления изоляционных средств должно иметь достаточно высокое значение. Для его измерения предназначен мегаомметр. С его помощью можно установить, что оборудование нуждается в замене, ремонте или временном отстранении от работы и просушке.

Внутреннее строение измерительного устройства

Основными составными частями прибора являются:

  • генератор напряжения (постоянного тока);
  • измерительный блок, демонстрирующий показания;
  • переключатель диапазонов измерений (кОм-МОм), дающий возможность изменять выходное напряжение за счет включения различных встроенных резисторных схем;
  • резисторы – сопротивления, ограничивающие протекающий ток.

Примерная схема устройства мегаомметра с обозначением его основных частей

Внутренний генератор в приборах старого образца работает от ручного привода за счет динамо машины. Современные устройства действуют от батарей. Стрелочные (аналоговые) аппараты отображают показания на шкале за счет двух рамок: одной — рабочей и второй – противодействующей. Измерительный блок электронных мегаомметров выдает значения на табло в цифровом виде.

Внешний вид цифрового электронного мегаомметра для диагностики изоляции

Клеммы для подключения щупов вместо обозначений «Л» и «З», могут иметь маркировку “Rx” и “-”.  статью: → «Способы проверки напряжения в розетке при помощи различных приборов».

Принцип работы прибора

Действие устройства основано на законе Ома, известном из школьного курса физики, где сила тока находится в прямой зависимости от напряжения и сопротивления, что отображается формулой I = U/R.

Напряжение генерируется самим прибором. Измерительный блок, по сути, является амперметром, который фиксирует значение протекающего по цепи тока, но так как напряжение, подаваемое генератором заранее известно, то деления шкалы измерений рассчитаны и размечены под кило- и мегаомы.

Проверка сопротивления изоляции производится при отключенной электроэнергии, но создаваемое прибором высокое напряжение может накапливаться (например, на конденсаторах) и собираться в опасные заряды, способные привести к поражению человека электрическим током.

Осуществление измерений прибором

Работы производятся работниками (не менее двух), имеющими специальное образование и допуск по технике безопасности. Учитывая наличие высокого напряжения, контакты с диагностируемыми объектами производятся только специальными щупами с изолирующим покрытием.  статью: → «Измерение сопротивления изоляции электропроводки».

Процедура измерений производится в два этапа:

  1. Подготовительный – проверка прибора, его работоспособности, подготовка места работы
  2. Рабочий – производство определенных действий по замеру сопротивления изоляции.

Перед началом работы измеряемый участок обесточивается, принимаются меры по предупреждению несанкционированной подачи электроэнергии.

Подготовка к проведению измерений, проверка мегаомметра

В проверяемой цепи могут присутствовать полупроводниковые и микропроцессорные элементы, которые не в состоянии выдержать подаваемое во время проверки высокое постоянное напряжение. Поэтому в период подготовки такие составляющие части схемы должны быть временно удалены или блокированы перемычками и шунтами.

Практическая рекомендация:если используется измерительное устройство старого типа, необходимо приготовить горизонтальную поверхность, на которую прибор будет установлен для уменьшения искажений и получения более точных результатов.

Проверка мегаомметра производится следующим образом:

  • аппарат, провода и щупы осматриваются на предмет наличия видимых повреждений (сколов, трещин);
  • провода подключаются к клеммам, щупы замыкаются между собой, от генератора подается напряжение – результат «0» свидетельствует об исправности;
  • при подаче напряжения и разведенных щупах исправный прибор должен показать «∞». Рабочее место и прибор готовы к проведению измерений.

Диагностирование состояния изоляции (пошаговая инструкция)

При проведении контроля сопротивления изоляции между проводником и корпусом (землей) используются только щупы. При испытаниях токоведущей жилы кабеля, провод от клеммы «Э» подключается к экрану кабеля. Это позволит компенсировать токи утечки.

