Как правильно припаять конденсатор

Правила проверки и пайки конденсаторов

как правильно припаять конденсатор

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Проверка ёмкости

Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.

Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.

Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.

Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.

Проверка конденсатора цифровым мультиметром:

Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.

Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.

Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.

При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.

Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.

Проверка в плате

Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.

Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.

При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).

Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.

Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.

Меры предосторожности при измерении

Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.

  • Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
  • При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
  • И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.

Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.

Как перепаивать конденсатор на «материнке»

Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.

Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.

Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.

Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.

Последовательность действий такая:

  1. Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
  2. Снимают крышку и отвинчивают материнскую плату.
  3. Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
  4. Замечают, какая полярность подключения конденсатора была (можно сделать фото).
  5. С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
  6. Устанавливают и припаивают новый.

После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.

Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.

Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.

По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.

Процесс пайки

Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.

Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.

Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.

Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.

Как паять резисторы

Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.

С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.

После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.

Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.

Источник: https://svaring.com/soldering/platy/proverka-pajka-kondensatorov

Пайка резисторов на плату

как правильно припаять конденсатор

В чем же заключаются плюсы применения таких чип элементов? Давайте разберемся.

Плюсы данного вида монтажа

Во первых, применение чип компонентов заметно уменьшает размеры готовых печатных плат, уменьшается их вес, как следствие для этого устройства потребуется небольшой компактный корпус.  Так можно собрать очень компактные и миниатюрные устройства.

Применение чип элементов заставляет экономить печатную плату (стеклотекстолит), а так же хлорное железо для их травления, кроме того, не приходиться тратить  время на высверливание отверстий, в любом случае, на это уходит не так много времени и средств.
Платы изготовленные таким образом легче ремонтировать и легче заменять радиоэлементы на плате.

Можно делать двухсторонние платы, и размещать элементы на обеих сторонах платы. Ну и экономия средств, ведь чип компоненты стоят  дешево, а оптом брать их очень выгодно.

Для начала, давайте определимся с термином поверхностный монтаж, что же это означает? Поверхностный монтаж – это технология производства печатных плат, когда радиодетали размещаются со стороны печатных дорожек, для их размещения на плате не приходится высверливать отверстия, если коротко, то это означает «монтаж на поверхность». Данная технология является наиболее распространенным на сегодняшний день.

Кроме плюсов есть конечно же и минусы. Платы собранные на чип компонентах боятся сгибов и ударов, т.к. после этого радиодетали, особенно резисторы с конденсаторами просто напросто трескаются. Чип компоненты не переносят перегрева при пайке. От перегрева они часто трескаются и появляются микротрещины. Дефект проявляет себя не сразу, а только в процессе эксплуатации

Резисторы и конденсаторы

Чип компоненты (резисторы и конденсаторы) в первую очередь разделяются по типоразмерам, бывают 0402 – это самые маленькие радиодетали, очень мелкие, такие применяются например в сотовых телефонах, 0603 — так же миниатюрные, но чуть больше чем предыдущие, 0805 – применяются например в материнских платах, самые ходовые, затем идут 1008, 1206 и так далее.

Резисторы:

Конденсаторы:

Ниже дана более таблица с указанием размеров некоторых элементов:[0402] — 1,0 × 0,5 мм[0603] — 1,6 × 0,8 мм[0805] — 2,0 × 1,25 мм[1206] — 3,2 × 1,6 мм

[1812] — 4,5 × 3,2 мм

Все чип резисторы обозначаются кодовой маркировкой, хоть и дана методика расшифровки этих кодов, многие все равно не умеют расшифровывать номиналы этих резисторов, в связи с этим я расписал коды некоторых резисторов, взгляните на таблицу.

Примечание: В таблице ошибка: 221 «Ом» следует читать как «220 Ом».

Что касается конденсаторов, они никак не обозначаются и не маркируются, поэтому, когда будете покупать их, попросите продавца подписать ленты, иначе, понадобится точный мультиметр с функцией определения емкостей.

