Датчик температуры: контроль температурного режима двигателя
В каждом автомобиле есть простой, но важный датчик, помогающий контролировать работу двигателя — датчик температуры охлаждающей жидкости. О том, что такое датчик температуры, какую он имеет конструкцию, на каких принципах основана его работа, и какое место он занимает в автомобиле — читайте в статье.
Что такое датчик температуры
Датчик температуры охлаждающей жидкости (ДТОЖ) — электронный датчик, предназначенный для измерения температуры охлаждающей жидкости (ОЖ) системы охлаждения двигателя внутреннего сгорания. Данные, полученные с помощью датчика, используются для решения нескольких задач:
• Визуальный контроль температуры силового агрегата — данные с датчика выводятся на соответствующий прибор (термометр) на приборной панели в салоне автомобиля;
• Корректировка работы различных систем двигателя (питания, зажигания, охлаждения, рециркуляции отработанных газов и других) в соответствии с его текущим температурным режимом — информация с ДТОЖ подаются на электронный блок управления (ЭБУ), который вносит соответствующие корректировки.
Датчики температуры ОЖ используются во всех современных автомобилях, они имеют принципиально одинаковую конструкцию и принцип работы.
Типы и конструкция датчиков температуры
В современных транспортных средствах (а также и в различных электронных устройствах) используются датчики температуры, чувствительным элементом в которых выступает терморезистор (или термистор). Терморезистор (термистор) — полупроводниковый прибор, электрическое сопротивление которого зависит от его температуры.
Существуют термисторы с отрицательным и положительным температурным коэффициентом сопротивления (ТКС), у приборов с отрицательным ТКС сопротивление падает с ростом температуры, у приборов с положительным ТКС — напротив, повышается. Сегодня чаще всего применяются термисторы с отрицательным ТКС, как более удобные и дешевые.
Конструктивно все автомобильные ДТОЖ принципиально одинаковы. Основу конструкции составляет металлический корпус (баллон) из латуни, бронзы или иного коррозионностойкого металла.
Корпус выполнен таким образом, что его часть контактирует с потоком охлаждающей жидкости — здесь располагается термистор, который дополнительно может прижиматься пружиной (для более надежного контакта с корпусом).
В верхней части корпуса располагается контакт (или контакты) для включения датчика в соответствующую цепь электросистемы транспортного средства. На корпусе также нарезана резьба и выполнен шестигранник под ключ для монтажа датчика в систему охлаждения двигателя.
https://www.youtube.com/watch?v=AGRzO8Cw7aM
Датчики температуры отличаются способом подключения к ЭБУ:
• Со стандартным электрическим разъемом — на датчике выполнен пластиковый разъем (или колодка) с контактами; • С винтовым контактом — на датчике выполнен один контакт с зажимным винтом;
• Со штыревым контактом — на датчике предусмотрен один контакт в виде штыря или лопатки.
Датчики второго и третьего вида имею только один контакт, в роли второго контакта выступает корпус датчика, соединенный с «массой» электросистемы автомобиля через двигатель. Такие датчики чаще всего используются на коммерческих и грузовых автомобилях, на специальной, сельскохозяйственной и иной технике.
Датчик температуры ОЖ монтируется в самой горячей точке системы охлаждения мотора — в выпускном патрубке головки блока цилиндров. На современных автомобилях часто устанавливается сразу два или даже три ДТОЖ, каждый из которых выполняет свою функцию:
• Датчик термометра (указателя температуры ОЖ) — наиболее простой, имеет невысокую точность, так как он помогает лишь визуально оценить температуру силового агрегата; • Датчик ЭБУ на выходе из головки блока — наиболее ответственный и точный датчик (с погрешностью 1-2,5°C), позволяющий отслеживать изменения температуры в несколько градусов;
• Датчик на выходе из радиатора — вспомогательный датчик невысокой точности, обеспечивающий своевременное включение и отключение электрического вентилятора охлаждения радиатора.
Несколько датчиков дают больше информации о текущем температурном режиме силового агрегата и позволяют надежнее контролировать его работу.
Принцип работы и место датчика температуры в транспортном средстве
В общем случае принцип работы датчика температуры прост. На датчик подается постоянное напряжение (обычно 5 или 9 В), на термисторе в соответствии с законом Ома (за счет его сопротивления) напряжение падает.
Изменение температуры влечет за собой изменение сопротивления термистора (при росте температуры — сопротивление снижается, при понижении температуры — повышается), а значит, и падение напряжения в цепи датчика.
Измеряемая величина падения напряжения (а точнее — фактическое напряжение в цепи датчика) как раз и используется термометром или ЭБУ для определения текущей температуры двигателя.
Для визуального контроля температуры силового агрегата в цепь датчика подключается специальный электрический прибор — логометрический термометр. В приборе используется две или три электрических обмотки, между которыми расположен подвижный якорь со стрелкой.
Одна или две обмотки создают постоянное магнитное поле, а одна обмотка включена в цепь датчика температуры, поэтому ее магнитное поле изменяется в зависимости от температуры ОЖ.
В результате взаимодействия постоянных и переменных магнитных полей в обмотках заставляет якорь проворачиваться вокруг оси, что влечет за собой изменение положение стрелки термометра на его циферблате.
Для контроля функционирования мотора на различных режимах и управления его системами показания датчика подаются на электронный блок управления через соответствующий контроллер. Измерение температуры производится по величине падения напряжения в цепи датчика, для этого в памяти ЭБУ присутствуют таблицы соответствия величины напряжения в цепи датчика и температуры двигателя. На основе этих данных в ЭБУ запускаются различные алгоритмы работы основных систем двигателя.
На основе показаний ДТОЖ осуществляется корректировка работы системы зажигания (изменение угла опережения зажигания), питания (изменение состава топливно-воздушной смеси, ее обеднение или обогащение, управление дроссельным узлом), рециркуляции отработавших газов и других. Также ЭБУ в соответствие с температурой двигателя устанавливает частоту вращения коленвала и другие характеристики.
Датчик температуры на радиаторе охлаждения работает аналогичным образом, с его помощью осуществляется управление электровентилятором. На некоторых автомобилях этот датчик может работать в паре с основным для более точного управления различными системами двигателя.
Датчик температуры играет важную роль в любом транспортном средстве с ДВС, в случае поломки его необходимо как можно скорее заменить — только в этом случае будет обеспечена нормальная работа силового агрегата на любых режимах.
Еще в этом разделе
Источник: http://www.autoopt.ru/articles/products/24347795/
Как подключить датчик температуры — Лучшее отопление
Температурные датчики сегодня широко распространены и могут быть использованы практически в любой сфере. В качестве примера можно привести применение температурного датчика для фиксирования температуры окружающей среды в автомобиле.
На сайте http://skidkosnab.ru/ представлен широкий выбор температурных датчиков. В данной публикации будет описан метод установки подобного устройства на отечественный автомобиль.
Как ни странно, но по какой-то причине, температурный датчик не устанавливается на отечественные автомобили. Между тем, подобная опция является распространённой, если говорить об иномарках.
https://www.youtube.com/watch?v=7LoHR0CvF8o
Многие владельцы практически всегда пользуются ей. Исправить большинство заводских недоделок на этой модели отечественного автомобиля не так сложно. А если подобрать один из самых доступных датчиков, то вся процедура обойдётся в 250 рублей.
Ниже представлено всё, что потребуется в дальнейшем:
Однако перед самой установкой настоятельно рекомендуется осуществить проверку возможность использования температурного датчика. Для этого выясняем, какая прошивка в данный момент установлена на бортовом компьютере.
Чтобы понять это, следует выполнить следующее. Зажимаем клавишу, которая обнуляет суточный пробег. Поворачиваем ключ зажигания, но не заводим двигатель. После того, как стрелки поднялись и опустились ещё раз кратковременно нажимаем эту же кнопку и на дисплее отразится версия прошивки.
Если она не 090, значит установка температурного датчика не имеет смысла. Либо для осуществления задуманного придётся выполнить перепрошивку бортового компьютера.
Протягиваем датчик
Сам датчик будет располагаться под бампером. От него протягиваем пластиковую гофру, в которой уложен провод для подключения. Важно завести всё это дело в салон под рулевую колонку, где находятся вывода всей электрики автомобиля.
При этом саму гофру следует зафиксировать при помощи хомутов, чтобы в процессе вождения она не намоталась ни на что. Подключается провод в 25 контакт на колодке. Если монтаж был выполнен корректно, то после завода двигателя на дисплее будет отображаться и температура.
Источник: https://lucheeotoplenie.ru/podbor-otopleniya/kak-podklyuchit-datchik-temperatury.html
Arduino для начинающих. Урок 9. Подключение датчика температуры и влажности DHT11 и DHT22
Продолжаем серию уроков “Arduino для начинающих”. Сегодня мы разберем подключение к Arduino датчиков температуры и влажности DHT11 и DHT22.
