Проверка тиристоров всех видов мультиметром
Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.
Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.
Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.
Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.
Основные характеристики
Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.
Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.
Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.
Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.
Определение управляющего напряжения
Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.
У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:
- для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
- подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
- перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
- убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.
Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.
Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.
Проверка исправности
Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.
К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.
Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.
Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.
После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.
Проверка динистора
Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.
Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.
Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.
Значения тестера должны лежать в пределах милливольт. Динистор открылся.
Необычный способ
Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.
Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.
На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.
Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.
Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.
Проверка в схеме
Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.
Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.
Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.
Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.
Тестирование высоковольтного тиристора
В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.
Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.
Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.
Источник: https://evosnab.ru/instrument/test/proverka-tiristorov
Как проверить тиристор мультиметром + видео
Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.
Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.
Предварительная подготовка
Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.
Маркировка обозначена красным овалом
Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).
Даташит на BT151 (аналог КУ202Н)
Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.
Тестирование на пробой
Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:
- Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм.Рис 3. Измеряем сопротивление между УЭ и К
- Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
- Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.
Рис 4. Измеряем сопротивление перехода Анод-Катод
Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.
Проверка на открытие-закрытие
Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).
Рис. 5. Подключение для проверки на открытие
При таком подключении отобразится бесконечно большое сопротивление.
Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности.
Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.
Самодельный пробник для тиристоров
В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.
https://youtube.com/watch?v=rVWD4icQ7zE
Рисунок 6. Пробник для тиристоров
Обозначения:
- Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
- L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
- VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
- С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
- R1 – сопротивление с номиналом 47 Ом.
- VD2 – тестируемый тиристор.
- FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).
После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:
- Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
- Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
- Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
- Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
- Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
- Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
- Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
- Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.
Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).
Проверка без выпаивания детали с платы
В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.
Источник: https://asutpp.ru/kak-proverit-tiristor-multimetrom.html
Как проверить тиристор
Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.
Принцип работы тиристора
Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-).
Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж.
Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?
В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.
Тиристоры выглядят как-то вот так:
А вот и схемотехническое обозначение тиристора
В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)
Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.
Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.
Параметры тиристоров
Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:
1) Uy – отпирающее постоянное напряжение управления– наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.
2) Uобр max – обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.
3) Iос ср – среднее значение тока, которое может протекать через тиристор в прямом направлении без вреда для его здоровья.
Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.
Как проверить тиристор КУ202Н
Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.
А вот и его цоколевка
Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.
На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.
Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy – отпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!
также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта
Убираем батарейку или щупы, лампочка должна продолжать гореть.
Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.
Как проверить тиристор мультиметром
Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:
Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.
После отпускания мультиметр снова показывает бесконечно большое сопротивление.
Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.
Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.
Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:
Источник: https://ruselectronic.com/kak-proverit-tiristor/
Как проверить тиристор мультиметром на работоспособность не выпаивая
Любое электронное устройство содержит в себе достаточно внушительный перечень электрокомпонентов, которые позволяют ему управлять электрическим током, напряжением и сопротивлением внутри себя.
Они нужны в первую очередь для регулирования отдельных электрических параметров, необходимых для нормальной работы того или иного электроприбора. Например, резисторы преобразовывают силу тока в напряжение и наоборот, а транзистор — для увиливания и генерации электроколебаний. Среди таких радиоэлементов есть и тиристор.
В этой статье будет рассказано, что такое тиристор и как проверить тринистор мультиметром не выпаивая его из платы или схемы.
Что это такое
Тиристор — это полупроводниковый электрический элемент или прибор. Он нужен для того, чтобы регулировать и коммуницировать токи больших значений. Эти элементы управляют электрической цепью с точки зрения приема электрических токов и их регулирования. С этой точки зрения они напоминают работу транзисторов.
Условные обозначения некоторых элементов на схеме
Как правило, такие элементы обладают тремя выходами: управляющим и двумя, образующими путь для протекания электрических токов. Как известно, транзистор начинает открываться пропорционально величине тока управления цепи.
Чем больше ток, тем больше открыт транзистор. Работает это и в обратном направлении. Тиристор же устроен немного иначе: он открывается полностью, но интервалами, задающимися скачками тока.
Самое интересное то, что он не закрывается даже тогда, когда не получает управляющего сигнала.
Условные обозначения некоторых элементов на схеме
Характеристики и принцип работы
Согласно схеме, которая будет представлена ниже, можно рассмотреть принцип работу элемента. К аноду этого радиоэлемента подключена лампочка, с которой соединяется вывод плюса источника питания с помощью выключателя K2.
Катод же радиоэлемента подключают, соответственно, к минусу питания. Когда цепь включается, на элемент поступает напряжение, но лампочка все равно не горит.
Нажав на переключатель K2, электроток пройдет через резистор и направится на электрод управления и лампочка начнет светиться.
Схема подключения тиристора на 1 КОм
Резистор работает таким образом, что ограничивает поступление тока от вывода управления. Минимальный ток срабатывания такого элемента — 1 мА, а допустимый для работы — 15 мА. Именно из-за этого подбирается резистор с сопротивлением 1 кОм. Если нажать на переключатель снова, то ничего не изменится. Закрыть его можно отключением питания. Таким образом, тиристор — это своего рода электронный ключ с фиксацией.