Для измерения сопротивления обмоток, которое проводится перед их испытанием высоким напряжением, применяют мегаомметры с соответствующим номинальным напряжением, либо выставляют регулировку прибора (если она имеется) на нужную величину:

№ п/п Номинальное напряжение обмотки, В Номинальное напряжение мегаомметра, В
1. 500 (660) 500
2. До 3000 1000
3. 3000 и более 2500 и более

Непосредственно измерение производится в следующем порядке:

  1. На время подключения прибора, накладывается переносное заземление, щупы устанавливаются на проверяемые объекты, переносное заземление снимается (установка и снятие заземления производится перед каждым замером во избежание поражения током и предупреждения погрешностей на приборе)
  2. Проверяется изоляция между всеми фазами, а также относительно REN проводника. Ручка генератора при каждой проверке должна вращаться со скоростью 120 об/мин в течение 60 сек, а у электронного аппарата подача напряжения происходит через нажатие кнопки на 30 сек. Между замерами нужно выдерживать паузу – 2 мин. При нормальном состоянии изоляции, стрелка устройства будет уходить в сторону наибольшего значения, ближе к «∞», а в противном случае – приближаться к «0».

Способы подключения мегаомметра для проверки сопротивления изоляции жил кабеля

  1. При проверке однофазных цепей, необходимо отсоединить нулевой провод, отключить все потребители и УЗО. Для проверки бытовых электрических сетей напряжение прибора выставляется на 500 Вольт
  2. Замеры производятся поочередно между “N”, “L” и “RE”
  3. После окончания измерений, объект испытания необходимо кратковременно замкнуть на землю, для удаления возможного остаточного напряжения, а мегаомметр разрядить, соединив щупы между собой.

Возможность накопления и поражающего действия остаточного напряжения в цепи

Практическая рекомендация: во время работы с мегаомметром, щупы нужно держать только выше ограничительных колец, а все манипуляции с их переустановкой, наложением заземлений и другие осуществлять в диэлектрических перчатках.

В случае обнаружения неисправности, поврежденный участок разбирается на элементы для выявления и устранения нарушения. Перед возобновлением электроснабжения нужно устранить все внесенные в цепь изменения, удалить перемычки, шунты, подключить защитные устройства.

Обзор моделей мегаомметров и их производителей

Современный рынок измерительной техники предлагает широкий выбор аппаратов от разных торговых марок. Через интернет магазины можно приобрести аналоговые и цифровые мегаомметры в электродинамическом и электронном исполнении.

Разные модели предназначенные для производства измерений в различных диапазонах отличаются не только рабочими параметрами, но и габаритами и ценовыми значениями.

Охватить в одной публикации все модели и их производителей невозможно, поэтому для ориентации в разнообразии изделий и ценах на них, в качестве примера приводится продукция отечественного и зарубежного производства:

Страна Название прибора Модель Цена, руб.
Россия ПрофКип ЭС202/1г Электродинамический 8 000
Беларусь Е6-26 Электронный цифровой 71 000
Украина ЭС0210/3 Электродинамический 14 000
Польша Sonel MIC-2505 Электронный цифровой 60 000
Китай Uni-T UT-513 Электронный цифровой 16 000

Приведенные значения стоимости являются усредненными и не могут стать основанием для оформления заказов и составления смет для закупок. При выборе измерительного устройства нельзя ориентироваться только на его стоимость или компактные размеры. Необходимо учитывать качество (название бренда, наличие сертификата соответствия, гарантийные обязательства) и технические параметры.

Цифровой электронный мегаомметр с диапазоном от 500 до 5000 Вольт

Например, мегаомметр MY-40 от японской компании YOKOGAWA способен работать в 4-х диапазонах: 125, 250, 500 и 1000 В; с его помощью можно замерять сопротивление обычных проводников и мощных кабелей; он автоматически производит разрядку после окончания измерений. При этом его стоимость составляет около 32 тыс. рублей.

Некоторые приборы работают в диапазоне напряжений от 500 до 10000 Вольт и обладают функцией автоматического выбора пределов измерений, например, Standard Electric 6212 IN. Его стоимость составляет примерно 55 тыс. рублей.

Конечно, мощные и дорогие измерительные приборы более востребованы на специализированных предприятиях, а для использования в быту и небольших сервисных центрах достаточно приобрести недорогой компактный электронный или электродинамический аналоговый мегаомметр.  статью: → «Способы измерения сопротивления заземления, используемые приборы».

Заключение и вывод по теме

Информация, предоставленная в статье, является информационной. Полные сведения о мегаомметрах и правилах работы с ними необходимо получать в специальных учебных пунктах подготовки электриков.

Для этого существует соответствующая нормативная документация, в которой содержаться не только технические данные относительно измерительных устройств, но и меры безопасности при обращении с ними.