Транзисторы

В основном радиолюбители применяют транзисторы вида SOT-23, про остальные я рассказывать не буду. Размеры этих транзисторов следующие: 3 × 1,75 × 1,3 мм.

Как видите они очень маленькие, паять их нужно очень аккуратно и быстро. Ниже дана распиновка выводов таких транзисторов:

Распиновка у большинства транзисторов в таком корпусе именно такая, но есть и исключения, так что прежде чем запаивать транзистор проверьте распиновку выводов, скачав даташит к нему. Подобные транзисторы в большинстве случаев обозначаются с одной буквой и 1 цифрой.

Диоды и стабилитроны

Диоды как и резисторы с конденсаторами, бывают разных размеров, более крупные диоды обозначают полоской с одной стороны – это катод, а вот миниатюрные диоды могут отличаться в метках и цоколевке. Такие диоды обозначаются обычно 1-2 буквами и 1 или 2 цифрами.

Диоды:

Стабилитроны BZV55C:

Стабилитроны, так же как и диоды, обозначаются полоской с краю корпуса. Кстати, из-за их формы, они любят убегать с рабочего места, очень шустрые, а если упадет, то и не найдешь, поэтому кладите их например в крышку от баночки с канифолью.

Микросхемы и микроконтроллеры

Микросхемы бывают в разных корпусах, основные и часто применяемые типы корпусов показаны ниже на фото. Самый не хороший тип корпуса это SSOP – ножки этих микросхем располагаются настолько близко, что паять без соплей практически нереально, все время слипаются ближайшие вывода. Такие микросхемы нужно паять паяльником с очень тонким жалом, а лучше паяльным феном, если такой имеется, методику работы с феном и паяльной пастой я расписывал в этой статье.

Следующий тип корпуса это TQFP, на фото представлен корпус с 32мя ногами (микроконтроллер ATmega32), как видите корпус квадратный, и ножки расположены с каждой его стороны, самый главный минус таких корпусов заключается в том, что их сложно отпаивать обычным паяльником, но можно. Что же касается остальных типов корпусов, с ними намного легче.

Как и чем паять чип компоненты?

Чип радиодетали лучше всего паять паяльной станцией со стабилизированной температурой, но если таковой нет, то остается только паяльником, обязательно включенным через регулятор! (без регулятора у большинства обычных паяльников температура на жале достигает 350-400*C). Температура пайки должна быть около 240-280*С.

Например при работе с бессвинцовыми припоями, имеющими температуру плавления 217-227*С, температура жала паяльника должна составлять 280-300°С.  В процессе пайки необходимо избегать избыточно высокой температуры жала и чрезмерного времени пайки. Жало паяльника должно быть остро заточено, в виде конуса или плоской отвертки.

Рекомендации по пайке чип компонентов

Печатные дорожки на плате необходимо облудить и покрыть спирто-канифольным флюсом. Чип компонент при пайке удобно поддерживать пинцетом или ногтем, паять нужно быстро, не более 0.5-1.5 сек. Сначала запаивают один вывод компонента, затем убирают пинцет и паяют второй вывод. Микросхемы нужно очень точно совмещать, затем запаивают крайние вывода и проверяют еще раз, все ли вывода точно попадают на дорожки, после чего запаивают остальные вывода микросхемы.

Если при пайке микросхем соседние вывода слиплись, используйте зубочистку, приложите ее между выводами микросхемы и затем коснитесь паяльником одного из выводов, при этом рекомендуется использовать больше флюса. Можно пойти другим путем, снять экран с экранированного провода и собрать припой с выводов микросхемы.

Несколько фотографий из личного архива

ЭТО ИНТЕРЕСНО:  Как менять аккумулятор в машине

Заключение

Поверхностный монтаж позволяет экономить средства и делать очень компактные, миниатюрные устройства. При всех своих минусах, которые имеют место, результирующий эффект, несомненно, говорит о перспективности и востребованности данной технологии.