Тиристор с подсоединенными проводами
Что качается технических характеристик, то все зависит от модели конкретного элемента. В общем случае этот элемент характеризуют:
- Обратное напряжение;
- Закрытое напряжение;
- Импульс;
- Повторяющийся импульс;
- Среднее напряжение;
- Обратный ток;
- Время включения и выключения;
- Постоянное напряжение;
- Ток в открытом напряжении.
Подключение лампочки к тиристору
Схема проверки
Чтобы проверить элемент и узнать, рабочий ли он, нужна лампочка, три провода (проводника) и питающий элемент постоянного тока. Если это блок питания, то на нем необходимо выставить напряжение, достаточное для загорания светодиода. Далее необходимо привязать и припаять провода к каждому выводу радиоэлемента.
Важно! На анод подается «плюс» питания, а на катод — «минус», который будет проходить через лампочку.
Подключение питания цепи с помощью обычной пальчиковой батарейки
После этого необходимо подать напряжение на электрод управления. Для обычного тиристора это больше 0.2 Вольт, поэтому хватит и батарейки на полтора Вольта. Когда напряжение будет подано, лампочка зажжется.
Для проверки можно использовать щупы мультитестера ( на их концах напряжение также больше 0.2 Вольт), но об этом в следующем разделе. Если убрать питание, то лампочка будет продолжать гореть, так как подан импульс управляющего электрода.
Закрыть тиристор можно, отключив лампочку или убрав щупы мультиметра.
Если питания нет, то мультиметр будет показывать бесконечное напряжение, то есть единицу
Чем можно проверить тиристор на исправность
Чтобы проверить тиристор на работоспособность не выпаивая его, можно пользоваться специальными приборами:
- Мультиметром. На концах щупов прибора имеется напряжение, которое можно подать на электрод. Для этого замыкается анод и электрод. В результате сопротивление резко падает: на мультиметре это видно. Это свидетельствует о том, что тиристор отрылся. Если отпустить мультиметр, то он снова будет показывать бесконечное сопротивление.
- Тестером. Для проверки понадобится не только тестер, но и источник питания от 6 до 10 Вольт, а также провода. Необходимо включить тестер между катодом и анодом, а после этого подключить батарейку между электродом управления и катодом. Если подача питание не осуществляется, то тиристор работает некорректно. Также если питание постоянное при любом напряжении, то элемент также работает неверно.
Вот как описанная схема тиристорного элемента выглядит на практике
Таким образом, было рассмотрено, как проверить тринистор на работоспособность и основные способы ее проверки. Проверять правильность работы и прозвонить состояние тринистора можно, используя несколько способов: мультиметровый и тестерный. Оба отлично справляются с поставленной задачей.
Вам это будет интересно Особенности крестовых отверток
Источник: https://rusenergetics.ru/instrumenty/kak-proverit-tiristor-multimetrom
Как проверять тиристоры исправность не выпаивая — мультиметром, лампочкой и батарейками
Тиристоры принадлежат к классу диодов. Но помимо анода и катода, у тиристоров есть третий вывод – управляющий электрод.
Тиристор – это своего рода электронный выключатель, состоящий из четырех слоев, который может быть в двух состояниях:
- Высокая проводимость (открытое).
- Низкая проводимость (закрытое).
Тиристоры обладают высокой мощностью, благодаря чему они проводят коммутацию цепи при напряжении доходящей до 5 тысяч вольт и с силой тока равняющейся 5 тысячам ампер. Подобные выключатели способны проводить ток лишь в прямом направлении, а в состоянии низкой проводимости они способны выдержать даже обратное напряжение.
Чтобы приключаться между состояниями, используется специальная технология, которая передает сигналы. С помощью сигнала от объекта управления, тиристор станет в положении высокой проводимости (открытое), а для того чтобы его выключить нужно заряженный конденсатор соединить с ключом.
Есть разные тиристоры, которые отличаются друг от друга характеристиками, управлением и т.д.
Самые известные типы данных устройств:
- Диодный. Переходит в проводящий режим, когда уровень тока повышается.
- Инверторный. Он переходит в режим низкой проводимости быстрей подобных устройств.
- Симметричный. Устройство похоже на 2 устройства со встречно-параллельными диодами.
- Оптотиристор. Работает благодаря потоку света.
- Запираемые.
Применение тиристоров
Применение тиристоров очень широкое, начиная от устройств зарядки для автомобиля и заканчивая генераторами и трансформаторами.
Общее применение делится на четыре группы:
- Экспериментальные устройства.
- Пороговые устройства.
- Силовые ключи.
- Подключение постоянного тока.
Цены на устройства бывают разные, всё зависит от марки производителя и технических характеристик. Отечественные производители делают отличные тиристоры, по небольшой стоимости. Одни из самых распространенных отечественных тиристоров, это устройства серии КУ 202е – используются в бытовых приборах.
Вот некоторые характеристики данного тиристора:
- Обратное напряжение в состоянии высокой проводимости, максимально 100 В.