Датчики DHT11 и DHT22 не обладают высоким быстродействием и точностью, но зато просты, недороги и отлично подходят для обучения. Они выполнены из двух частей — емкостного датчика влажности и термистора. Чип, находящийся внутри, выполняет аналого-цифровое преобразование и выдает цифровой сигнал, который можно считать с помощью любого микроконтроллера.
Список деталей для сборки модели
Для сборки проекта, описанного в этом уроке, понадобятся следующие детали:
- плата Arduino (подробнее, о том как выбрать Arduino здесь);
- датчик DHT11 или DHT22 (можно купить, например, здесь или здесь);
- Breadboard;
- резистор на 10 кОм;
- программа Arduino IDE, которую можно скачать с сайта Arduino.
Датчик DHT11 входит в состав набора из 37 датчиков и других компонентов за $37.
Датчики DHT11 и DHT22
Чем отличаются датчики DHT11 и DHT22?
Две версии сенсоров DHT похожи друг на друга и имеют одинаковую распиновку. Их отличия в характеристиках. Спецификации:
Сенсор DHT11:
- определение влажности в диапозоне 20-80%
- определение температуры от 0°C до +50°C
- частота опроса 1 раз в секунду
Сенсор DHT22:
- определение влажности в диапазоне 0-100%
- определение температуры от -40°C до +125°C
- частота опроса 1 раз в 2 секунды
Таким образом, характеристики датчика DHT22 лучше по сравнению с DHT11, и поэтому он чуть-чуть дороже. Снимать показания чаще, чем раз в 1-2 секунды не получится, но, возможно, для вашего проекта более высокое быстродействие и не требуется.
Подключение сенсоров DHT к Arduino
Датчики DHT имеют стандартные выводы и их просто установить на breadboard.
Датчики DHT имеют 4 вывода:
- питание.
- вывод данных
- не используется.
- GND (земля).
Между выводами питания и вывода данных нужно разместить резистор номиналом 10 кОм.
Датчик DHT часто продается в виде готового модуля. В этом случае он имеет три вывода и подключается без резистора, т.к. резистор уже есть на плате.
Схема подключения датчика с резистором:
Схема подключения датчика DHT к Arduino
Arduino скетч
Воспользуемся библиотекой DHT.h, созданной специально для датчиков DHT. Ее можно скачать здесь. Для использования нужно поместить скачанную папку в в папку /libraries.
Пример программы для работы модели с датчиком DHT22 (можно просто скопировать в Arduino IDE):
#include «DHT.h»#define DHTPIN 2 // номер пина, к которому подсоединен датчик// Раскомментируйте в соответствии с используемым датчиком// Инициируем датчикDHT dht(DHTPIN, DHT22);//DHT dht(DHTPIN, DHT11);void setup() {Serial.begin(9600);dht.begin();}void loop() {// Задержка 2 секунды между измерениямиdelay(2000);//Считываем влажностьfloat h = dht.
readHumidity();// Считываем температуруfloat t = dht.readTemperature();// Проверка удачно прошло ли считывание.if (isnan(h) || isnan(t)) {Serial.println(«Не удается считать показания»);return;}Serial.
print(«Влажность: «+h+» %\t»+»Температура: «+t+» *C «);}При использовании датчика DHT11 закомментируйте строку:
DHT dht(DHTPIN, DHT22);
И раскомментируйте строку:
//DHT dht(DHTPIN, DHT11);
Загрузите скетч в контроллер и проверьте правильность работы при помощи Сервис->Монитор порта:
Показания температуры и влажности (Монитор порта)
Вы должны увидеть температуру и влажность. Изменения можно увидеть, например, выдыхая на датчик (как для затуманивания окна). Дыхание увеличивает влажность.
Источник: http://edurobots.ru/2015/02/arduino-dlya-nachinayushhix-urok-9-podklyuchenie-datchika-temperatury-i-vlazhnosti-dht11-i-dht22/
Arduino и цифровой датчик температуры DS18B20
DS18B20 — это цифровой датчик температуры. Датчик очень прост в использовании.
Во-первых, он цифровой, а во вторых — у него всего лишь один контакт, с которого мы получаем полезный сигнал. То есть, вы можете подключить к одному Arduino одновременно огромное количество этих сенсоров. Пинов будет более чем достаточно. Мало того, вы даже можете подключить несколько сенсоров к одному пину на Arduino! Но обо всем по порядку.
Arduino датчик температуры DS18B20
DS18B20 имеет различные форм-факторы. Так что выбор, какой именно использовать, остается за вами. Доступно три варианта: 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Серфинг по eBay или Aliexpress показывает, что китайцы предлагают версию TO-92 во влагозащищенном корпусе. То есть, вы можете смело окунать подобное чудо в воду, использовать под дождем и т.д. и т.п. Эти сенсоры изготавливаются с тремя выходными контактами (черный — GND, красный — Vdd и белый — Data).
Различные форм-факторы датчиков DS18B20 приведены на рисунке ниже.
Модель DS18B20 во влагозащищенном корпусе:
DS18B20 удобен в использовании. Запитать его можно через контакт data (в таком случае вы используете всего два контакта из трех для подключения!). Сенсор работает в диапазоне напряжений от 3.0 В до 5.5 В и измеряет температуру в диапазоне от -55°C до +125°C (от -67°F до +257°F) с точностью ±0.5°C (от -10°C до +85°C).
Еще одна крутая фича: вы можете подключить параллельно вплоть до 127 датчиков! и считывать показания температуры с каждого отдельно. Не совсем понятно, в каком проекте подобное может понадобится, но подключить два сенсора и контролировать температуру в холодильнике и морозильной камере можно. При этом вы оставите свободными кучу пинов на Arduino В общем, фича приятная.
Что вам понадобится для контроля температуры с помощью Arduino и DS18B20
Программное обеспечение
- Естественно, вам необходима Arduino IDE;
- Библиотека OneWire library, которая значительно облегчает работу с Arduino и датчиком DS18B20;
- Скетч
Скачать Arduino IDE можно с официального сайта Arduino.
Источник: http://arduino-diy.com/arduino-tsifrovoy-datchik-temperatury-DS18B20
Датчик температуры двигателя – где находится и как самому быстро поменять
Автомобильный двигатель сложная система, на которую навещено куча датчиков. Один из самых важных, это так называемый датчик охлаждающей жидкости, он следит за температурой и не дает мотору перегреться. По сути, от его работы завит долговечность работы этого агрегата, ведь если он выйдет из строя, то можно пропустить перегрев, что просто не допустимо
ОГЛАВЛЕНИЕ СТАТЬИ
В этой статье я расскажу, почему же так важен этот прибор, как его поменять и какие есть признаки неисправности. НО для начала определение.
Датчик температуры охлаждающей жидкости (ДТОЖ) – это устройство, которое контролирует нагрев жидкости охлаждения, при достижении максимальной (критической) температуры, он подает сигнал на блок ЭБУ, который в свою очередь включает вентилятор обдува радиатора.
Таким образом, сбрасывается лишняя (повышенная температура), что не дает двигателю перегреться и работать в нормальном режиме. Также этот датчик, передавая информацию о «прогреве», косвенно участвует в образовании, топливной смеси, ведь холодному двигателю нужно больше топлива, чем горячему.
Если датчик температуры неисправен
Это реально плохо, он может просто «загубить» ваш мотор. Это сказывается как на работе, так и на собственно самом состоянии агрегата. Он неправильно подает информацию в блок ЭБУ, а соответственно неправильно происходит топливоподача и зажигание топлива. Данные неправильные, и даже прогретый мотор может заглохнуть и уже не запуститься.
Также двигатель может перегреться, достигнуть стадии кипения, но данные передаваемые в ЭБУ будут не верными. Такой «перегрев» может физически повлиять на строение мотора, это сказывается в – «просевших» маслосъемных кольцах (проявляется — синий дым), в сложных случаях поршни вообще может заклинить.
Как видите, не смотря на простоту устройства этого датчика, он реально выполняет очень важные функции:
1) Способствует топливоподачи в нужных объемах, а также косвенно участвует в системе зажигания.
2) Уберегает двигатель от перегрева.
Устройство, как работает
МЫ уже с вами разобрали — для чего нужны эти датчики, однако хочется отметить что – система охлаждения двигателей внутреннего сгорания не могут обойтись без правильной корректировки и контроля. Именно это «маленькое», но очень умное устройство нам дает, как-бы «контроль» за работай силового агрегата. Но из чего же он состоит сам?
Для многих техников, это очень простое устройство, а вот для «начинающих» водителей он может показаться сложным. В основе в 90% случаев, лежит полупроводниковый элемент, обычно это – резистор или термистор. Эти два датчика могут изменять электрическое сопротивление, от температуры охлаждающей жидкости (ОЖ).
Простыми словами – если температура «ОЖ» низкая, то сопротивление на таких элементах повышается. Если жидкость прогрелась — то как вы догадались, оно понижается – данные поступают в блок управления, и уже там анализируются, кстати, выдаются вам в показателе температуры на приборной панели. Эти полупроводниковые элементы, настроены очень точно, поэтому любое изменение температуры, сразу же фиксируется.