Их знание и применение помогут сохранить работоспособность прибора и избежать поражения электротоком во время проведения работ.

Источник: http://electric-tolk.ru/izmerenie-soprotivleniya-megaommetrom/

Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки.

Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб.

Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:

  • Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке.Подключение мегаомметра

Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

Источник: https://www.asutpp.ru/izmerenie-soprotivleniya-izolyatsii-megaommetrom.html

Как правильно пользоваться мегаомметром?

Неотъемлемой частью и показателем электрической сети является такое понятие, как изоляция. Защитная оболочка провода или кабеля, электрический изолятор воздушной линии, изолятор выводов трансформатора и прочие устройства препятствуют электрическому току контактировать там, где нам не нужно.

Изолирующая оболочка обеспечивает защиту от короткого замыкания, возгорания, пробоя на корпус электрического устройства или машины, а также защиту человека от поражения током. Тем не мене изоляция подвержена воздействию внешних факторов, таких как время, солнце, мороз, вода, механический износ, контакт с агрессивной средой. Чтобы вовремя выявить дефект существует прибор — мегаомметр.

Как пользоваться этим прибором, мы расскажем далее, предоставив методику измерения сопротивления изоляции мегаомметром.

Принцип действия прибора

Мегаомметр генерирует напряжение собственным высоковольтным преобразователем, а миллиамперметр фиксирует ток, в измеряемой цепи. Из школьного курса физики мы знаем закон Ома, и связь между сопротивлением R, которое равно U деленное на I.

В настоящее время распространение получили цифровые измерители приборы, благодаря своей компактности и легкости, но наравне с ними до сих пор ходят стрелочные модели с ручной динамо-машиной. Сейчас мы рассмотрим, как правильно пользоваться мегаомметром старого образца и нового.

Обращаем ваше внимание на то, что некоторые называют прибор для измерения сопротивления изоляции мегомметром. Это не совсем правильное название, т.к. если слово разбить по частям, получится приставка «мега», единица измерения «Ом» и «метр» (с греческого переводится как мера).

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к.

замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ.

Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми.

Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях.

При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:

  1. Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
  2. Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
  3. Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках. Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
  4. Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
  5. Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
  6. Производим замер каждой линии между фазой и N, фазой и PE, N и PE. Результаты вносим в протокол измерений.
  7. В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.

уроки

Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:

Работа с моделью старого образца

Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:

Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:

Источник: https://samelectrik.ru/kak-pravilno-polzovatsya-megaommetrom.html

Измерение сопротивления изоляции мегаомметром

> Инструмент > Измерение сопротивления изоляции мегаомметром

Эффективность энергоснабжения и безопасность эксплуатации кабельных магистралей в значительной степени зависят от состояния внешней изоляционной оболочки. При нарушении целостности защитного экрана токопроводящие линии подвергаются угрозе разрушения, что может привести к отказу в их работе.

Согласно действующим в нашей стране электротехническим стандартам (ПУЭ в частности), все находящиеся в эксплуатации проводные линии и кабели должны периодически проходить проверку состояния их защитной изоляции.

Контроль сопротивления

Проверка изоляции кабельной продукции осуществляется путём измерения её сопротивления специально разработанным для этих целей прибором (мегаомметром).

Прежде чем приступить к работе с этим инструментом, необходимо ознакомиться с причинами ухудшения состояния кабельной изоляции, которые проявляются обычно в следующем:

  • Непостоянство напряжения в линиях энергоснабжения;
  • Разрушающее действие солнечного УФ излучения (для объектов, прокладываемых открыто);
  • Резкие колебания температуры;
  • Воздействие агрессивных сред (при скрытой прокладке в грунте).

Независимо от состояния защитной оболочки кабеля, измерение сопротивления изоляции мегаомметром проводится с определённой периодичностью, определяемой действующими нормативами. Результаты проверочных мероприятий с известной точностью позволяют определить причины нарушения изолирующей оболочки, а при определённых условиях – обнаружить повреждённые участки кабеля.

При испытаниях следует руководствоваться действующими методиками измерений, учитывающими условия их проведения, а также основными приёмами работы с измерительным оборудованием. Кроме того, в методических указаниях оговариваются параметры испытательного режима мегаомметра (величины номинального тока, подающегося в контролируемый кабель в частности).