- Напряжение в положении низкой проводимости 100 В.
- Импульс в состоянии высокой проводимости – 30 А.
- Повторный импульс в этом же положении – 10 А.
- Постоянное напряжение 7 В.
- Обратный ток – 4 мА
- Ток постоянного типа – 200 мА.
- Среднее напряжение -1,5 В.
- Время включения – 10мкс.
- Выключение – 100 мкс.
Иногда возникают ситуации, в которых необходимо проверить тиристор на работоспособность. Есть различные методы проверки, в этой статье будут рассмотрены основные из них.
Тиристоры быстродействующие ТБ333-250
Проверка с помощью метода лампочки и батарейки
Для этого метода достаточно иметь под рукой лишь лампочку, батарейку, 3 проводка и паяльник, чтобы припаять провода к электродам. Такой набор найдется в доме у каждого.
При проверке прибора с помощью метода батарейки и лампочки, нужно оценить нагрузку тока сто mA, которую создает лампочка, на внутренней цепи. Применять нагрузку следует кратковременно. При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях.
Проверка методом лампочки и батарейки осуществляется по трём схемам:
- В первой схеме на управляющий электрод положительный потенциал не подается, благодаря чему не пропускается ток и лампочка не загорается. В случае если лампочка горит, тиристор работает неправильно.
- Во второй схеме тиристор приводится в состояние высокой проводимости. Для этого нужно подать плюсовой потенциал на управляющий электрод (УЭ). В этом случае, если лампочка не горит, значит с тиристором что-то не так.
- На третьей схеме с УЭ питание отключается, ток в этом случае проходит через анод и катод. Ток проходит благодаря удержанию внутреннего перехода. Но в этом случае, лампочка может не загореться не только из-за неисправности тиристора, но и из-за протекания тока меньшей величины через цепь, чем крайнее значение удержания.
Так исправность тиристора легко проверить в домашних условиях, не имея под рукой специального оборудования. Если разорвать цепь через анод или катод, у тиристора активируется состояние низкой проводимости.
При использовании данного метода, редко случается короткое замыкание, но чтобы быть уверенным на сто процентов, что его точно не будет, достаточно пропустить ток через все пары электродов тиристора в обоих направлениях
Проверка мультиметром
Это самый простой вариант для проверки. В этом методе анод и контакты УЭ подключаются к прибору для измерения (мультиметру). Роль постоянного источника тока здесь играют батареи мультиметра. В качестве индикатора – стрелки или цифровые показатели.
Что нужно, чтобы проверить тиристор мультиметром:
- Подцепить черный щуп с минусом к катоду.
- Подцепить красный щуп с плюсом к аноду.
- Один конец выключателя соединить с разъемом красного щупа.
- Настроить мультиметр для измерения сопротивления, не превышающего 2 тысячи ОМ.
- Быстро включить и отключить выключатель.
- Если проход тока удерживается, значит с тиристором всё хорошо. Чтобы его отключить достаточно, отсоединить напряжение от одного из электродов (анод или катод).
- В случае если удерживания проводимости нет, нужно поменять щупы местами и проделать всё с самого начала.
- Если перекидывание щупов не помогло, то тиристор неисправен.
Чтобы проверить тиристор не выпаивая, нужно отсоединить УЭ от цепной схемы. Далее нужно проделать все пункты, которые описаны выше.
Роль постоянного источника тока здесь играют батареи мультиметра, в качестве индикатора – стрелки или цифровые показатели
Другие варианты проверки
Также тиристор можно проверить с помощью тестера. Для этого понадобится тестер, батарейка шести – десяти вольт и проводки.
Чтобы проверить устройство тестером нужно следовать следующей схеме:
- Проверка тимистора с помощью омметраВключить тестер между катодом и анодом: должно показать «бесконечность», потому что тиристор в состоянии низкой проводимости.
- Подключить батарейку между УЭ и катодом. На тестере должно спасть сопротивление, так как появилась проводимость.
- Если подачи питания совсем нет, то устройство работает неправильно.
- Если подача питания постоянная, при любом напряжении на электроды, то и в этом случае с тиристором что-то не так.
Еще тиристор можно проверить с помощью омметра. Этот метод похож на проверку мультиметром и тестером. Потребуется:
- Подключить плюс омметра к аноду, а минус к катоду. На датчике омметра должно быть показано высокое сопротивление.
- Замкнуть вывод анода и УЭ, сопротивление на датчике омметра должно резко спасть.
Вот в принципе и вся инструкция для проверки. Если после этих действий отсоединить УЭ от анода, но не разрывать связь анода с омметром, датчик устройства должен показывать низкое сопротивление (это возникает, если ток анода, больше тока удержания).
Также существует еще один способ проверки тиристора с помощью омметров, для этого понадобится дополнительный омметр. Нужно плюсовой вывод одного омметра подключить к аноду, сопротивление в этот момент должно показываться высокое. Далее следует, также плюсовой вывод, но уже другого омметра, быстро подключить и отключить от управляющего электрода (УЭ), в этот момент сопротивление первого омметра резко уменьшится.