Источник: https://rem-serv.com/payka-rezistorov-na-platu/

Как правильно впаять конденсатор

как правильно припаять конденсатор

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Можно ли заменить smd конденсаторы на обычные. SMD компоненты

В элементной базе компьютера (и не только) есть одно узкое место — электролитические конденсаторы. Они содержат электролит, электролит — это жидкость. Поэтому нагрев такого конденсатора приводит к выходу его из строя, так как электролит испаряется. А нагрев в системном блоке — дело регулярное.

https://www.youtube.com/watch?v=SNIHPP8Odgk

Поэтому замена конденсаторов — это вопрос времени. Больше половины отказов материнских плат средней и нижней ценовой категории происходит по вине высохших или вздувшихся конденсаторов. Еще чаще по этой причине ломаются компьютерные блоки питания.

Поскольку печать на современных платах очень плотная, производить замену конденсаторов нужно очень аккуратно. Можно повредить и при этом не заметить мелкий бескорпусой элемент или разорвать (замкнуть) дорожки, толщина и расстояние между которыми чуть больше толщины человеческого волоса. Исправить подобное потом достаточно сложно. Так что будьте внимательны.

Итак, для замены конденсаторов понадобится паяльник с тонким жалом мощностью 25-30Вт, кусок толстой гитарной струны или толстая игла, паяльный флюс или канифоль.

В том случае, если вы перепутаете полярность при замене электролитического конденсатора или установите конденсатор с низким номиналом по вольтажу, он вполне может взорваться. А вот как это выглядит:

Так что внимательнее подбирайте деталь для замены и правильно устанавливайте. На электролитических конденсаторах всегда отмечен минусовой контакт (обычно вертикальной полосой цвета, отличного от цвета корпуса). На печатной плате отверстие под минусовой контакт отмечено тоже (обычно черной штриховкой или сплошным белым цветом). Номиналы написаны на корпусе конденсатора. Их несколько: вольтаж, ёмкость, допуски и температура.

Первые два есть всегда, остальные могут и отсутствовать. Вольтаж: 16V (16 вольт). Ёмкость: 220µF (220 микрофарад). Вот эти номиналы очень важны при замене. Вольтаж можно выбирать равный или с большим номиналом. А вот ёмкость влияет на время зарядки/разрядки конденсатора и в ряде случаев может иметь важное значение для участка цепи.

Поэтому ёмкость следует подбирать равную той, что указана на корпусе. Слева на фото ниже зелёный вздувшийся (или потёкший) конденсатор. Вообще с этими зелёными конденсаторами постоянные проблемы. Самые частые кандидаты на замену. Справа исправный конденсатор, который будем впаивать.

Выпаивается конденсатор следующим образом: сначала находите ножки конденсатора с обратной стороны платы (для меня это самый трудный момент). Затем нагреваете одну из ножек и слегка давите на корпус конденсатора со стороны нагреваемой ножки. Когда припой расплавляется, конденсатор наклоняется. Проводите аналогичную процедуру со второй ножкой. Обычно конденсатор вынимается в два приема.

Спешить не нужно, сильно давить тоже. Мат.плата — это не двухсторонний текстолит, а многослойный (представьте вафлю). Из-за чрезмерного усердия можно повредить контакты внутренних слоев печатной платы. Так что без фанатизма. Кстати, долговременный нагрев тоже может повредить плату, например, привести к отслоению или отрыву контактной площадки. Поэтому сильно давить паяльником тоже не нужно. Паяльник прислоняем, на конденсатор слегка надавливаем.

После извлечения испорченного конденсатора необходимо сделать отверстия, чтобы новый конденсатор вставлялся свободно или с небольшим усилием. Я для этих целей использую гитарную струну той же толщины, что и ножки выпаиваемой детали.

Для этих целей подойдет и швейная игла, однако иглы сейчас делают из обычного железа, а струны из стали. Есть вероятность того, что игла схватится припоем и сломается при попытке ее вытащить.