Требования к окружению и прибору

Проверка сопротивления кабельных оболочек должна проводиться в закрытых помещениях, температура воздуха в которых не менее +15-+35 °С. Одновременно с этим влажность внутри здания не должна превышать 80-ти процентов.

Необходимость проведения замеров изоляции электропроводки

Эти требования определяются общими положениями нормативных актов и в каждом конкретном случае могут иметь несколько отличных от этих значения. Параметр, измеряемый в процессе проведения испытаний (сопротивление утечки), может быть определён несколькими способами. Но в любом случае его измеренное значение должно значительно превышать нормируемый показатель (не менее чем в 20 раз).

Определённые требования предъявляются и к измерительному прибору (мегаомметру), а именно:

  • Необходимо периодически проверять исправность этих аппаратов, а также наличие подтверждающих их работоспособность документов;
  • Питающие элементы прибора (аккумуляторы) следует поддерживать в состоянии полной зарядки;

Обратите внимание! Этот пункт не относится к образцам мегаомметров, оснащённых встроенным генератором высокого напряжения.

  • Точность снятия показаний прибором для измерения сопротивления изоляции должна быть подтверждена паспортной отметкой Госстандарта.

Добавим к этому, что испытательные напряжения мегаомметра могут иметь следующие дискретные значения: 500, 1000 и 2500 Вольт. Выбрав одну из этих величин, можно будет проверять кабель определённого типа и мощности. Так, диапазон до 1000 Вольт обычно используется при испытании кабельной оплётки, сечение которой не превышает 16 мм².

Требования к объекту испытаний и персоналу

Основное условие, которое должно быть соблюдено перед началом измерений, – отсутствие в исследуемой линии питающих напряжений, способных воздействовать на испытательное оборудование и на работающего с ним человека.

Далее любая кабельная продукция подвергается испытанию на прочность ещё задолго до того, как организуется её проверка на конкретном объекте. Первый раз её тестирование организуется при выпуске с конвейера промышленного предприятия, а второй – перед запуском данного объекта в эксплуатацию и подключением к линии энергоснабжения.

Из этого следует, что перед тем, как измерить сопротивление изоляции кабельных линий на данном объекте, оператор имеет все необходимые данные по её состоянию на момент последней проверки. Ему достаточно сравнить полученные результаты со снятыми ранее показаниями (последние фиксируются в паспорте на данную продукцию).

Важно! Кабельные линии, работающие в цепях с напряжением менее 60 Вольт, проверять повышенным напряжением не допускается.

Что касается человеческого фактора, то заниматься этой работой могут только лица, имеющие специальный допуск к работам с повышенным напряжением. К ним могут быть отнесены специалисты из состава персонала бригад, постоянно занимающиеся ремонтом электрооборудования. Все эти люди должны иметь соответствующие документы, удостоверяющие уровень их подготовки и профессионализма.

Порядок измерения

Суть проверки изоляции на прочность состоит в измерении её сопротивления точно таким же образом, как проверяются обычные резисторы. Однако в этом случае её проводимость контролируется по отношению к другой части, на которую возможна утечка (это может быть земля, второй фазный провод или корпус аппаратуры).

При проверке качества изоляции принят следующий порядок проведения испытаний:

  • Сначала нужно «прозвонить» собственные соединительные провода, сопротивление которых не должно быть более погрешности измерений;
  • Затем посредством имеющегося на приборе центрального указателя устанавливается требуемый диапазон;

Дополнительная информация. В том случае, когда порядок измеряемой величины неизвестен, рекомендуется выбирать наибольший предел. Так удаётся уберечь прибор от перегрузок и угрозы выхода из строя.

  • После этого необходимо ещё раз убедиться том, что напряжение с исследуемого объекта полностью снято;
  • Также следует закоротить всю подключённую к линии проводку, имеющую пониженные изоляционные характеристики («слабую» изоляцию);
  • В соответствии с требованиями ПУЭ, на время подсоединения «концов» прибора к исследуемой цепи она заземляется с помощью прикладываемых к комплекту прибора металлических штырей;
  • Подсоединив один из концов к центральной жиле кабеля, а другой – к любому имеющемуся на объекте «земляному» проводу, можно удалить временное заземление и перейти непосредственно к измерениям;
  • Для этого следует начать вращать ручку индуктора, вырабатывающего высокое напряжение и подающего его на измеряемую цепь. Скорость вращения должна быть не менее 120 оборотов минуту; для получения корректного показания индуктор должен работать не менее 60 секунд;
  • Во время вращения ручки прибора по его шкале можно считать требуемое показание, которое удаётся замерить лишь после окончательного успокоения колеблющейся стрелки.