Блиц-советы
Рекомендации:
- Перед тем как проверять тиристор, следует внимательно ознакомиться с техническими характеристиками данного устройства. Эти знание помогут быстрей и эффективней проверить тиристор.
- Обычные, стандартные устройства для измерения (омметр, тестер, мультиметр) хорошо зарекомендовали себя для проверки тиристора, но современные приборы, дадут информацию намного точней. К тому же их гораздо легче использовать.
- Во избежание неприятных ситуаций все схемы должны собираться в точности.
- В работе с любыми диодными устройствами, включая тиристоры, нужно соблюдать технику безопасности.
Защита тиристора:
Тиристоры действуют на скорость увеличение прямого тока. В тиристорах обратный ток восстановления. Если этот ток упадет до низшего значения, может возникнуть перенапряжение. Чтобы предотвратить перенапряжения используются схемы ЦФТП. Также для защиты используют варисторы, их подключают к местам, где выводы индуктивной нагрузки.
Источник: https://housetronic.ru/electro/proveryat-tiristory.html
Как проверить тиристор?
style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8788166382″>
На своем блоге я поместил рассылку на бесплатные уроки на тему: «Тиристоры. Это очень непросто!».
В этих уроках я, в популярной форме, постарался как можно проще изложить суть работы тиристора: как он устроен, как работает в цепи постоянного и переменного тока. Привел много действующих схем на тиристорах и динисторах.
В этом уроке, по просьбе подписчиков, привожу несколько примеров проверки тиристора на целостность.
Как же проверить тиристор?
Предварительная проверка тиристора проводится с помощью тестера-омметра или цифрового мультиметра.Переключатель цифрового мультиметра должен стоять в положении проверки диодов.
С помощью омметра или мультиметра, проверяются переходы тиристора: управляющий электрод – катод и переход анод – катод.
Сопротивление перехода тиристора, управляющий электрод – катод, должно быть в пределах 50 – 500 Ом.В каждом случае величина этого сопротивления должна быть примерно одинакова при прямом и обратном измерении. Чем больше величина этого сопротивления, тем чувствительнее тиристор.Другими словами, будет меньше величина тока управляющего электрода, при котором тиристор переходит из закрытого состояния в открытое состояние.У исправного тиристора величина сопротивления перехода анод – катод, при прямом и обратном измерении, должна быть очень большой, то есть имеет «бесконечную» величину.Положительный результат этой предварительной проверки, еще ни о чем не говорит.
Если тиристор уже стоял где то в схеме, у него может быть «прогорел» переход анод — катод. Эту неисправность тиристора мультиметром не определишь.
Основную проверку тиристора нужно проводить, используя дополнительные источники питания. В этом случае полностью проверяется работа тиристора.
Тиристор перейдет в открытое состояние в том случае, если через переход, катод – управляющий электрод, пройдет кратковременный импульс тока, достаточный для открытия тиристора.
Такой ток можно получить двумя способами:1. Использовать основной источник питания и резистор R, как на рисунке №1.
2. Использовать дополнительный источник управляющего напряжения, как на рисунке №2.
Рассмотрим схему проверки тиристора на рисунке №1.
Можно изготовить небольшую испытательную плату, на которой разместить провода, индикаторную лампочку и кнопки переключения.
Проведем проверку тиристора при питании схемы постоянным током.
В качестве нагрузочного сопротивления и наглядного индикатора работы тиристора, применим маломощную электрическую лампочку на соответствующее напряжение.
Величина сопротивления резистора R выбирается из расчета, чтобы ток, протекающий через управляющий электрод – катод, был достаточным для включения тиристора.
Ток управления тиристором пройдет по цепи: плюс (+) – замкнутая кнопка Кн1 – замкнутая кнопка Кн2 – резистор R – управляющий электрод – катод – минус (-).Ток управления тиристора для КУ202 по справочнику равен 0,1 ампера. В реальности, ток включения тиристора, где то 20 – 50 миллиампер и даже меньше. Возьмем 20 миллиампер, или 0,02 ампера.Основным источником питания может быть любой выпрямитель, аккумулятор или набор батареек.
Напряжение может быть любым, от 5 до 25 вольт.
Определим сопротивление резистора R.
Возьмем для расчета источник питания U = 12 вольт.
R = U : I = 12 В : 0,02 А = 600 Ом.
Где: U – напряжение источника питания; I – ток в цепи управляющего электрода.
Величина резистора R будет равна 600 Ом.
Если напряжение источника будет, например, 24 Вольта, то соответственно R = 1200 Ом.
Схема на рисунке №1 работает следующим образом.
В исходном состоянии тиристор закрыт, электрическая лампочка не горит. Схема в таком состоянии может находиться сколько угодно долго. Нажмем кнопку Кн2 и отпустим. По цепи управляющего электрода пойдет импульс тока управления. Тиристор откроется. Лампочка будет гореть, даже если будет оборвана цепь управляющего электрода.
Нажмем и отпустим кнопку Кн1. Цепь тока нагрузки, проходящего через тиристор, оборвется и тиристор закроется. Схема придет в исходное состояние.