А струна достаточно гибкая и схватывается сталь с припоем значительно хуже, чем железо.

При демонтаже конденсаторов припой чаще всего забивает отверстия в плате. Попробовав впаять конденсатор тем же способом, которым я советовал его выпаивать, можно повредить контактную площадку и дорожку, ведущую к ней. Не конец света, но очень нежелательное происшествие. Поэтому если отверстия не забил припой, их нужно просто расширить.

А если все же забил, то нужно плотно прижать конец струны или иглы к отверстию, а с другой стороны платы прислонить к этому отверстию паяльник. Если подобный вариант неудобен, то жало паяльника нужно прислонять к струне практически у основания. Когда припой расплавится, струна войдёт в отверстие.

В этот момент надо ее вращать, чтобы она не схватилась припоем.

После получения и расширения отверстия нужно снять с его краев излишки припоя, если таковые имеются, иначе во время припаивания конденсатора может образоваться оловянная шапка, которая может припаять соседние дорожки в тех местах, где печать плотная. Обратите внимание на фото ниже — насколько близко к отверстиям располагаются дорожки. Припаять такую очень легко, а заметить сложно, поскольку обзору мешает установленный конденсатор. Поэтому лишний припой очень желательно убирать.

Если у вас нет под боком радио-рынка, то скорее всего конденсатор для замены найдется только б/у. Перед монтажом следует обработать его ножки, если требуется. Желательно снять весь припой с ножек. Я обычно мажу ножки флюсом и чистым жалом паяльника облуживаю, припой собирается на жало паяльника. Потом скоблю ножки конденсатора канцелярским ножом (на всякий случай).

Вот, собственно, и все. Вставляем конденсатор, смазываем ножки флюсом и припаиваем. Кстати, если используется сосновая канифоль, лучше истолочь ее в порошок и нанести его на место монтажа, чем макать паяльник в кусок канифоли. Тогда получится аккуратно.

Замена конденсатора без выпаивания с платы

Условия ремонта бывают разные и менять конденсатор на многослойной (мат. плата ПК, например) печатной плате — это не то же самое что поменять конденсатор в блоке питания (однослойная односторонняя печатная плата). Надо быть предельно аккуратным и осторожным. К сожалению, не все родились с паяльником в руках, а отремонтировать (или попытаться отремонтировать) что-то бывает очень нужно.

Как я уже писал в первой половине статьи, чаще всего причиной поломок являются конденсаторы. Поэтому замена конденсаторов наиболее частый вид ремонта, по крайней мере в моём случае. В специализированных мастерских есть для этих целей специальное оборудование. Если оного нет, приходится пользоваться оборудованием обычным (флюс, припой и паяльник). В этом случае очень помогает опыт.

Главным преимуществом данного метода является то, что контактные площадки платы придётся в значительно меньшей степени подвергать нагреву. Как минимум в два раза. Печать на дешёвых мат.платах достаточно часто отслаивается от нагрева. Дорожки отрываются, а исправить такое потом достаточно проблематично.

Минус данного способа в том, что на плату всё-таки придётся надавить, что тоже может привести к негативным последствиям. Хотя из моей личной практики давить сильно ни разу не приходилось. При этом есть все шансы припаяться к ножкам, оставшимся после механического удаления конденсатора.

Итак, замена конденсатора начинается с удаления испорченной детали с мат.платы.

На конденсатор нужно поставить палец и с лёгким нажатием попробовать покачать его вверх-вниз и влево-вправо. Если конденсатор качается влево-вправо, значит ножки расположены по вертикальной оси (как на фото), в обратном случае по горизонтальной. Также можно определить положение ножек по минусовому маркеру (полоса на корпусе конденсатора, обозначающая минусовой контакт).