Обратите внимание! При работе с сетевыми приборами для выработки испытательного воздействия достаточно нажать кнопку «Высокое напряжение».

По окончании измерений на объектах с большой собственной емкостью (это касается протяженных кабельных линий) перед отсоединением измерительных концов следует снять накопленный заряд наложением временного заземления.

Категорически запрещено работать с высоковольтным прибором на кабельных трассах, которые хотя бы в малой своей части располагались вблизи линии, находящейся под высоким напряжением. Этот запрет также распространяется на испытания воздушных линий электропередач во время грозы.

Оценка результатов испытаний и их периодичность

Измерение сопротивления заземляющего устройства

Значение контролируемых параметров определяется особенностью исследуемого объекта и его функциональным назначением. Согласно требованиям ПУЭ, сопротивление изоляции для низковольтных (до 0,4 кВ) кабельных линий и проводки электродвигателей не должно быть менее 0,5 МОм.

Тот же параметр для высоковольтного оборудования (более 1000 Вольт) составляет 1 Мом, а для воздушных кабельных линий он не может быть менее 10-ти Мом. Для сравнительной оценки состояния изоляции обычных кабельных трасс можно воспользоваться приводимой ниже таблицей.

Оценка состояния изоляции

Указанные величины нормируемых показателей справедливы для любых погодных условий. Периодичность проведения испытательных процедур определяется действующими нормативами и зависит от характеристик и состояния обследуемого объекта. Все вопросы, касающиеся самих испытаний (предельные напряжения, порядок и сроки проведения измерений), а также оценки их конечных результатов подробно рассмотрены в ПТЭЭП.

Согласно этим нормативам, качество изоляции кабелей осветительного, кранового и лифтового оборудования должно проверяться не реже одного раза в год. Те же процедуры для переносных сварочных агрегатов и электродвигателей полагается организовывать каждые полгода.

Любые нарушения определённой нормативами периодичности проверки могут привести к нарушению нормального режима работы кабельных или проводных линий, и, как следствие, вызвать повреждение подключённого к ним оборудования.

Тб и документирование

Люксометр: измерение освещенности

В части соблюдения правил безопасности при обращении с высоковольтным измерительным оборудованием необходимо заострить внимание на следующих важных моментах:

  • Запрещено начинать любые испытательные работы, если нет полной уверенности в том, что с объекта полностью снято напряжение;
  • Перед началом измерительных операций следует произвести его осмотр и убедиться в отсутствии рабочего персонала на линиях, соединённых с данным участком кабеля;
  • Вдоль всей кабельной трассы, подвергшейся испытаниям, следует разместить предупреждающие знаки «Высокое напряжение»;
  • Во всё время проведения измерений прикасаться к токоведущим частям открытыми участками тела категорически воспрещается.

По окончании испытаний следует удалить остаточное электричество путём кратковременного заземления этих частей.

После того, как проверка изоляции кабеля мегаомметром полностью завершена, следует подготовить документальный отчёт, в котором должны содержаться такие обязательные пункты, как:

  • Дата и место их проведения;
  • Состав проверяемого и измерительного оборудования;
  • Результаты проведённых измерений, оформленные в виде протокола, составленного по особой форме.

В заключение отметим, что испытания сопротивления изоляции на прочность разрешается проводить лишь в условиях постоянства окружающей температуры и отсутствия влажных испарений. Во время дождя или гроз работа с напряжениями свыше 1 киловольта недопустима.

Источник: https://elquanta.ru/instrument/izmerenie-soprotivleniya-izolyacii-megaommetrom.html

Мегаомметр — прибор для измерения сопротивления изоляции

Мегаоомметр – прибор для измерения сопротивления изоляции. Его устройство основано на схеме логарифмического измерителя отношений. Основные узлы мегаомметра – электронный измеритель, электромеханический генератор, преобразователь.