Проверим работу тиристора в цепи переменного тока.
Вместо источника постоянного напряжения U включим переменное напряжение 12 вольт, от какого либо трансформатора (рисунок №2).
В исходном состоянии лампочка гореть не будет.Нажмем кнопку Кн2. При нажатой кнопке лампочка горит. При отжатой кнопке — тухнет.При этом лампочка горит «в пол – накала». Это происходит потому, что тиристор пропускает только положительную полуволну переменного напряжения.
Если вместо тиристора будем проверять симистор, например КУ208, то лампочка будет гореть в полный накал. Симистор пропускает обе полуволны переменного напряжения.
Как проверить тиристор от отдельного источника управляющего напряжения?
Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.
Смотрим рисунок №3.
В этой схеме ток управляющего электрода подается от отдельного источника. В качестве него можно использовать плоскую батарейку.При кратковременном нажатии на кнопку Кн2, лампочка так же загорится, как и в случае на рисунке №1. Ток управляющего электрода должен быть не менее 15 – 20 миллиампер. Запирается тиристор, так же, нажатием кнопки Кн1.
Так проверяются «не запираемые» тиристоры (КУ201, КУ202, КУ208 и др.).
Запираемый тиристор, например КУ204, отпирается положительным полюсом на управляющем электроде и минусом на катоде. Запирается, отрицательным напряжением на управляющем электроде и положительном на катоде.
Менять полюсовку управляющего напряжения можно с помощью переключателя П.
Нужно обратить внимание на то, что «запирающий ток» тиристора, почти в два раза больше отпирающего. Если вдруг тиристор КУ204 не будет запираться, нужно уменьшить величину сопротивления резистора R до 50 Ом.
style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8788166382″>
Источник: https://domasniyelektromaster.ru/prakticheskie-primery/kak-proverit-tiristor/
Как проверить тиристор мультиметром
Для проверки радиоэлементов на работоспособность, чаще всего используется мультиметр. Он хорош тем, что с его помощью, можно быстро выявить радикальные дефекты большинства радиодеталей. Минус тут в том, что не каждым мультиметром, и не каждую деталь, можно протестировать досконально.
Аналоговый мультиметр
Чаще всего называемый тестером, реже – авометром (Ампер-Вольт-Ом-метр) и, почти никогда, непосредственно мультиметром. Состоит из прецизионной стрелочной головки потенциометра и сложных коммутируемых цепей измерения. Причем, внутренняя батарея питания (4,5-9 В.) нужна лишь для измерения сопротивления. Напряжение и ток можно измерить и без нее.
Проверить тиристор мультиметром такого плана, можно только при наличии свежей, не разряженной батарейки.
Цифровой мультиметр
Так и называют, реже – тестером, и, почти никогда – авометром. Состоит из упрощенных коммутируемых цепей измерения обслуживающих микроконтроллер с АЦП (аналого-цифровой преобразователь). Его широкий диапазон измерения, чувствительность и точность, позволяют обойтись и без них. Внутренний элемент питания (1-9 В) используется не только для измерения сопротивления, но и для питания микроконтроллера и его периферии.
Рассмотрим последовательность действий для определения работоспособности тиристора.
- Прозвонка анод-катод, при любом приложении щупов:
- аналоговый покажет бесконечность, стрелка не двинется;
- цифровой или никак не отреагирует или высветит несколько МОм.
- При прозвонке анод-управляющий электрод:
- аналоговый покажет от нескольких до десятков кОм;
- цифровой выдаст такие же цифры.
- При прозвонке катод-управляющий электрод:
- то же самое для обоих приборов.
Теперь попробуем проверить тиристор на открытие, его основную работу. Для этого, минусовой щуп приложим к катоду, плюсовой к аноду и им же, не отрывая от анода, кратковременно коснемся управляющего электрода. Тиристор должен открыться (сопротивление упасть почти до 0 Ом) и удерживаться в таком состоянии до разрыва цепи.
Если этого не произошло то:
- перепутаны плюсовой и минусовой щупы тестера;
- неподходящий тестер или разряженная батарея в нем;
- тиристор неисправен.
Перед тем, как выбросить тиристор, проверим мультиметр и правильность своих действий при работе с ним:
- земляной (корпусный или COM) щуп аналогового тестера – является плюсовым, а у цифрового мультиметра наоборот – минусовым.
- диапазон измерения должен быть выставлен на 100-2000 Ом, в зависимости от градации коммутационного блока;
- питание измерительного прибора должно осуществляться свежей, не разряженной батареей с напряжением от 4,5 до 9 вольт;
- на шкале цифрового мультиметра, в секторе измерения сопротивлений, должен присутствовать значок диода.
Цифровые тестеры-игрушки, размером со спичечную коробку и питанием от часового аккумулятора, для проверки полупроводниковых элементов не подходят. Да и полагаться на другие их измерения не стоит. Но и утверждать, что проверить тиристор цифровым мультиметром невозможно (а такое мнение бытует), тоже неверно. Можно, причем очень даже многими. Соблюдение вышеперечисленных правил, позволяет добиться положительных результатов с разными приборами.