Датчик охлаждения всегда должен находится в жидкости, для того чтобы выдавать правильную информацию. Если он не погружен в жидкую среду, значит — он будет работать не верно! Производители это понимают, а поэтому устанавливают их только в тех местах, которые всегда (даже при разгерметизации), будут находиться «рядом» с ОЖ.
Как правило, это – корпус термостата, в блоке цилиндров, реже в головке блока. Справедливости ради стоит заметить, что на некоторых иномарках, премиального сегмента бывают сразу два датчика, закрепленных в разных местах. Например — один на термостате, другой на головке блока. Чаще они выполняют разные задачи, так например один передает температуру жидкости в блок ЭБУ и на панель автомобиля, другой может «руководить» функцией включения вентилятора охлаждения.
https://www.youtube.com/watch?v=0138dY6k3Lg
Если повести зависимость расхода топлива и температуры – можно отметить что если двигатель холодный, то подается обогащенная топливная смесь, если же двигатель прогрет, то концентрация уменьшается.
Поломка датчика температуры, расценивается двигателем как «наименьшие» показатели схожие с холодным мотором, поэтому будет постоянно подаваться обогащенная топливная смесь, что негативно скажется на расходе топлива и экологии. Также может пострадать и катализатор.
В свою очередь короткие замыкания, могут заставить датчик передавать неправильные сведения о том — что «якобы двигатель прогрет». Тогда будет подаваться обедненная смесь, завести мотор будет сложно, работать он будет не стабильно, также плохая реакция на педаль газа.
Если честно поломки датчика не так распространены, из-за его простой конструкции. Зачастую от долгой эксплуатации, начинают «прикипать» или «окисляться» провода которые к нему идут. Это также может спровоцировать неправильные данные, схожие с поломкой.
Не стоит забывать и о специфических конструкциях термостатов, некоторые очень долго прогреваются, из-за чего датчик может достаточно долго фиксировать низкую температуру. Этим грешат некоторые немецкие турбированные двигатели.
Неисправности и методы их диагностики
Проверить датчик зачастую очень просто. В 90% случаев, с ним происходит всего несколько неисправностей, которые можно выявить визуально:
1) Посмотрите на клемму, возможно, она просто окислилась от времени. Снимите ее и очистите от налета.
2) Если ли коррозия. Иногда прогнивают контакты.
3) Трещины в корпусе, и следы утечки. Значит, датчик «пробило», нужно менять.
Это самые простые способы, сделать их может каждый, причем достаточно просто. Но есть несколько поломок, которые выявляются только на СТО, вот некоторые признаки:
1) Ошибка на приборной панели, которая указывает на датчик охлаждающей жидкости
2) Сложный запуск двигателя, даже в теплую погоду. А также остановка «горячего» мотора на холостых оборотах и дальше его сложный запуск
3) Увеличение расхода топлива, причем на много! А также ошибки содержания CO, или ошибки катализатора, на приборной панели.
4) Постоянный перегрев двигателя, при нормальном объеме жидкости и при правильном включении вентилятора охлаждения.
Зачастую это говорит о поломке «датчика». Сами вы навряд-ли проверите — нужно будет ехать на СТО снимать его и проверять параметры напряжения и сопротивления.
Обычно это происходит таким способом: — снятый датчик ОЖ помещают в воду и меняют ее температуру, при подключенных диагностических аппаратах. Прогретая вода должна заставить снизиться напряжение от 3 Вольт, до 0,5-1 Вольта, в течение 5 минут. Если такого не происходит, значит – просто меняем!
Ребята также хочется отметить — что прежде чем ковырять это устройство и искать в нем неисправность, для начала проверьте в порядке ли у вас система охлаждения:
1) Для начала проверьте работу вентилятора, ведь много машин кипят именно из-за него. Проверить достаточно легко, он сам включится, если температура полезла выше 95 градусов Цельсия.
2) Уровень охлаждающей жидкости. Может у вас она уже ушла, а вы грешите на датчик. Обязательно смотрим, в этом вам поможет вот эта статья.
3) Проверка герметичности крышки радиатора. Конечно сейчас в современных машинах, все радиаторы не разборные, однако в старых была крышка сверху, которая могла пропускать воздух и способствовать «завоздушиванию» системы.
4) Рекомендованная жидкость, сейчас ошибки датчиков могут появляться из-за неправильной жидкости. Так устроены многие иномарки, то есть они замеряют плотность и практически анализируют состав. Например — если зальете обычную воду, то может появиться ошибка датчика ОЖ, и ваш автомобиль вообще может не запуститься.
5) Своевременная замена. Этот пункт вытекает из пункта 4, так отработанная жидкость также может вызывать ошибку, на многих автомобилях это 3 – 5 лет. Самому можно определить по цвету, если она уже темная, а не зелена или красная, то ее нужно менять.
Такие проверки обязательны, прежде чем ехать с вопросами на СТО.
Замена, в том числе и своими руками
Если вы точно определили что датчик вышел из строя, то заменить его не так уж и сложно, даже не опытному водителю. Как правило, корпус у него идет под «гайку», так что он просто выкручивается из своего места. Также есть и пластиковые варианты, которые сидят на двух маленьких болтиках (однако такое редкость).
Прежде чем его менять, нужно:
1) Отключить аккумулятор, это обязательно, чтобы избежать ошибок ЭБУ.
2) Слить «немного» охлаждающей жидкости, как правило, до уровня датчика, на многих СТО вообще его просто выкручивают, часть жидкости выходит – затем (после замены) добавляют до уровня сколько нужно.
3) Отсоединяем и убираем шлейф, для того чтобы его не замочить.
После просто откручиваем датчик, обычно это ключ либо на 13, 17, редко на 19.
НА это место закручиваем другой – затягиваем, но не сильно (а как говорят мастера «плотно», главное чтобы не сломать), как правило, с ним идут резиновые прокладки.
После вытираем подтеки — добавляем охлаждающей жидкости до нужного уровня – подключаем питание и аккумулятор – запускаем автомобиль и проверяем работу. Очень простая проверка, попробовать прогреть двигатель, тогда датчик должен включить вентилятор охлаждения. Пробуем проехать, резкие ускорения, а также запуск и остановка мотора – так нужно сделать от 3 до 5 раз.
В заключении – ребята датчик это простой, но очень важный элемент, на моей практике было несколько случаев, когда перегревали мотор именно из-за его неисправности. Стоит он копейки, да и заменить самому не сложно! Поэтому если начали проявляться признаки перегрева и мотор работает не стабильно, первым делом после уровня жидкости в бачке, смотрим на датчик! Не тяните – ремонт двигателя очень дорогой!
Сейчас небольшое видео, смотрим
НА этом все, искренне ваш АВТОБЛОГГЕР.
(15
Источник: http://avto-blogger.ru/datchiki-dvigatelya/temperatury-gde-naxoditsya-kak-pomenyat.html
Цифровые датчики температуры
Для измерения температуры различных сред — воздуха, жидкостей, твёрдых веществ, современная электроника использует специальные цифровые датчики, представляющие из себя готовые модули, подключаемые не только к Arduino, но и любой аналогичной микроконтроллерной платформе. Про их ассортимент на известных китайских (и не только) площадках, а также возможности каждого из модулей, мы сейчас и узнаем.
Датчик температуры KY-001 с интерфейсом 1-Wire
Этот датчик служит для точного измерения температуры. Связь с датчиком осуществляется по интерфейсу 1-Wire [1-2], что позволяет подключить к плате Arduino несколько подобных устройств, используя один вывод микроконтроллера [3-4]. Основой модуля является микросхема ds18b20 [5].
Размер модуля 24 х 15 х 10 мм, масса 1,3 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.
На плате имеется красный светодиод, который загорается, когда совершается обмен информации.
Потребляемый ток 0,6 мА при обмене информации и 20 мкА в ждущем режиме.
Подключение данного типа датчиков к Arduino хорошо описано во многих источниках [6-8]. В данном случае снова проявляются основные достоинства Arduino – универсальность и наличие огромного количества справочной информации. Для работы с датчиком потребуется библиотека OneWire Library [9]. Загрузив программу из [8] (в первом варианте программы есть ошибка – в заголовке кода нет подключения библиотеки #include ) можно наблюдать в мониторе последовательного порта следующую информацию.
Так же автор тестировал код из [7], тут все заработало сразу, в мониторе последовательного порта можно прочитать информацию о типе подключенного датчика и собственно данные о температуре.
В целом очень полезный датчик, дающий возможность познакомиться на практике с интерфейсом 1-Wire. Корректные данные о температуре датчик выдает сразу, пользователю не нужно производить калибровку.
Модуль датчика температуры KY-013
Модуль представляет собой делитель напряжения, в одно из плеч которого включен терморезистор. Сопротивление датчика меняется при изменении температуры, второе плечо делителя образует резистор сопротивлением 10 кОм [10]. Подключение датчика аналогично фоторезистору [11].