Дальше следует надавить на конденсатор по оси расположения его ножек, но не резко, а плавно, медленно увеличивая нагрузку. В результате ножка отделяется от корпуса, далее повторяем процедуру для второй ножки (давим с противоположной стороны).

Иногда ножка из-за плохого припоя вытаскивается вместе с конденсатором. В этом случае можно слегка расширить получившееся отверстие (я делаю это куском гитарной струны) и вставить туда кусок медной проволоки, желательно одинаковой с ножкой толщины.

Половина дела сделана, теперь переходим непосредственно к замене конденсатора. Стоит отметить, что припой плохо пристаёт к той части ножки, которая находилась внутри корпуса конденсатора и её лучше откусить кусачками, оставив небольшую часть.

Затем ножки конденсатора, приготовленного для замены и ножки старого конденсатора обрабатываются припоем и припаиваются. Удобнее всего паять конденсатор, приложив его к к плате под углом в 45 градусов.

Потом его легко можно поставить по стойке смирно.

Вид в результате, конечно неэстетичный, но зато работает и данный способ намного проще и безопаснее предыдущего с точки зрения нагрева платы паяльником. Удачного ремонта!

Если материалы сайта оказались для вас полезными, можете поддержать дальнейшее развитие ресурса, оказав ему (и мне ) .

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа – SMT технологии (Surface Mount Technology), и конечно же, без SMD компонентов.

Что такое SMD компоненты

Источник: https://la2ic.ru/prilozheniya/mozhno-li-zamenit-smd-kondensatory-na-obychnye-smd-komponenty-chto-takoe-smd/

Проверка и замена пускового конденсатора

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

ЭТО ИНТЕРЕСНО:  Что такое сварочный выпрямитель

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Источник: https://masterxoloda.ru/1/proverka-i-zamena-puskovogo-i-rabochego-kondensatorov

Правила проверки и пайки конденсаторов — Сварка Профи

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Как правильно проверить, работает ли конденсатор?

Не знаете, как проверить конденсатор на работоспособность мультиметром? Технология проверки этого элемента схемы довольно простая, главное – уметь пользоваться тестером и соблюдать несколько простых рекомендаций. Итак, далее мы расскажем с помощью каких приборов легче всего определить исправность конденсатора и как это правильно сделать.

Подготовительные работы

Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.

Способ №1 – Мультиметр в помощь

Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, как пользоваться мультиметром мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.

Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу.

В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.

Измеряем сопротивление

Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.

После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.

Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!

После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.

Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.

Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло короткое замыкание.

Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.

Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.

Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.

Измеряем емкость

Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).

Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.

Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.

Измеряем напряжение

Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.

После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.

Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!

Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.

Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:

Как проверить целостность «кондера»

Способ № 2 – Обойдемся без приборов

Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.

Что еще важно знать?

Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).

Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.

Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.

Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к.

у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах.

Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!

Также читают:

Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Как правильно паять. Часть 3

Добрый день, друзья!

Вы уже знаете, что такое припои и флюсы и как устроен паяльник. Но то была теория. Теперь самое время перейти к практике! Поэтому рассмотрим теперь сам

Предостережения при пайке

Электронные компоненты чувствительны к перегреву, поэтому не следует нагревать выводы дольше 3-5 секунд.

С другой стороны, если вывод или место пайки не прогреты до нужной температуры, качественного лужения или пайки не получится. Могут встречаться случаи, когда деталь припаивается на контактную площадку, которая имеет большие размеры.

Медь хорошо проводит тепло, поэтому паяльником на 25 Вт такую площадку не прогреешь, сколько ни грей. В таких случаях необходимо использовать паяльник мощностью 40 Вт. Иногда нужно будет поднять напряжение на таком паяльнике или даже использовать паяльник еще большей мощности.

Вернемся к ремонту блока питания. Сначала нужно выпаять неисправные конденсаторы.

Для этого необходимо смочить места припайки выпаиваемой детали несколькими каплями спиртоканифольного флюса. Удобно подавать его из медицинского 5-кубового шприца.