Источник: https://hardelectronics.ru/kak-proverit-tiristor-multimetrom.html
Как проверить тиристор мультиметром: особенности тестирования
Довольно большое распространение получили тиристоры. Они применяются при создании различных электрических приборов и мощных силовых установок. Особенности рассматриваемых полупроводников заключаются в том, что проверить их при применении мультиметра достаточно сложно. Для полноценной проверки нужно собрать сложную схему. Важно понимать, как проверить тиристор мультиметром, так как пробой и внутренний обрыв являются распространенными проблемами.
Подобный измерительный прибор получил широкое распространение: применяется для определения различной информации. Предварительная подготовка предусматривает расшифровку спецификации, для чего достаточно рассмотреть маркировку на полупроводниковом изделии.
После определения типа изделия и цоколевки можно приступить к тесту пробоя при помощи мультиметра. В большинстве случаев проводится проверка на пробой, для чего изделие можно оставить на плате, поэтому на этом этапе не требуется паяльник.
Тест на пробой
Проверка тиристора начинается с определения пробоя. Рекомендуется начинать с предварительного тестирования, которое связано с измерением сопротивления между двумя выходами «А» и «К», «К» и «УЭ». Алгоритм действий имеет следующие особенности:
- Для тестирования применяется мультиметр. Его включают в режим «прозвонки», и снимаются показатели между двумя выводами «УЭ» и «К». Если устройство находится в хорошем техническом состоянии, то снятые показатели будут в диапазоне от 40 Ом до 0,55 кОм. Низкое значение может указывать на некоторые проблемы с устройством.
- Далее рекомендуется сменить положение щупов, и процесс повторяется. Снятые показатели должны соответствовать тем, которые были получены в первом случае.
- Следующий шаг заключается в измерении сопротивления между выводами «К» и «А». В этом случае показатель сопротивления должен стремиться к бесконечности. Значение может варьироваться в зависимости от полярности измерительного устройства. Низкий показатель указывает на то, что есть пробой в переходе. Для более точного результата рекомендуют выпаивать устройство, которое тестируется.
Проверка симистора мультиметром подобным образом не позволяет получить точный показатель. Немного усложнив процесс тестирования, можно существенно повысить точность полученных результатов.
Тестирование на пробой не позволяет определить, есть ли внутренний обрыв. Именно поэтому применяемая схема существенно усложняется. Более точный показатель можно достигнуть следующим образом:
- Применяемый мультиметр переводится в режим «прозвонки», после чего к нему подключается тиристор. Щуп, который имеет черный провод, подключается к выводу «К», а красный к «А».
- При применении подобной схемы подключения измерительный прибор указывает бесконечное сопротивление.
- Следующий шаг заключается в подключении «УЭ» с выходом «А». В этом случае происходит частичное падение показателя сопротивления, и после обрыва соединения он снова стремится к значению бесконечности. Тока, проходящего через штыри измерительного прибора, недостаточно для сдерживания тиристора в закрытом состоянии.
Еще больше повысить точность измерений можно при сборке собственного измерительного прибора.
Самодельный пробник
Простейший вариант исполнения представлен сочетанием только лампочки и батарейки, но он неудобен в применении. Более сложная схема позволяет протестировать устройство при подаче постоянного или переменного тока.
Схема самодельного пробника представлена сочетанием следующих элементов:
- Лампочка небольшого размера с показателями 0,3 А и 6,3 В.
- Трансформатор со вторичной обмоткой 6,3 В. Рекомендуется использовать вариант исполнения ТН2.
- Диод выпрямительного типа с обратным напряжением около 10 Вольт и сопротивлением не менее 300 мА. Примером можно назвать вариант исполнения Д226.
- В схему также включается конденсатор, емкость которого составляет 1000 мкФ. Устройство должно быть рассчитано на напряжение 16 В.
- Создается сопротивление с номиналом 47 Ом.
- Предохранитель на 0,5 А. При применении мощного силового трансформатора следует повысить номинал предохранителя.
Самодельная конструкция может иметь компактные размеры. При необходимости все элементы можно собрать в защитном корпусе, за счет чего прибор можно будет использовать постоянно и транспортировать к месту проверки.
Следует учитывать, что самодельная конструкция позволяет точно определить работоспособность устройства. Пошаговая инструкция выглядит следующим образом:
- К собранной самодельной конструкции подключается полупроводниковый элемент.
- Для того чтобы тесты могли проводиться в режиме постоянного тока, устанавливается переключатель.
- Включается пробник при помощи тумблера. При этом ток не должен попасть на лампу.
- К тестируемому устройству подводится напряжение через резистор. В этом случае тиристор переводится в открытие положение, на лампочку подается напряжение, и она начинает светиться.
- Далее отпускается кнопка, но тиристор находится в открытом положении, и индикатор должен гореть.
- Проводится смена положения переключателя, после чего тиристор переходит в закрытое состояние, и лампочка гаснет.
- При переводе измерительного устройства в режим работы с переменным током лампочка начинает гореть не полностью.