Размер модуля 30 х 15 мм, масса 1 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.
При изменении температуры происходит изменение сопротивления терморезистора, что приводит к изменению уровня напряжения на сигнальном выводе модуля. Если загрузить в Arduino программу AnalogInput2, то в мониторе последовательного порта среды разработки Arduino IDE можно наблюдать, как меняются показания, снимаемые с аналогового входа платы Arduino. На иллюстрации изменение показаний обусловлено нагревом терморезистора подушечками пальцев.
В общем, это один из простейших аналоговых датчиков, наряду с фоторезистором и потенциометром это датчик с которого обычно начинается изучение работы со встроенным АЦП.
Полезное: Барометр-альтиметр с компасом и термометром
Модуль датчика влажности и температуры KY-015 [12-13]
Модуль позволяет измерять температуру и влажность, передача информации осуществляется по интерфейсу 1-Wire [1-2].
Размер модуля 27 х 15 х 8 мм, масса 2,2 г. Для подключения служит стандартный трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.
В ждущем режиме модуль потребляет около 60 мкА, и до 3 мА при обмене данными.
Для работы датчику необходима специальная библиотека [14], для проверки работоспособности датчика был использован код, взятый из следующего источника [15]. После загрузки можно наблюдать в мониторе последовательного порта данные о температуре и влажности. Изменения показаний датчика обусловлены тем, что автор поднес его ко рту.
Следует иметь в виду, что показания датчика влажности при быстром понижении влажности становятся корректными с задержкой, достигающей 2 мин. В целом этот модуль так и просится в состав простой метеостанции или системы умного дома.
Модуль датчика температуры KY-028 [16-17]
Этот датчик предназначен для грубого измерения температуры и обнаружения превышения заданного температурного порога.
Датчик имеет габариты 45 х 15 х 13 мм, массу 2,7 г, в печатной плате модуля предусмотрено крепежное отверстие диаметром 3 мм. Чувствительным элементом датчика является терморезистор. Индикация питания осуществляется светодиодом L1.
При срабатывании датчика загорается светодиод L2.
На плате датчика расположено четыре контакта. «A0» — аналоговый выход, выходное напряжение на котором меняется при изменении сопротивления терморезистора. Если в память Arduino UNO загрузить программу AnalogInput2, то можно наблюдать следующее изменение показаний датчика при его прижатии к коже человека.
Выводы питания «G» — общий провод, «+»– питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, если температура не превышает заданного порога, при срабатывании датчика низкий уровень меняется на высокий. Регулировать положение порога срабатывания датчика можно подстроечным резистором. В дежурном режиме датчик потребляет около 4 мА, при срабатывании ток возрастает до 6 мА
Модуль можно легко настроить на срабатывание от тепла тела (используется программа LED_with_button).
В целом данная часть набора оставляет весьма приятное впечатление. Во всяком случае, ни один из датчиков температуры не является просто радиоэлементом без какой-либо обвязки, непонятно зачем приделанным к плате.
Литература
Источник: https://2shemi.ru/tsifrovye-datchiki-temperatury/
цифровой термометр, электронный термометр, датчик температуры, измеритель температуры, регулятор температуры, pH-метр, рН-метр
Подключение, диагностика, проверка (прозвон) датчиков температуры сопротивления Pt100, Pt1000, 50М, 100М и другие
В данном разделе мы решили пояснить, как правильно подключаются датчики температуры сопротивления, чем отличаются различные схемы подключения, как проверить датчик температуры, что делать если схема подключения и датчик который есть в наличии не совпадает.
Основные схемы подключения датчиков температуры сопротивления представлены на рис.1-3
Как видно из рисунков 1-3 датчик представляет из себя некий термоэлемент, сопротивление которого изменяется в зависимости от его собственной температуры. К термоэлементу в зависимости от схемы подключения могут быть подпаяны 2 провода (рис.1), три провода (рис.2), четыре провода (рис.3).
Для чего применяются различные схемы подключения датчиков температуры сопротивления?
Дело в том, что измеряемым параметром при применении таких датчиков является сопротивление датчика, однако провода имеют собственное сопротивление и внсят тем самым определенную погрешность.
Например, если датчик температуры Pt100 при нуле градусов цельсия (сопротивление 100 Ом) подключен по двух проводной схеме медным проводом сечением 0,12 мм2, длина соединительного кабеля 3 м, то два провода в сумме дадут сопротивление около 0,5 Ом в результате набегает погрешность — датчик дает суммарное сопротивление 100,5 Ом, что соответствует температуре примерно 101,2 градуса.
Эту погрешность можно скорректировать прибором (если прибор это позволяет), введя корректировку на 1,2 градуса. Однако такая корректировка не может полностью компенсировать сопротивление проводов датчика.
Это связано с тем, что медные провода являются сами по себе термосопротивлениями, т.е. сопротивление проводов так же меняется от темепратуры.
Причем в случае например с нагреваемой камерой часть проводов, которая находится вместе с датчиком нагревается и меняет сопротивление, а часть за пределами камеры меняется с изменением температуры в комнате.
В случае рассмотреном выше при сопротивлении проводов 0,5 ома при нагреве на каждые 250 градусов сопротивление проводов может измениться практически вдвое. Дав дополнительно 1,2 градуса цельсия погрешность.
Для исключения влияния сопротивления проводов применяют трехпроводную схему подключения датчика температуры.
При такой схеме подключения прибор измеряет суммарное сопротивление датчика с проводами и сопротивление двух проводов (или одного провода и умножает его на 2) и вычитает сопротивление проводов из суммарного, выделяя тем самым чистое сопротивление датчика.
Такая схема подключения позволяет получать достаточно высокую точность при значительных влияниях сопротивлений проводов на тчоность измерения. Однако данная схема не учитывает, что провода ввиду погрешностей изготовления могут обладать разным сопротивлением (в следствии неоднородности материала, изменения сечения по длине и пр.
) такие погрешности вводят меньшие отклонения в отображаемой температуре чем при двух проводной схеме, однако при больших длинах проводов могут быть существенны. В таких случаях может потребоваться применение четырех проводной схемы подключения, в которой прибор измеряет непосредственно сопротивление датчика без учета соединительных проводов.
В каких случаях можно применять двух проводную схему подключения:
1. Диапазон измерения не большой (например 040 градусов) и требуется невысокая точность (например 1 градус)
2. Соединительные провода имеют большое сечение и длина их не велика, т.е сопротивление проводов мало по сравнению с сопротивлением датчика и не вносит существенной погрешности. Например суммарное сопротивление 2 проводов 0,1 ом, а сопротивление датчика меняется на 0,5 Ома на градус, требуемая точнось 0,5 градуса, таким образом сопротивление проводов вносит погрешность меньше, чем допустимая погрешность.
Трехпроводная схема подключения датчиков температуры сопротивления:
Наиболее распространненная схема подключения, применяемая для измерений на удалении датчика от 3 до 100 м, позволяющая в диапазоне до 300 градусов иметь погрешность порядка 0,5 %, т.е. 0,5 С на 100 С.
Четырех проводная схема подключения:
Применяется как правило для прецизионных измерений с точностью 0,1 С и выше.
Прозвонка (проверка) датчиков температуры сопротивления:
Для прозвонки датчиков температуры требуется обычный тестер показывающий сопротивление, для датчиков с сопротивлением при нуле градусов до 100 ом включительно потимальный диапазон измерения тестера до 200 Ом.
Прозвонку можно производить при комнатной температуре, либо при другой заранее известной температуре входящей в рабочую зону датчика (например поместив датчик в сосуд с водо-ледяной смесью 0 градусов или кипящий чайник примерно, с поправкой на давление, 100 градусов).
При прозвонке определяется, какие провода соединены между собой накоротко возле датчика, сопротивление между такими проводами как правило существенно меньше чем сопротивление датчика (это сопротивление между выводами 1,3 и 2,4). Сопротивление между такими выводами для стандартных датчиков составляет от 0 до 5 Ом, в зависимости от сечения и длинны соединительных проводов.
Найдя провода с таким значением сопротивления мы однозначно можем определить какие выводы куда подключать. При трехпроводной схеме выводы 1 и 3 равнозначны т.е. если их подключить наоборот на измерение это никак не повлияет. При четырехпроводной схеме пары проводов 1,3 и 2,4 между собой равнозначны, и внутри пары между собой провода тоже равнозначны, т.е.
первый с третим можно переставлять между собой, и второй с четвертым можно переставлять, и целиком пару 1,3 можно переставить с парой 2,4 на результаты измерений это не повлияет.
Кроме этого проверяется, что датчик рабочий, т.е. выдает то сопротивление которое должен при данной температуре (измерение между выводами 1 и 2).
Таблицу значений сопротивлений для основных типов датчиков при разных температурах можно посмотреть тут.