Прогрев эти места паяльником несколько секунд, следует вытащить неисправный конденсатор. Отпаивать можно по одному выводу или сразу два (если позволяет ширина жала).

Применение флюса при отпайке деталей уменьшает нагрев в этом месте и препятствует появлению перемычек (или, иными словами, закороток) между контактными площадками. Нужно постоянно следить за формой жала. Если там будут раковины, тепловой контакт с местом пайки ухудшится. Неровный край жала может повредить печатные проводники и контактные дорожки платы.

Если при отпайке используется слишком мощный паяльник (60 Вт и более), контактные площадки могут отделиться от основания. Клей, которым они приклеены к основанию, не выдержит перегрева! Это затруднит дальнейший монтаж.

А что делать, есть отверстие залило припоем?

Если при выпаивании детали отверстие в контактной площадке затянуло припоем, следует использовать заостренную деревянную палочку для его очистки.

Можно использовать зубочистки, которые продаются в аптеках. Они сделаны из твердых сортов дерева и лучше выдерживают высокую температуру.

Зачем следуем смочить несколькими каплями жидкого флюса затянувшееся отверстие, установить заостренный конец палочки в центр площадки и прогреть это место. Припой расплавится, конец палочки войдет в отверстие и очистит его. Теперь можно припаивать новую деталь.

Необходимо вставить облуженные выводы конденсатора в соответствующие отверстия. Затем надо снова нанести на места паек по несколько капель жидкого флюса. И, придержав конденсатор с другой стороны (чтобы он вплотную прилегал к плате), припаять его выводы к контактным площадкам.

При этом на жале паяльника должно быть оптимальное количество припоя.

Какой должна быть качественная пайка?

Правильная пайка должна иметь красивый и блестящий вид.

Не должно быть промежутков между выводом детали и краем отверстия.

Но не должно быть и излишков припоя. Во время остывания припоя нельзя шевелить вывод детали, иначе пайка будет некачественной. Если пайка имеет серый вид и рыхлую поверхность, она также некачественна.

Такое случается, если пайка ведется перегретым паяльником или с недостаточным количеством флюса. Или если деталь не была неподвижной в процессе остывания припоя. Кстати сказать, немалое количество неисправностей в электронной технике бывает из-за плохого контакта в местах паек. Контакты (особенно у сильноточных деталей, которые подвергаются нагреву) могут ослабевать со временем.

Такую «засаду» как раз и можно узнать по серому цвету пайки и кольцеобразной трещине вокруг вывода детали.

Из-за таких паек могут происходить многие «таинственные» сбои в работе.

Бывает и такое, что внешне пайка выглядит образцово, но внутри «гнилая». Помочь этому «горю» легко.

Надо капнуть на подозрительное место несколько капель флюса и, взяв на жало небольшое количество припоя, восстановить пайку. После остывания припоя следует откусить бокорезами выступающие концы выводов, оставив 2 – 3 мм. Спиртоканифольный флюс нейтрален, так что, в принципе, можно не удалять его остатки. Но тогда место пайки будет иметь неряшливый вид.

Удалить остатки флюса можно тряпочкой, смоченной этиловым спиртом. Если паек было много, удалить остатки можно небольшой кисточкой с жесткой щетиной, смоченной тем же спиртом.

ЭТО ИНТЕРЕСНО:  Что такое прозвонка в мультиметре

В заключение скажем, что при формовании выводов деталей после пайки следует придерживать удаляемый кусочек вывода, чтобы он не полетел кому-то в голову.

Либо применять специальные, «не стреляющие» бокорезы.

При ремонте техники, смонтированной согласно директиве RoHS, нужно увеличить температуру жала, так как бессвинцовые припои более тугоплавки.

Вот и все друзья. Теперь надо пробовать. Процесс пайки не такой сложный, как это может показаться после прочтения статьи. Дерзайте!