Если проверяемое устройство проявляло себя так, как в описании, то тиристор находится в хорошем техническом состоянии и работает правильно. Если лампочка горит постоянно, то это говорит о пробое. Если при нажатии на клавишу она не загорается, то это указывает на внутренний обрыв. Именно поэтому можно обойтись без мультиметра.
Тестирование детали на плате
При необходимости можно проверить тиристор мультиметром без демонтажа детали. Однако при применении самодельной конструкции придется выпаять элемент, так как в качестве индикатора используется лампочка. К особенностям этого процесса относятся следующие моменты:
- Требуется паяльник. Подобный инструмент требуется при проведении различной работы с электроникой. Мощность и диаметр жилы выбираются в соответствии с тем, какие размеры имеет плата.
- При проведении работы следует учитывать, что нельзя оказывать слишком высокую температуру на плату. Это может привести к повреждению дорожек и других элементов.
- Нельзя повредить выходы, так как это может осложнить проводимые тесты.
Необходимость в выпаивании детали определяет то, что многие решают использовать мультиметр для проверки. В большинстве случаев полученных результатов вполне достаточно для оценки состояния тиристора.
Прозвонка динистора
При необходимости можно провести проверку динистора. К ключевым моментам относятся следующие моменты:
Источник: https://tokar.guru/hochu-vse-znat/kak-proverit-tiristor-i-simistor-ku202n-multimetrom.html
Как проверить симистор мультиметром, чтобы не покупать новую деталь?
При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка.
Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.
Для понимания процесса, разберем, что такое тиристор:
Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями.
Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.
Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.
К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.
Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.
Управляются тиристоры внешним воздействием:
- Электрическим током, который подается на управляющий электрод;
- Лучом света, если используется фототиристор.
При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.
Еще одним свойством тиристора, которое используется как основная характеристика – он является односторонним проводником. То есть паразитные токи в обратном направлении протекать не будут. Это упрощает схемы управления радиоэлемента.
Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.
- Диодные прямой проводимости;
- Диодные обратной проводимости;
- Диодные симметричные;
- Триодные прямой проводимости;
- Триодные обратной проводимости;
- Триодные ассиметричные.
Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.
Что такое симистор, и чем он отличается от классических тиристоров?
Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.
Популярное: Как правильно пользоваться мультиметром
Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.
Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.
Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.
Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.
Как прозвонить тиристор мультиметром?
Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки.
Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.
При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.
Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.
- Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
- Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;
- Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».
Почему тиристор не остался в открытом состоянии?
Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания».
Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.
Популярное: Как выбрать мультиметр – недорого и функционально
При помощи мультиметра можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».
Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.
Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.
При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.
Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.
Проверка симистора мультиметром
Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.
Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.
Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод.
Важно! Не забудьте предварительно обесточить проверяемый электроприбор.
В заключении смотрите видео: Как проверить тиристор мультиметром.
Источник: https://obinstrumente.ru/elektronika/multimetr/kak-proverit-simistor-multimetrom.html
Как проверить тиристор ку202
Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.
Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.
Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.
Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.
Как проверить тиристор и симистор мультиметром
Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.
Устройство тиристора
При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа — тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.
По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.
Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:
- Iоткр.max — максимально допустимый ток тиристора.
- Uу — напряжение открывания.
- Uобр.max — наибольшее обратное напряжение элемента.
- Iуд — ток удержания в открытом состоянии ключа.
Простые способы проверки симисторов и тиристоров
На практике встречаются разные полупроводниковые ключи. Их используют для коммутации питания нагрузки или плавной регулировки напряжения и тока. Одним из таких приборов является симистор. Он используется в диммерах освещения, в бытовой технике и промышленных преобразователях. В этой статье мы расскажем, как проверить симистор на исправность мультиметром или на самодельном стенде.
Назначение и устройство
Симисторы – это полупроводниковые полууправляемые ключи, которые открываются импульсом тока через управляющий электрод. Чтобы его закрыть нужно прервать ток в цепи или приложить обратное напряжение.
По принципу действия они подобны аналогичны тиристорам. Отличаются лишь тем, что симистор представляет собой два тиристора, соединённых встречно-параллельно. Обозначение на схеме вы видите ниже.
По определению они часто используются в релейном режиме – простыми словами работают на «включение» и «отключение», кстати такие реле называются полупроводниковыми.
Отличия от электромеханического следующие — быстродействие на порядки выше, нет контактов, в связи с чем большая долговечность. Главное условие долгой эксплуатации – обеспечить номинальный тепловой режим и нагрузку.
Способы проверки
Для диагностики неисправностей электронной схемы нужно последовательно проверять её элементы. В первую очередь уделяют внимание силовым цепям, а именно всем полупроводниковым ключам. Для их проверки можно воспользоваться одним из способов:
- мультиметром (омметром или прозвонкой);
- батарейкой со светодиодом или лампочкой;
- на стенде.
Для диагностики следует выпаять элемент, потому что при проверке любых компонентов электронных схем на исправность, не выпаивая с платы, есть вероятность неправильных измерений. Например, вы обнаружите короткое замыкание не проверяемого элемента, а соединённых с ним в цепи параллельно.