Кроме этого нужно убедиться, что датчик не замыкает на корпус термопреобразователя, прозвонив на мегаомном диапазоне (20200 МОм) сопротивление между проводами и корпусом датчика, при этом руками касаться контактов корпуса, проводов и щупов нельзя. Если на мегаомах тестер показывает не бесконечное сопротивление, то скорее всего в корпус датчика попал жир или влага, такой датчик может работать некоторое время, но точность показаний будет снижаться, показания могут плавать.
Каким образом можно подключить датчик температуры сопротивления если его схема подключения не совпадает со схемой на приборе?
Рассмотрим различные варианты:
1. в наличии есть двухпроводный датчик температуры
Соответственно если подключить требуется к прибору с трехпроводной или четырехпроводной схемой, то можно установить соответственно одну или две перемычки на контактах прибора, в местах, где подключаются короткозамкнутые провода. На рисунках 4 и 5 это обозначено перемычками на контактах 1,3 и 2,4.
Несомненно такое подключение приведет к погрешности измерения, и если прибор не позволяет её скомпенсировать, то можно в требуемом диапазоне измерения определить погрешность показаний используя образцовый термометр и рассчитать корректировку, которую нужно прибавлять к показаниям. Это позволит временно решить проблему и не останавливать технологический процесс.
2. в наличии есть трехпроводный датчик температуры
Если подключать такой датчик по двухпроводной схеме рекомендуется соединить два короткозамкнутых у датчика провода вместе, для уменьшения споротивления соединительных проводов (так же можно один из короткозамкнутых проводов заизолировать и не подключать или откусить кусачками). Датчик будет работать в двухпроводной схеме не внося никакой дополнительной погрешности.
Источник: http://www.zamer.ru/info/proverka
Устройство, принцип действия, диагностика датчиков температуры
Датчики температуры двигателя. Engine coolant temperature sensor Intake air temperature sensor. Существуют различные типы систем управления двигателем, устройство которых может различаться в значительной мере. Но в любой из систем управления двигателем обязательно применяется датчик температуры охлаждающей жидкости. В большинстве систем применяется датчик температуры воздуха во впускном тракте двигателя.
Внешний вид датчика температуры двигателя — охлаждающей жидкости (слева) и датчика температуры воздуха во впускном тракте (справа)
В зависимости от температуры охлаждающей жидкости, блок управления двигателем корректирует состав топливовоздушной смеси, частоту вращения коленчатого вала двигателя на холостом ходу, угол опережения зажигания Влияние показаний датчика температуры охлаждающей жидкости на работу системы управления двигателем очень велико.
Например, если вследствие неисправности рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя не совпадает с фактической температурой охлаждающей жидкости двигателя на значительную величину, двигатель может заглохнуть / не запускаться.
Большинство датчиков температуры воздуха во впускном тракте аналогичны по устройству и принципу действия датчику температуры охлаждающей жидкости. В зависимости от температуры воздуха во впускном тракте, блок управления двигателем несколько корректирует состав топливовоздушной смеси.
Влияние показаний датчика температуры воздуха во впускном тракте на работу системы управления двигателем особенно заметно в таких системах, где не применяется датчик расхода воздуха.
Принцип действия датчиков температуры двигателя
В качестве датчиков температуры охлаждающей жидкости и большинства датчиков температуры воздуха во впускном тракте двигателя применяются терморезисторы с отрицательным температурным коэффициентом — с увеличением температуры датчика температуры двигателя его сопротивление уменьшается. Датчик температуры охлаждающей жидкости устанавливается в потоке охлаждающей жидкости двигателя.
При низкой температуре охлаждающей жидкости, сопротивление датчика высокое (3,52 kQ при +20 °С); при высокой температуре -сопротивление датчика низкое (240 Q при +90 °С). От блока управления двигателем, через расположенный внутри блока управления двигателем резистор с постоянным электрическим сопротивлением, на датчик температуры двигателя поступает опор. напряжение величиной 5 V.
Второй вывод датчика соединён с «массой».
Схема включения датчика температуры двигателя, в качестве чувствительного элемента которого применяется терморезистор. ECU Блок управления двигателем.
- Точка подключения зажима типа «крокодил» осциллографического щупа.
- Точка подключения пробника осциллографического щупа для получения осциллограммы выходного напряжения датчика.
- Датчик температуры.
- Выключатель зажигания.
- Аккумуляторная батарея.
Датчик температуры двигателя шунтирует опор. напряжение, вследствие чего, значение напряжения на датчике оказывается меньшим опор. С увеличением температуры охлаждающей жидкости (например, при прогреве двигателя), сопротивление датчика уменьшается и, соответственно, уменьшается напряжение на датчике. По величине этого напряжения блок управления двигателем рассчитывает текущее значение температуры охлаждающей жидкости двигателя.
Характеристика датчика температуры охлаждающей жидкости
Температура, °С | Сопротивление, Q ± 2% |
-40 | 100 700 |
-30 | 52 700 |
-20 | 28 680 |
-15 | 21 450 |
-10 | 16 180 |
-4 | 12 300 |
9 420 | |
+5 | 7 280 |
+10 | 5 670 |
+15 | 4 450 |
+20 | 3 520 |
+25 | 2 800 |
+30 | 2 240 |
+40 | 1 460 |
+45 | 1 190 |
+50 | 970 |
+60 | 670 |
470 | |
+80 | 330 |
+90 | 240 |
+100 | 180 |
+130 | 70 |
Типовые неисправности датчика температуры двигателя
Наиболее распространённой неисправностью датчиков температуры двигателя, в качестве чувствительного элемента которых применён терморезистор, является несоответствие его электрического сопротивления температуре его корпуса.
Чаще всего, такая неисправность проявляется как резкое увеличение электрического сопротивления датчика в очень узком диапазоне температур корпуса датчика (или в нескольких диапазонах температур), реже встречается обрыв чувствительного элемента датчика. В момент, когда температура корпуса датчика попадает в этот диапазон, сопротивление датчика резко увеличивается, вследствие чего увеличивается и напряжение на датчике.
Вследствие этого, рассчитанное блоком управления значение температуры по увеличенному напряжению на датчике оказывается меньшим действительного. Если рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя окажется меньшим действительного на значительную величину, блок управления может увеличить количество подаваемого топлива настолько, что двигатель заглохнет из-за переобогащения топливовоздушной смеси.
Пуск двигателя при этом становится невозможным. В некоторых случаях может понадобиться замена свечей зажигания. Неисправность датчика температуры двигателя в момент её проявления можно выявить при помощи омметра путём сравнения измеренного сопротивления датчика температуры двигателя с табличным значением для данной температуры.
При необходимости проведения проверки датчика температуры, необходимо просмотреть осциллограмму выходного напряжения датчика во всём диапазоне его рабочих температур.
При проведении проверки датчика температуры необходимо дать двигателю полностью остыть, после чего записать и просмотреть осциллограмму выходного напряжения датчика во время прогрева двигателя, вплоть до момента включения вентилятора системы охлаждения двигателя (или до момента, когда вследствие неисправности диагностируемого датчика двигатель заглохнет).
Осциллограмма напряжения на исправном датчике температуры охлаждающей жидкости. Прогрев холодного двигателя в режиме работы на холостом ходу. По мере прогрева, напряжение на датчике плавно и без каких либо рывков / провалов снижается.
По мере прогрева датчика, напряжение на исправном датчике должно плавно снижаться.
Осциллограмма напряжения на неисправном датчике температуры охлаждающей жидкости. Двигатель почти прогрелся до рабочей температуры. Отчётливо видны искажения формы осциллограммы.
Напряжение на неисправном датчике температуры охлаждающей жидкости при прогреве двигателя внезапно резко увеличивается. В этот момент, блок управления двигателем резко обогащает топливовоздушную смесь. Но так как в данном случае неисправность датчика проявляется в очень узком диапазоне температур, а следовательно и в течение короткого времени, двигатель не заглох. По мере дальнейшего увеличения температуры охлаждающей жидкости неисправность уже не проявлялась.
В качестве датчиков температуры воздуха во впускном тракте двигателя иногда применяется PN-переход (диод), например, датчик температуры воздуха встроенный в корпус датчика массового расхода воздуха BOSCH HFM5.
Внешний вид датчика температуры воздуха во впускном тракте на основе PN-перехода (датчик температуры встроен в корпус датчика массового расхода воздуха BOSCH HFM5)
С ростом температуры такого датчика при заданном токе, протекающем через датчик, напряжение на датчике снижается от 650 mV до 350 mV.
Источник: http://auto-master.su/content/ustroistvo-printsip-deistviya-diagnostika-datchikov-temperatury
Куда установить датчик температуры двигателя от сигнализации
Однажды, в самое неподходящее время, когда за окном наступила настоящая русская зима с температурой под −30, брелок автомобильной сигнализации выдает сообщение о том, что автозапуск с целью прогрева двигателя не работает. Ситуация довольно обыденная, причиной чаще всего является выход из строя температурного датчика сигнализации.
Что делать, если не хочется тратить деньги на новый, рассказывается ниже. Статья может представлять интерес для автовладельцев, устанавливающих сигнализацию собственными силами.