Источник: https://vsbot.ru/pomoshty-zhelezu/kak-pravilno-payat-chast-3.html

Полярные и неполярные конденсаторы — в чем отличие, как проверить

Один из наиболее распространенных компонентов электрических схем – неполярный конденсатор. Они применяются в блоке питания, высокочастотном устройстве (емкости с тремя выводами), в цепи звука и т.д.

В рамках этой статьи мы не будем затрагивать теоретические основы радиоэлектроники, чтобы описать его принцип работы. Если требуется обновить знания, эту информацию несложно найти через поисковые серверы. Поэтому перейдем, непосредственно, к практическим вопросам. А именно: чем неполярная емкость отличается от полярной, как проверить работоспособность элемента, маркировка и т.д.

В чем отличие полярного и неполярного конденсатора

Основное отличие между этими двумя типами заключается в структуре диэлектрика, точнее, в его границе с обкладкой. Для наглядности предлагаем рассмотреть рисунок 1, где изображен неполярный керамический конденсатор.

Рисунок 1. Устройство керамической емкости в SMD корпусе

Обозначение элементов конструкции:

  • А – контактные электроды;
  • В – покрытие;
  • С – диэлектрик;
  • D – внутренние электроды.

Как видно из рисунка, граница между диэлектриком и обкладкой однородная, соответственно, и взаимодействие между ними одинаковое. Поэтому данный тип элементов не требует соблюдения полярности при монтаже.

Что касается электролитических (полярных) емкостей, то в них структура перехода между обкладкой и диэлектриком отличается для каждой из сторон последнего (катода и анода). Причем различия выражаются как в физических свойствах, так и химическом составе. Для примера рассмотрим, как устроены танталовые электролитические емкости.

Устройство танталового конденсатора полярного типа

Обозначения:

  • А – метка, маркирующая анодный контакт;
  • В – контактная пластина анода;
  • С – внутренний анод на основе гранулированного тантала, в качестве диэлектрика выступает оксид этого химического элемента (Та2О5), формирующийся в процессе работы;
  • D – электролит из диоксида марганца (MnO2);
  • Е – внутренний катод (смесь серебра и графита);
  • F – адгезив на основе серебра, соединяющий внутренний катод с контактной пластиной;
  • G – контактная пластина катода;
  • H – компаундное покрытие.

При монтаже данного типа емкости необходимо соблюдать полярность. В противном случае элемент не будет выполнять свои функции. Поэтому использовать электролитические емкости можно только в цепи постоянного тока (или импульсного). Применение в цепи переменного напряжения также допустимо, если включение электролитов отвечает определенным условиям. Можно ли заменить электролит неполярной емкостью, расскажем ниже.

Делаем неполярный конденсатор из полярного

Причин для нештатного применения электролитов может быть несколько, начиная от отсутствия неполярных конденсаторов и заканчивая необходимостью собрать схему, обеспечивающую подключение трехфазного электродвигателя к однофазной сети.

Решить проблему можно за счет встречного включения двух электролитов так, как показано на рисунке ниже. У обоих элементов должны совпадать как емкость, так и номинальное напряжение.

Пример соединения двух электролитов для работы в цепи переменного тока

Следует принимать во внимание, что общая емкость такого соединения «С» будет половинной от указанного номинала элементов «С1» и «С2».

То есть, если имеются два электролита на 10 мкф каждый, мы получим неполярный электролитический конденсатор на 5 мкф (учитывая допустимую погрешность 4 мкф – 4,7 мкф).

Что касается напряжения, то необходимо учитывать амплитуду переменного тока, то есть, для цепи 220 Вольт, следует подбирать элементы с номинальным напряжением минимум 400 Вольт.

Приведенную выше схема не совершенна, ее можно немного модернизировать, зашунтировав емкости диодами так, как изображено на рисунке ниже, это обеспечит защиту от пробоя.