В любом случае вы можете проверить симистор и тиристор на исправность не выпаивая, а если найдете возможную неисправность – выпаять и провести измерения повторно.
С помощью мультиметра
Для проверки симистора на пробой с помощью тестера нужно перевести прибор в режим звуковой прозвонки.
В большинстве случаев прозвонка совмещена с проверкой диодов.
Типовое расположение выводов или как еще это называют — цоколевка, изображена на рисунке ниже. А1 и А2 (иногда T1, T2) – это силовые выводы, через них протекает больший ток в нагрузку, а G (gate) – это управляющий электрод. Цоколевка может отличаться, поэтому проверяйте её в даташите вашего симистора
В режиме проверки диодов на экран выводится падение напряжения между щупами в миливольтах. При этом на щупах тестера есть напряжение, которое обеспечивает протекание тока в измеряемой цепи (как и в режиме Омметра).
Для проверки элемента на пробой коснитесь щупами выводов А1 и А2, если элемент исправен, то на экране появится «1» или 0L, а если пробит – значение близкое к 0. Если между выводами А1 и А2 нет КЗ – проверьте управляющий электрод. Для этого нужно прикоснуться щупами к одному из силовых выводов и управляющему электроду, на экране должно быть низкое значение 80-200.
Чтобы проверить, открывается симистор или нет, можно кратковременно замкнуть его управляющий электрод с одним из выводов мультиметра, так вы подадите на него управляющее напряжение (ток). Алгоритм проверки на примере тиристора вы видите ниже.
После того как вы уберете напряжение с управляющего электрода – симистор может обратно закрыться. Это связано с тем, что через него должен протекать какой-то минимальный ток, для удержания проводящем состоянии. Такое же явление может наблюдаться и в следующих способах проверки.
Тоже самое можно сделать омметром: если элемент пробит – сопротивление будет низким, а если не пробит – будет стремиться к бесконечности.
Такой способ проверки подробно рассмотрен в следующем видео, но учтите, что автор допустил ошибку в формулировке, назвав падение напряжения сопротивлением. В остальном оно очень наглядно.
С помощью батарейки с лампочкой или светодиодом
Если у вас нет мультиметра, вы можете легко проверить симистор простой схемой, для этого вам понадобится лампочка или светодиод и батарейка, схему вы видите ниже.
Если вместо светодиода использовать малогабаритную лампу накаливания от карманного фонаря, то резистор R1 нужно убрать из цепи, если использовать батарейку с малым напряжением — убрать резистор R2 или уменьшить его сопротивление. Использовать можно 3 включенных последовательно пальчиковых батарейки (3х1.5=4.5В) или вовсе — крону (9В). Если вы соберете переносной тестер по этой схеме, можете установить кнопку без фиксации с нормально-разомкнутыми контактами, как это показано на схеме.
Если вы не будете собирать такой прибор, то просто кратковременно касайтесь управляющего электрода проводом, как было показано в способе с мультиметром.
Другие способы проверки
Пожалуй, самый удобный способ тестирования электронных компонентов — это универсальный тестер радиодеталей, его чаще называют транзистор-тестером. Он «умеет» мерять ёмкость, сопротивление, индуктивность, определять цоколевку и тип незнакомых компонентов, при этом работает от кроны.
Стоит такое устройство порядка 4-10 долларов на алиэкспресс в зависимости от комплекта поставки (с корпусом или без) и модели (даже самая дешевая – вполне функциональный инструмент домашнего мастера).
Для проверки исправности элемента вам нужно просто вставить его в клеммную колодку и нажать на единственную кнопку. Если компонент определился правильно – значит он исправен. Если вы видите, что на дисплее появилось изображение заведомо другой детали (резистор вместо тиристора, например) – значит он сгоревший
В сети есть масса схем небольших стендов или приборов для проверки симисторов. Их принцип работы ничем не отличается от описанных выше методов. Рассмотрим некоторые из них.
Для проверки симисторов на блоке управления в стиральной машины специалисты советуют использовать схему с лампочкой, не выпаивая деталь с платы.
Кстати, с заменой ключей в стиральной машине-автомат ремонтники сталкиваются довольно часто. В этом случае они отвечают за управление двигателем и регулировку оборотов, как и в пылесосе, а в электрочайнике – в цепи управления ТЭНом.
Еще одну схему проверочного стенда публиковали в одном из выпусков журнала «Радио» и подобную её с зарубежного форума. При проверке на стенде по такой схеме – вы можете проверить в обоих ли направлениях открывается симистор, для этого есть переключатели SA1, SA2 на первой схеме и S1 на второй.
Рекомендуем также посмотреть:
Мы рассмотрели основные способы для диагностики схем с тиристорами и симисторами. Они подходят для всех случаев, неважно где он был установлен в пылесосе, диммере, стиралке или другом приборе. Учтите, что при проверке ключ может самопроизвольно закрываться после снятия управляющего импульса – это связано с особенностью их внутреннего устройства и номинальных рабочих параметров.
Материалы по теме:
Источник: https://samelectrik.ru/proverka-simistorov.html