Датчик температуры: назначение и место установки
К функциям автомобильных сигнализаций относятся, среди прочих:
- Контроль температуры внутри салона или моторного отсека с отображением показаний на индикаторе брелка. При наличии дистанционного пуска водитель может по своему желанию запустить и прогреть двигатель.
- Автоматический запуск двигателя для прогрева его в зимнее время. Когда температура опустится ниже установленной величины, включается стартер, и мотор прогревается в течение запрограммированного времени. Например, при установленном пороге включения −10°C и забортной температуре −30, за ночь двигатель пускается всего 2 раза. Этого вполне достаточно, чтобы утренний запуск прошел без трудностей.
Для выполнения этих функций и требуется дополнительный температурный датчик.
В некоторых сигнализациях, к примеру, SCHER-KHAN, автозапуск осуществляется не по температуре двигателя, а по времени. Поэтому и датчика на двигателе здесь не предусмотрено. Зато имеется возможность установить дополнительный температурный датчик в салон (в комплект сигнализации не входит).
Другие бренды имеют в своем составе дополнительные датчики для установки на двигатель (STARLINE, ALLIGATOR, TOMAHAWK). Поэтому такие сигнализации обладают возможностью автозапуска, как по времени, так и по температуре.
Наиболее целесообразным является вариант с датчиком, установленным на двигателе. В этом случае измеряемый параметр более соответствует цели — автозапуск двигателя по температуре. Установка в салоне нужна для создания комфорта водителю и пассажирам (для предварительного прогрева салона).
Изготовление самодельного датчика
Итак, штатный датчик сгорел, прибрести новый по каким-либо причинам не получается. Например, не можете найти его отдельно (сигнализация продается только в комплекте). Если он иногда и встречается в продаже, то цена его может достигать одной — полутора тысяч рублей.
Другая ситуация: функция автозапуска до этого не использовалась, а появилось желание ее осуществить. Те, кто умеет пользоваться паяльником, могут легко сделать дефицитную запчасть своими силами.
Что требуется, чтобы изготовить датчик температуры двигателя для сигнализации:
- сопротивление на 1,5 кОм;
- терморезистор 10 кОм;
- конденсатор емкостью 0,1 мкФ.
Последовательно соединяют терморезистор и сопротивление, откусив с помощью кусачек его ножки до 2 — 3-х см. Затем на сопротивление надевают отрезок термоусадочной трубки. К получившемуся элементу добавляют параллельно конденсатор, и датчик готов. Припаивают два одножильных провода и защищают их дополнительно термоусадкой.
Внимание: чтобы не ошибиться с длиной проводки, необходимо заранее определиться с местом подключения к сигнализации.
Учитывая копеечную стоимость радиодеталей, поделка обойдется не дороже 150-ти рублей, то есть на порядок дешевле покупного изделия.
Установка на двигатель
Сделать датчик для сигнализации своими руками — это еще полдела. Нужно правильно его установить и подключить к системе. Чтобы терморезистор как можно точнее показывал температуру двигателя, самое лучшее место для него — блок цилиндров.
Последний остывает позднее всех других деталей, поэтому сигнал на включение стартера будет поступать своевременно. При другом расположении система ошибочно считает, что двигатель уже остыл, будет пускать его чаще, что ведет к перерасходу топлива.
Свой датчик проще всего закрепить на патрубке термостата или радиатора охлаждения. В первом случае он будет показывать более реальную температуру, во втором — проще подключить в параллель с датчиком закрывания капота. Способ закрепления — одинаковый:
- приложить самоделку терморезистором к металлической поверхности патрубка;
- зафиксировать его с помощью изоленты;
- снаружи утеплить теплоизолирующим материалом с фиксацией той же изолентой.
Фирменный датчик следует устанавливать на любой металлической детали двигателя (блок цилиндров, головка блока, крышка клапанной коробки), где имеется выступающая шпилька с резьбой М6. Если таковых не найдется, можно сделать переходную деталь и закрепить ее в глухое резьбовое отверстия рым-болта.
Подключение к сигнализации
Обычно в руководстве на автомобильную сигнализацию приводятся указания о подключении всех датчиков, в том числе и температурного. К примеру, в системах TOMAHAWK и STARLINE один провод подключается к оранжево-серому проводу блока управления. В ALLIGATOR — к черно-зеленому. Другой конец всегда крепится к массе. Практически это равносильно подключению параллельно капотному датчику, что на практике чаще всего и делают.
Совет: укладку проводов в подкапотном пространстве необходимо производить так, чтобы они не болтались, а были надежно зафиксированы на окружающих деталях с помощью изоленты или установочных клипс.
От правильно выбранного места расположения дополнительного температурного датчика зависит корректная работа сигнализации с автозапуском. Изготовленный своими руками терморезистор обойдется в разы дешевле покупного изделия, а создатель почувствует гордость за результаты своего труда.
Источник: http://avtodvigateli.com/detali/datchik-temperatury-dvigatelya-ot-signalizacii.html
Как установить датчик температуры теплого пола?
Для создания комфорта и уюта как в частных домах, так и в квартирах применяется электрический подогрев пола. Чтобы система теплый пол работала в автоматическом режиме, а также была экономичной, необходима установка и подключение дополнительного надёжного электронного оборудования, поддерживающего температуру в заданном режиме.
В качестве этого оборудования выступает регулятор температуры и термодатчик. Перед тем как установить их, рекомендуется разобраться в принципе работы, а также усвоить основные приёмы подключения и монтажа.
В этой статье мы подробно расскажем, как выполняется установка датчика температуры теплого пола, а также предоставим его схему подключения к сети.
Устройство и назначение термодатчика
Итак датчик температуры для системы теплого пола представляет собой терморезистор защищенный стеклянной колбой, а также имеющий медный проводник длиною около 3 метров для соединения с терморегулятором.
Помимо стеклянной колбы для плиточных полов, сам термодатчик защищён также гелевой оболочкой. Проводник изолирован качественной ПВХ (полихлорвинил) с целью защиты от внешнего воздействия и повреждений.
Длину проводника можно увеличивать, и естественно, уменьшать, до 50 метров, главное, чтобы в конце проводника был не повреждённый датчик.
Для его простой замены в дальнейшем рекомендуется поместить данную конструкцию в металлопластиковую трубку, даже если производитель в комплекте предоставил пластиковую гофру, диаметр которой составляет 16 мм.
Металлопластиковая труба имеет более гладкую внутреннюю поверхность поэтому доставать и установить, а также производить подключение нового термодатчика, в случае выхода со строя, намного легче.
Такие виды термодатчиков устанавливаются в твёрдые напольные покрытия (под плитку или керамогранит).
Другая разновидность датчиков, рекомендованных под ламинат, ковролин, то есть мягкие виды напольного материала, представляют собой специальные цилиндры из пластика, которые подключаются к концу электрического кабеля.
Принцип работы термодатчика очень прост, при изменении температуры сопротивление его меняется, тем самым давая сигнал терморегулятору на включение или отключение системы тёплый пол от 220 В, самой распространённой в быту сети.
Последовательность монтажа
Перейдём непосредственно к монтажу теплого пола и термодатчика. Для начала нужно определить местонахождение терморегулятора, который будет расположен снаружи. Располагается он чаще всего на высоте около 1 метра от пола. Крепление его аналогично обычной розетке.
Затем нужно сделать штробы или канавки для прокладки двух пластиковых труб. Одна для силового провода ведущего к нагревательному элементу, другая для электропроводки датчика. Трубка для термодатчика будет расположена на полу.
Такая прокладка даст возможность не снимая кафеля выполнить ремонтные работы, хотя бы по замене элементов контроля. Заменить полностью нагревательный элемент в случае установки его в стяжке не получится. Важно чтобы при укладке трубы либо гофры для кабеля изгибов и поворотов было как можно меньше.
Это в дальнейшем упростит замену вышедшего из строя термодатчика.
Источник: https://samelectrik.ru/kak-ustanovit-datchik-temperatury-teplogo-pola.html
Какие датчики и как подключаются к термостатам ZONT? — Управление отоплением — База знаний |
У любой модели ZONT аппаратно реализовано 3 три вида входов:
1 — Вход датчиков температуры — для подключения цифровых датчиков температуры DS18C20 / DC18B20;
2 — Вход (входы) аналоговые — для подключения проводных аналоговых датчиков различного назначения
3 — Вход (входы) универсальные, аналогово-цифровые (K-Line)— для подключения или аналоговых датчиков или цифровых устройств, взаимодействующих с оборудование ZONT по цифровой шине K-Line
Рекомендации по использованию цифровых проводных датчиков температуры DS18С20 и DS18B20:
Внимание! Производитель не гарантирует нормальную работу приборов ZONT при использовании не оригинальных датчиков. Оригинальными считаются датчики с сенсором производства MAXIM.
— датчики должны подключаться на один шлейф параллельно друг за другом;- удаленность последнего датчика в шлейфе не может превышать 100 м.;- максимально допустимое расстояние датчика от шлейфа — 0,7 м.