Генератор постоянного тока в мегаомметре представляет собой гальванические элементы или аккумуляторные батареи, в ранних моделях, которые по возрасту начитывают уже более полувека, ток подавался через динамо-машину, в которой, для того, чтобы она заработала, надо было покрутить ручку.

Тем не менее, как прибор для проверки и измерения сопротивления изоляции, мегаомметр М1101М, например, вполне годится: как и полвека назад, он показывает высокую точность измерений.

Мегаомметр работает так: измерительное напряжение поступает через входящий резистор R11 одновременно на резисторы R16, R33, R32 и измеряемый резистор (см. схему). Ток измерителя рассчитывается по формуле:

где К — коэффициент пропорциональности, Rх — измеряемое сопротивление, R16, R17, R18, R32, R33 — сопротивления. Из приведенной выше зависимости следует, что ток измерителя пропорционален логарифму отношения сопротивлений и не зависит от измерительного напряжения. 

Обычно мегаомметр, являясь прибором для измерения сопротивления изоляции, имеет токонепроводящий корпус – пластмассовый, или обрезиненный, как, например, в Е6-32. Это создает дополнительное удобство есть защита от поражения электрическим током.

Сопротивление изоляции: как и для чего измерять

Итак, мегаомметр – средство измерений, которое проводит замеры с использованием повышенного выпряиленного напряжения, исключает необходимость подключения к сети, а также имеет несколько фиксированных значений выходного напряжения на зажимах, что дает возможность проводить измерения по разным нормативным требованиям. Мегаомметр применяется как прибор для измерения сопротивления изоляции в различных областях, например в производстве: как правило, требуются замеры обмоток электрических машин и трансформаторов, сопротивления изоляции проводов и кабелей, разъемов, поверхностных и объёмных сопротивлений изоляционных материалов.

Мегаомметр как прибор для измерения сопротивления изоляции довольно редко имеется в организациях, непрофильных электроизмерениям, несмотря на его доступность и широкую распространенность: низкие напряжения измеряются омметром, и еще один прибор, как правило, не приобретают – тем более, что для измерений требуется не только мегаомметр, но и допуск соответствующего уровня. Почему такое важное значение придается изоляции, измерению ее сопротивления, испытаниям?

В силовых кабелях и проводах изоляция разделяет токоведущие жилы, в ячейках распредустройств — отделяет токоведущие установки от заземления, создает систему безопасности при работе с электроустановками и силовыми линиями.

Если значение сопротивления изоляции ниже нормируемого, то возможно наступление сразу нескольких последствий: это пожарная опасность – от задымления ядовитыми веществами от горящей изоляции до постоянных утечек тока. И первое, и последнее создает серьезную угрозу жизни и безопасности обслуживающего персонала электрооборудования.

При этом измерение сопротивления изоляции, особенно в организациях, занимающихся обслуживанием потребителей (обывателей, покупателей, клиентов), которые, в отличие от персонала, могут не иметь даже минимальной грамотности в сфере электробезопасности – единственная возможность избежать несчастных случаев.

Повреждения изоляции могут возникать по разным причинам. Это заломы и повреждения при транспортировке, перетирание из-за неправильной установки, деградация изоляции вследствие времени, агрессивной среды, температурных воздействий, перепадов напряжения, по каким-либо иным причинам.

С помощью мегаомметра – прибора для измерения сопротивления изоляции – при проведении измерений сопротивления изоляции силами специалистов электролаборатории — можно выявить место утечки и впоследствии ликвидировать нарушения в кратчайшие сроки.

Нельзя также исключать человеческий фактор – ошибочные действия персонала также могут повредить изоляцию, причем повреждения могут быть системными, поэтому измерение сопротивления изоляции требуется проводить согласно графику измерительных работ и испытаний, утвержденных в нормативных документах: ПУЭ, ПТЭЭП ОиНИЭ, ГОСТ.

Измерение для различных видов электрооборудования проводят при значениях постоянного (выпрямленного)  напряжения U=250,500,1000,2500,5000В. Значения измеряемого напряжения указываются в методиках, пособиях, руководствах на оборудование.

Специфика измерения сопротивления изоляции

Первым этапом проверки изоляции электропроводки является визуальный осмотр, во время которого можно выявить серьезные нарушения: оплавление изоляции, разрывы, заломы, отсутствие частей изолирующего покрытия, трещины, съеживание или провисание.