Добавление шунтирующих диодов

Указанный выше принцип можно использовать для замены вышедшего из строя пускового конденсатора для электродвигателя. Не рекомендуем производить подобную замену для звука, поскольку электролиты, как и керамические емкости в силу их особенностей стараются не использовать в аудиотехнике.

Как проверить неполярный конденсатор мультиметром

Эксплуатация радиоэлектроники подразумевает и устранение неисправностей в оборудовании. Поэтому, рассматривая неполярные емкости, нельзя абстрагироваться от темы диагностики их работоспособности.

Как показывает практика, в большинстве случаев причиной выхода из строя емкости является пробой, что приводит к уменьшению сопротивления утечки. То есть, элемент становится, практически, проводником. Такую неисправность часто можно определить по внешнему виду емкости (см. рисунок 5), если это не помогло, потребуется простейший цифровой или аналоговый мультиметр.

Рисунок 5. «Выгоревшая» (пробитая) емкость

С помощью прибора следует замерить сопротивление утечки, в рабочих элементах оно должно быть бесконечно большим.  Проверка выполняется следующим образом:

  • необходимо полностью демонтировать деталь, или отпаять один из ее выводов, чтобы исключить влияние других элементов цепи на показания мультиметра;
  • устанавливаем на приборе режим прозвонки или измерения сопротивления (выбираем максимальный предел);
  • подключаем щупы к выходным контактам (рисунок 6), при этом стараемся не прикасаться к ним, в противном случае прибор покажет сопротивление кожи;

Рисунок 6. Подключение емкости к измерительному прибору

Проводим измерение, если емкость исправна на экране отобразится единица (рисунок 7), что свидетельствует о бесконечно большом сопротивлении между обкладками.

Рисунок 7. Прибор в режиме прозвонки показывает бесконечно большое сопротивление

К сожалению, данным способом можно только проверить емкость на пробой, для определения внутреннего обрыва такой метод не подходит.

В этом случае отличить поломанную деталь от работоспособной, можно измерив ее емкость, некоторые модели мультиметров имеют такую функциональную возможность.

Принцип проверки практически не отличается от тестирования на пробой, за исключением того, что прибор необходимо перевести в режим измерения емкости.

Маркировка

Существует три основных параметра, характеризующие конденсатор: показатель  номинальной емкости, допуска и штатного напряжения. В большинстве случаев применяется два метода маркировки – буквенно-числовой и числовой.

В первом случае буква обозначает величину емкости (μ, nF, pF) и играет роль десятичной запятой. Например, если неполярный конденсатор имеет маркировку 1 μ, значит это деталь с емкостью 1 мкф, а надпись 3μ3 – 3,3 мкФ.

Для обозначения допуска может использоваться буквенная кодировка, ее расшифровка представлена на рисунке 8.

Рисунок 8. Расшифровка буквенной маркировки допуска

Рабочее напряжение емкости также может обозначаться буквенным кодом, ниже приведена его раскодировка.

Таблица: расшифровка буквенной маркировки допустимого напряжения

Емкости небольшого размера, например, в SMD исполнении принято маркировать трехзначным цифровым кодом.

Трехзначный цифровой код параметра емкость

Чтобы не запоминать все значения таблицы, воспользуйтесь следующим правилом расшифровки: значения приводятся в пикофарадах, первое и второе значение – мантисса, третье – степень с основанием 10. Например, надпись 331 будет означать 330 пФ (33*10).

Источник: https://www.asutpp.ru/kak-sdelat-iz-nepolyarnogo-kondensatora-polyarnyj.html

Соединение конденсаторов

Радиоэлектроника для начинающих

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:

Параллельное соединение

Принципиальная схема параллельного соединения

Последовательное соединение

Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

https://www.youtube.com/watch?v=EGhdDoYi39Q

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).

Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).

Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.

Параллельное соединение электролитов

Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.

Последовательное соединение электролитов

Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор.

То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт.

Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены :)

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/connection-of-capacitors.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как подключить две лампы к одному выключателю

Закрыть