;- нельзя прокладывать шлейф с датчиками вместе в электропроводкой помещения;- шлейф с датчиками должен пересекаться с электропроводкой под углом 90 гр.
;- датчики подвержены импульсным сетевым помехам, вызываемым неисправными электроприборами, блоками питания, ИБП, частотными насосами, люминесцентными и светодиодными светильниками;- датчики подключаются по двухпроводной схеме, но лучшая помехоустойчивость достигается при трехпроводной схеме с питанием от отдельного источника +5В.
;- для шлейфа датчиков рекомендуется использовать витую пару с сечением провода не менее 0,5 кв.мм. (для достижения максимальной длины шлейфа);- в случае сильных помех рекомендуется использовать Ethernet кабель САТ5(6) (UTP). В этом случае одну витую пару использовать для цепей «Сигнал» и «Общий». Остальные — использовать для цепей «Общий» и «Питание 5В», см. схему ниже:
Охранные датчики собираются в шлейф и подключаются параллельно на один вход. Датчики в шлейфе должны быть однотипными сигналу срабатывания (появление +12ВБ, пропадание +12В, замыкание шлейфа и т.д.).
Уровень контролируемого входом термостата сигнала должен быть настроен в веб-сервисе ZONT (Настройка/Настройка термостата/Настройка Входов).
Максимальная удаленность последнего датчика в шлейфе — не более 100 м. Количество охранныхдатчиков (ИКД, МКД и т.п.
) и датчиков давления в шлейфе — не более 10-ти шт. Количество информационных датчиков (Пожарных, Протечки, Утечки газа) в шлейфе — не более 5-ти шт.
Вместо охранных и информационных датчиков на Вход 1 можно подключить сигнал «Авария котла»или сигнал от комнатного терморегулятора
Датчик давления
Рекомендуемые к подключению модели пороговых датчиков давления:
датчик давления XP6oo 0,2-1,2 bar Ду1/4
датчик давления PTE, DUA, KOMPAKT
Совместимый с АДД аналоговый датчик давления: HK3022 DC 5B G1/4 0-0,5mPa
Датчик утечки газа
Рекомендуемые к подключению модели:
сигнализатор загазованности Кенарь: http://kenar.ru/detectors.htm
Это дополнительное устройство для подключения оборудования ZONT к газовым котлам, поддерживающим типовые протоколы обмена данными между электроникой котла. На данный момент поддерживаются протоколы OpenTherm, E-BUS и Navien.
Подробнее об адаптерах цифровой шины можно прочитать здесь.
РадиомодульМЛ-489
Радиомодуль предназначен для приема и передачи данных по радиоканалу на частоте 868 MHz. Поддерживает только с оригинальные радиодатчики ZONT. На некоторых моделях термостатов ZONT Вход 2 дублирован со специальным разъемом для подключения радиомодуля.
Панель управления МЛ-732
Внешняя панель предназначена для ручного управления работой термостата ZONT и контролируемого им котла.
Цифровые устройства (Адаптер, Радиомодуль и Панель) могут быть подключены ко Входу 2 одновременно. Они не мешают работе друг друга.
· Нельзя на оба входа термостата одновременно подключать сигналы от внешнего комнатноготерморегулятора или сигналы от котла «Авария котла»
Источник: https://zont-online.ru/knowledge/baza-zont/termostaty/chto-mozhno-podkljuchit-ko-vhodam
Подключение одного термометра сопротивления к двум различным вторичным приборам одновременно
Датчики термосопротивления широко применяются для измерения температуры жидкостей, газов и твердых тел благодаря своей высокой точности, надежности, простоте установки и эксплуатации. Но при попытке передать сигнал с одного датчика термосопротивления одновременно на два вторичных прибора, например, программный ПИД-регулятор и безбумажный регистратор, добиться достоверных показаний не удастся.
Датчик термосопротивления (RTD) не может быть подключен параллельно или последовательно к входам двух вторичных приборов одновременно. Это связано с тем, что любой вторичный прибор генерирует опорный ток «возбуждения» для датчика термосопротивления. Подключение одного термодатчика к двум входам одновременно приведет к «смешиванию» опорных токов и искажению показаний.
Для подключения термодатчика к двум к двум входам одновременно есть несколько способов. Но в любом случае потребуется дополнительное оборудование для размножения сигнал RTD.
Датчик термосопротивления с двойным чувствительным элементом
Для передачи информации о значении измеренной температуры на два разных вторичных устройства можно использовать термодатчик с двумя независимыми чувствительными элементами в одном корпусе. Выход первого чувствительного элемента соединяется с входом первого вторичного прибора (например, терморегулятора), выход второго чувствительного элемента соединяется с входом второго прибора (например, самописца).
Естественно реализация данного метода потребует замены установленного датчика температуры на другой имеющий два чувствительных элемента, например, Элемер ТС-1088/8.
Ретрансляция сигнала
Многие вторичные приборы имеют, например, аналоговый выход 4-20 мА, который может быть настроен таким образом, чтобы «повторять» значение сигнала температуры на входе прибора.
То есть первый прибор, к которому подключен непосредственно датчик термосопротивления преобразует стандартизированный сигнал RTD в унифицированный выходной сигнал 4-20 мА. На вход второго вторичного прибора приходит уже сигнал 4-20 мА, который в соответствии с заданной шкалой преобразуется в значение температуры.
Необходимо помнить, что для передачи сигнала 4-20 мА входа/выхода приборов должны быть соответствующего типа: пассивные или активные.
Например, работа схемы будет возможна, если выход первого прибора будет активным, а вход второго прибора пассивным. При пассивном выходе первого прибора вход второго прибора должен быть активным. Если выход первого прибора и вход второго прибора пассивные, то необходим дополнительный источник питания постоянного тока для питания этого токового контура. Подключение активного выхода к активному входу может привести к повреждению приборов.
Реализация данного метода требует наличия соответствующих входов и выходов у вторичных приборов, а также правильного задания шкалы для входного и выходного сигналов 4-20 мА.
Датчик температуры с нормирующим преобразователем 4-20 мА
Выходной сигнал датчика термосопротивления может быть сразу преобразован из RTD в аналоговый сигнал 4-20 мА с помощью нормирующего преобразователя, в том числе встроенного непосредственно в головку самого датчика температуры.
В этом случае вторичные приборы подключаются последовательно с выходом нормирующего преобразователя образуя так называемую токовую петлю. Подобное подключение, как правило, без проблем работает с высококачественными аналоговыми входами с хорошей гальванической изоляцией.
В некоторых случаях при подобном подключении могут возникнуть проблемы, например, при использовании низкоомных, неизолированных аналоговых входов.
При объединении приборов в токовую петлю необходимо помнить, что в цепи должен быть только один источник напряжения, включая активный выход нормирующего преобразователя или активный вход одного из вторичных приборов.
Для преобразования сигнала RTD в унифицированный выходной сигнал можно использовать, например, нормирующие преобразователи НПТ-1, НПТ-2, НПТ-3 или НПТ-3.Ех фирмы Овен.
Сплиттер или размножитель сигнала
Сплиттер или так называемый размножителя сигнала «размножает» один сигнал RTD в два независимых изолированных сигнала напряжения или тока.
Гальваническая изоляция выходов друг от друга и от входа гарантирует, что не возникнет проблем с взаимным влиянием приборов друг на друга при подключении одного датчика к двум и более различным устройствам.
Получается своего рода рассмотренный выше вариант с нормирующим преобразователем, но лишенный негативного взаимного влияния приборов друг на друга.
В качестве размножителя можно применить сплиттер модели APD 1393 RTD с двумя изолированными выходами.
Цифровой обмен данными
Данный способ передачи сигнала от одного датчика на несколько вторичных приборов является еще одним вариантом ретрансляции сигнала с одного прибора на другие. Устройство, такое как контроллер, панельный компьютер или PLC, к которому подключен датчик термосопротивления, преобразует значение сигнала датчика в цифровой сигнал, например, Modbus, и передает его на другое устройство в цифровом виде.
Используя цифровые коммуникации возможно распространять данные о температуре на большое количество устройств — от самых простых индикаторов Овен СМИ2, до других контроллеров и PLC. Этот вариант естественно требует более высоких капитальных затрат, чем предыдущие аналоговые решения.
Но данный метод обеспечивает наиболее точную передачу сигнала с меньшей погрешностью, особенно если речь идет о более чем двух вторичных приборах (точках вывода информации).
Источник: http://azbukakip.ru/publ/gotovye_reshenija/podkljuchenie_odnogo_termometra_soprotivlenija_k_dvum_razlichnym_vtorichnym_priboram_odnovremenno/2-1-0-30
Указатель температуры охлаждающей жидкости 14.3807 и датчик ТМ100, проверка и диагностика неисправностей
Указатель температуры охлаждающей жидкости 14.3807 электромагнитный, логометрического типа. Предназначен для контроля температуры охлаждающей жидкости в двигателе. Оснащен сигнализатором перегрева. На автомобилях УАЗ входит в состав щитка приборов 14.3805 или КП116-3805010. Работает совместно с датчиком температуры ТМ100.