Точно так же перед тем, как использовать прибор для измерения сопротивления изоляции, необходимо проинспектировать места стыка кабелей, присоединение их к шинам, контакты распределительной коробки, клеммы и пр.

Несмотря на то, что, в отличие от показаний мегаомметра при измерениях, визуальный осмотр не дает точных численных значений , его результаты также заносятся в протокол и подшиваются к акту.

Затем производится полное отключение оборудования: силовых трансформаторов, кабельных линий , в электроустановках до 1000В остаточное напряжение снимается, выкручиваются лампы накаливания, выключатели переводятся в режим включения. Это делается для того, чтобы при измерении сопротивления изоляции контуры были замкнуты, но при этом не произошло перегорание «слабых звеньев», не рассчитанных на перепады напряжения.

При использовании мегаомметра — прибора для проверки и измерения сопротивления изоляции – проводятся следующие работы:

  1. измерение сопротивления между токоведущими частями электроустановок и заземляющими элементами;
  2. измерение сопротивления между обмотками первичного и вторичного напряжения в силовых и измерительных трансформаторах;
  3. измерение сопротивления изоляции между нейтралью и землей, между фазными проводниками и землей, между фазой и нулем, между фазными проводниками.

В любом случае, проверка должна выявить либо полное соответствие ПУЭ и ПТЭЭП, либо некоторое несоответствие, которое измеряется дополнительно – если это необходимо — фиксируется и заносится в акт проверки. Проверочное напряжение мегаомметра может быть разным, поэтому измерения классифицируются еще и для разного типа оборудования:

  1. напряжение 1 кВ используется при проверке проводов, кабелей  до 1000В в соответствии с требованиями НД.  
  2. напряжение 2,5 кВ используется для магистральных кабельных линий до 1000В и оборудования выше 1000В.

Отметим, что сотрудникам электротехнической лаборатории, проводящим проверку, необходимо иметь достаточный уровень квалификации: для работ с мегаомметром производителю работ IV группу по электробезопасности, членам бригады —  III  группу по электробезопасности, при этом в бригаде должно быть не менее двух человек.

Правила эксплуатации мегаоомметра

Правила эксплуатации мегаомметра – прибора для проверки и измерения сопротивления изоляции описаны в Руководстве по эксплуатации средства измерений.

«5.4.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. В электроустановках напряжением выше 1000 В измерения производятся по наряду, в электроустановках напряжением до 1000 В — по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

5.4.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.4.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.

5.4.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления».

При работе с мегаомметром нашими специалистами, все правила по предварительной подготовке измерений, безопасности труда, проведению измерений и фиксации их результатов соблюдаются неукоснительно, что обеспечивает высокое качество выполнения исследований. Сотрудники электролаборатории имеют необходимые допуски, а организация –разрешительные документы на виды деятельности. Работы проводятся на территории Северо-Западного Федерального Округа. 

Если проверка сопротивления изоляции выявила несоответствие показаний требованиям нормативных документов (например ПТЭЭП или  ПУЭ), то данное испытуемое оборудование бракуют, о чем делают запись в протоколе и ведомости дефектов.

Измерение сопротивления изоляции кабелей, имеющих фазные жилы, сечение которых – 16мм2 или меньше, выполняется при помощи мегаомметра (проверочное напряжение — 1000В).

Измерение сопротивления изоляции кабелей и проводов, фазные жилы которых имеют сечение больше 16мм2, осуществляется мегаомметром (проверочное напряжение — 2500В).

Удовлетворительным принято считать сопротивление изоляции линий напряжением до 1000В при значении между любыми её проводами не больше 0,5МОм.

Для силовых кабельных линий значение  сопротивления не нормируется.

Для оборудования электроустановок до и выше 1000В нормируемые значения сопротивления изоляции используют из НД : ПУЭ , 7-е изд., гл.1.8., ПТЭЭП, ОиНИЭ, паспорта заводов –производителей оборуования.

Работы выполняются специалистами имеющими III гр. по ЭБ для членов бригады и IV гр. по ЭБ до и выше 1000В для производителя работ.

Источник: http://www.gorod812.com/oborudovanie/megaommetr

ЭТО ИНТЕРЕСНО:  Почему трещит автомат в электрощитке
Понравилась статья? Поделиться с друзьями:
220 вольт
Как подсоединить лампочку к проводам

Закрыть