Указатель температуры охлаждающей жидкости 14.3807, характеристики
Указатель температуры охлаждающей жидкости 14.3807 представляет собой электромагнитный логометр с неподвижными катушками и подвижным постоянным магнитом связанным со стрелкой. Кроме автомобилей семейства УАЗ-31512, фургонов УАЗ-3741 и УАЗ-3909, санитарных УАЗ-3962, автобусов УАЗ-2206, грузовых УАЗ-3303 и УАЗ-39091, указатель температуры охлаждающей жидкости 14.3807 применяется на автомобилях ГАЗ, ЗИЛ, УРАЛ, ЛУАЗ, и автобусах ПАЗ, ЕРАЗ, КАВЗ.
Основные характеристики указателя 14.3807 :
— Диапазон показаний, градусов Цельсия : 40-120 — Цена деления, градусов Цельсия : 20 — Тип измерительного механизма : магнитоэлектрический — Номинальное напряжение, В : 12 — Посадочный диаметр кожуха, мм : 60 — Посадочный диаметр для ламподержателя подсветки и сигнализатора, мм : 11,5 — Конструкция электрического соединения : штекер 6,35 мм
— Масса, кг : 0,18
Датчик температуры охлаждающей жидкости ТМ100, характеристики
Указателя 14.3807 получает показания от датчика температуры ТМ100, который установлен в головке блока цилиндров двигателя. Рабочим элементом датчика является термистор помещенный в металлический корпус.
Основные характеристики датчика температуры ТМ100 :
— Пределы измерения температуры, градусов : 40-120 — Номинальное напряжение, В : 12, 24 — Ток нагрузки, А : 0,1 — Присоединение : винт М3 — Размер под ключ : S19 — Резьба : K3/8
— Вес, г : 45
Контрольная лампа предельной температуры охлаждающей жидкости в радиаторе и датчики температуры ТМ104 или ТМ111-09
Контрольная лампа расположена на панели приборов УАЗ и работает совместно с датчиком температуры ТМ104 или ТМ111-09, который расположен в верхней части радиатора. Биметаллическая пластина внутри датчика замыкает контакты и контрольная лампа загорается при температуре охлаждающей жидкости в радиаторе в пределах 91-98 градусов.
Во время эксплуатации автомобиля не допускается значительное понижение уровня охлаждающей жидкости в системе охлаждения двигателя и как следствие обнажение трубок в верхнем бачке радиатора, так как от перегрева датчик температуры может выйти из строя.
Перестановка местами датчика ТМ100 указателя температуры охлаждающей жидкости и датчика ТМ104 или ТМ111-09 контрольной лампы аварийного перегрева охлаждающей жидкости не допускается, так как указатель и лампа в таком случае работать не будут.
Проверка исправности указателя температуры 14.3807 и датчика температуры ТМ100
Указатель температуры охлаждающей жидкости 14.3807 проверяется путем сравнения его показаний с показаниями термометра. Для этого надо вывернуть датчик температуры ТМ100, при необходимости удлинить его провод, соедините датчик отдельным проводом с массой автомобиля и поместите вместе с термометром в середину сосуда с водой нагретой до кипения. Клемму датчика погружать в воду не следует.
Затем остается сравнивать показания указателя температуры 14.3807 и термометра. Температура воды до требуемой величины доводится путем долива в сосуд холодной воды. При температуре воды в 100 и 80 градусов погрешность показаний указателя не должна превышать +-5 градусов, а при температуре воды в 40 градусов погрешность не должна превышать +4 или -12 градусов.
Если показания указателя превышают указанные пределы, то сначала надо попробовать заменить датчик ТМ100, а если это не даст положительных результатов, то заменить указатель температуры охлаждающей жидкости 14.3807.
Если стрелка указателя постоянно находится в начале шкалы
То при включенном зажигании отсоединить провод от датчика указателя и соединить его наконечник с массой. Если стрелка отклонится, то следовательно неисправен датчик и его необходимо заменить. Если стрелка не отклоняется, снять щиток приборов и при включенном зажигании соедините с массой клемму «Д» указателя. Отклонение стрелки в этом случае укажет на его исправность и на повреждение провода, соединяющего датчик с указателем. Если стрелка не отклоняется, то неисправен сам указатель.
Если стрелка указателя постоянно находится в конце шкалы
То при включенном зажигании отсоединить провод от датчика. При неисправном датчике стрелка должна вернуться в начало шкалы. Если стрелка остается в конце шкалы, то провод имеет замыкание на массу или неисправен указатель. Его исправность можно проверить, отсоединив провод от клеммы «Д». При включенном зажигании стрелка должна находиться в начале шкалы.
Проверка указателя температуры 14.3807 при помощи контрольного реостата
Для проверки указателя 14.3807 таким способом, его надо подсоединить к контрольному реостату. При сопротивлении контрольного реостата в 400-530 Ом стрелка должна находиться около отметки 40 градусов. При сопротивлении 80-95 Ом — около отметки 80 градусов. При сопротивлении 51-63 Ом — около отметки 120 градусов.
Диагностика исправности датчика температуры ТМ100 по его сопротивлению
При температуре 40 градусов сопротивление на датчике должно быть в пределах 400-530 Ом, при температуре 80 градусов — в пределах 130-157 Ом, при температуре 100 градусов — в пределах 80-95 Ом, а при температуре 120 градусов — в пределах 51-63 Ом.
Ремонт указателя температуры охлаждающей жидкости и его датчика
Указатель температуры охлаждающей жидкости 14.3807 и датчики ТМ100, ТМ104 и ТМ111-09 ремонту не подлежат. Поэтому в случае их неисправности следует проверить только электрические соединения и исправность проводки, и если они в порядке, то заменить указатель или датчики на новые. Рекомендуется сначала попробовать заменить датчики, так как они обычно чаще выходят из строя.
Источник: https://auto.kombat.com.ua/ukazatel-temperaturyi-ohlazhdayushhey-zhidkosti-14-3807-idatchik-tm100-proverka-idiagnos/
Аналоговый датчик температуры
Этот дешевый аналоговый датчик температуры предназначен для измерения температуры окружающей среды, может контролировать температуру от -40 °C до +125 °C с точность ±2 °C . Данный датчик подключается к устройствам Equicom.
Датчик выполнен на базе микросхемы Microchip TC1047A, выходное напряжение которой линейно зависит от температуры. Можно при необходимости удлинить провод датчика температуры на 50м и более (проверено). Удлинять надо экранированным проводом.
Идеально для того, чтобы обнаруживать проблемы связанные с температурой в помещениях с компьютерами, такие как кондиционирование воздуха, внезапные температурные скачки, перегрев в стойках сервера.
Важно! Использование с устройствами PING3(-knock) и PING3-PWR1(2) |
Для получения значения температуры в градусах Цельсия в настройках аналогового входа, к которому подключен термодатчик, необходимо задать такие коэффициенты: O (offset) = –50 M (multiplier) = 330 Averaging = 100 (или больше) |
Основные технические характеристики датчика температуры
Модель датчика | TS-AN1 |
Тип датчика | проводной |
Количество проводов | 3 |
Длина провода | 75 см |
Удлинение датчика | 50м и более |
Диапазон измеряемых температур | -40.. +125ºC |
Точность измерения температуры | ±2ºC |
Потребляемый ток | 35 мкА |
Напряжение питания | +2,5..+5,5В |
Зависимость выходного напряжения от температуры | линейная, 10 мВ/ ºC |
Диапазон выходных напряжений | +0,1.. +1,75В |
Степень защиты оболочкой | IP54 |
Использование | в помещении |
Информация! Термодатчики и аналоговые входы устройств имеют определенный разброс параметров, что неизбежно приводит к ошибкам в измерениях.
Для повышения точности измерения температуры (более точно, чем ±2 градуса) необходимо произвести калибровку термодатчика, подключенного к конкретному аналоговому входу, согласно инструкции к датчику температуры.
https://www.youtube.com/watch?v=uaQCE5ByJ0g
в начало
Схема подключения датчика к устройству
Датчик температуры подключается к разъемам AN1 или AN2, а также можно подключить к разъму EXT (подробности в инструкции к прошивке устройства).
в начало
EQUICOM.ru
Использование с устройствами PING3(-knock) и PING3-PWR1(2)
Для получения значения температуры в градусах Цельсия в настройках аналогового входа, к которому подключен термодатчик, необходимо задать такие коэффициенты:
O (offset) = –50 M (multiplier) = 330
Для получения значения температуры в градусах Цельсия в настройках аналогового входа, к которому подключен термодатчик, необходимо задать такие коэффициенты:
O (offset) = –50
Для получения значения температуры в градусах Цельсия в настройках аналогового входа, к которому подключен термодатчик, необходимо задать такие коэффициенты:
O (offset) = –50
Источник: http://www.equicom.ru/sensors-and-device/8-monitor-temperature.html