Как работает биполярный транзистор

Как работает биполярный транзистор

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой.

Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа.

Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

 Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры.

Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной.

На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

 Рисунок 2.

Принцип действия биполярного транзистора

Любой p-n переход транзистора работает аналогично диоду. При приложении к его полюсам разности потенциалов происходит его «смещение». Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается.

Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.

Режимы работы

Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную.

 Рисунок 3.

Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.

Инверсная схема, в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.

При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки, активный режим и режим насыщения.

Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.

Рисунок 4.

Режим отсечки

Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток.

Для кремниевых транзисторов величина такого порога равна примерно 0,6 В.

Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).

Таким образом, для режима отсечки необходимым условием являются тождества:

UБЭ

Источник: https://volt-info.ru/kak-rabotaet-bipolyarnyy-tranzistor

Транзистор

Транзистор По-моему самая сложная и очень любопытная тема во всей электронике. Ничего нигде  про них толком не написано.  Ну что же, дорогие читатели, попробуем пролить свет истины на самое величайшее изобретение XX века, с которого началась Великая Эра цифровой электрон ики.

Что такое транзистор?

Транзистор  (от англ. transfer — переносить и resistor — сопротивление) радиоэлектронный компонент, способный усиливать слабые электрические сигналы. Все, пока на этом хватит Дальше интереснее.

Из чего состоит транзистор?

Как вы знаете, все мы из чего-то состоим. Люди состоят из мяса, воды и костей. А некоторые состоят вообще из другого материала, поэтому не тонут в воде ))). Так и наш транзистор – он тоже из чего-то состоит. Но из чего? 

Как вы все знаете, материалы делятся на  проводники и диэле ктрики, а между ними находятся полупроводники. Еще раз напомню вам, что проводники прекраснопроводят электрический ток, диэлектрики не проводят электрический ток, а вот полупроводники проводят электрический ток, но очень плохо.

“И зачем нам нужен этот полупроводниковый материал?” – спросите вы. Сам по себе материал полупроводник с практической точки зрения не представляет никакого интереса, но вот когда в него добавить малюсенькую долю некоторых элементов из таблицы Менделеева, по-научному “пролегировать”, то мы получим полупроводниковый материал, но с очень странными свойствами.

Самым знаменитым полупроводником является кремний

и германий

Как вы видите, они  мало чем отличаются.

Кремний составляет почти 30% (!) земной коры, германий 1.5х10-4% . Может быть поэтому полупроводниковые радиоэлементы очень дешевые, особенно из кремния?

P и N полупроводники

Когда в кремний добавляют мышьяк, получается так, что в кремнии стает очень много свободных электронов. А материалы, в которых очень много свободных электронов, мы уже называем проводниками.

Следовательно, кремний, после легирования (смешивания) с мышьяком превращается из полупроводника в очень хороший проводник.

Электроны обладают отрицательным зарядом, и их в полупроводнике как песчинок в пустыне, значит такой полупроводник будем называть полупроводникомN-типа. N – от англ. Negative – отрицательный. 

А вот если пролегировать кремний с индием, то мы получим очень забавную вещь В первом случае у нас появились лишние электроны, которые превратили полупроводник в проводник. Но здесь ситуация абсолютно противоположная. Представьте себе, как это бы странно не звучало, электрон с положительным зарядом. Да да, именно так. Но самое-самое интересное знаете что? Его не существует! Он как бы есть, но его как бы нет))). 

Это все равно, что магнитное, электрическое или гравитационное поле. Оно существует, но мы его не видим.

Такой “электрон” мы будем называть дыркой. Так как дырка обладает положительным зарядом,  то полупроводниковый материал в котором очень-очень много этих дырок, мы будем называть полупроводникомP-типа.P

Источник: https://www.ruselectronic.com/bipolyarniy-tranzistor/

Биполярный транзистор

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье

Источник: http://popayaem.ru/bipolyarnyj-tranzistor-princip-raboty-dlya-chajnikov.html

Как работает транзистор: устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы:

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Полевой

Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.

Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности. Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.

Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:

  • МДП (к ним можно отнести и МОП — металл-оксид-проводник)
  • JGBT

МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+», а «n» подключается к «-«) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-«, а к «n» — «+». Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

ЭТО ИНТЕРЕСНО:  Как нарисовать электрическую схему

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

Источник: https://220v.guru/elementy-elektriki/tranzistory/prostym-yazykom-kak-rabotaet-tranzistor.html

Как работает транзистор: принцип и устройство

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры.

Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры.

Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Транзисторы

Устройство транзисторов

Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.

  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:

  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.

Принцип работы транзистора

Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.

Простое изложение принципа работы биполярного транзистора:

  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.

Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.radioelementy.ru/articles/princip-raboty-tranzistora/

Как работает транзистор: простым языком для чайников, схемы

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторыРис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Источник: https://www.asutpp.ru/kak-rabotaet-tranzistor.html

Биполярные транзисторы, определение, вольт — амперные характеристики, принцип работы и классификация полупроводниковых приборов

Биполярный транзистор — это полупроводниковый прибор с двумя взаимодействующими переходами и тремя или более выводами, усилительные свойства которого обусловлены явлениями инжекции и экстракции неосновных носителей заряда. Особенность транзистора состоит в том, что между его электронно-дырочными переходами существует взаимодействие — ток одного из переходов может управлять током другого.

Такое управление возможно, потому, что носители заряда, инжектированные через один из электронно-дырочных переходов, могут дойти до другого перехода, находящегося под обратным напряжением, и изменить его ток.

Основанием биполярного транзистора служит пластина полупроводника, называемая базой. С двух сторон в нее вплавлена примесь, создающая области с проводимостью, отличной от проводимости базы.

Таким образом получают транзистор типа n-p-n, когда крайние области являются полупроводниками с электронной проводимостью, а средняя — полупроводником с дырочной проводимостью и транзистор типа p-n-p, когда крайние области являются полупроводниками с дырочной проводимостью, а средняя — полупроводником с электронной проводимостью. Примыкающие к базе области чаще всего делают неодинаковыми.

Одну из областей изготавливают так, чтобы из нее наиболее эффективно происходила инжекция носителей в базу, а другую — так, чтобы соответствующий электронно-дырочный переход наилучшим образом осуществлял экстракцию инжектированных носителей из базы.

Область транзистора, основным назначением которой является инжекция носителей в базу, называют эмиттером, соответствующий электронно-дырочный переход — эмиттерным. Область транзистора, основным назначением которой является экстракция носителей из базы, называют коллектором, а соответствующий электронно-дырочный переход — коллекторным.

При использовании транзистора в схемах на его переходы подают внешнее напряжение см. рис. 1 — структура транзистора и схема подачи напряжений на его электроды.

В зависимости от полярности эти напряжений каждый из переходов может быть включен либо в прямом, либо в обратном направлении. Соответственно различают три режима работы транзистора: режим отсечки, когда оба перехода заперты; режим насыщения, когда оба перехода отперты; активный режим, когда эмиттерный переход частично отперт, а коллекторный-заперт. Если же эмиттерный переход смещен в обратном направлении а коллекторный — в прямом, то транзистор работает в обращенное (инверсном) включении.

В основном транзистор используют в активном режиме, где для смещения эмиттерного перехода в прямом направлении на базу транзистора типа p-n-p подают отрицательное напряжение относительна эмиттера, а коллектор смещают в обратном направлении подачей отрицательного напряжения относительно эмиттера. Напряжение на коллекторе обычно в несколько раз больше напряжения на эмиттере.

Классификация биполярных транзисторов

Транзисторы классифицируются по исходному материалу, рассеиваемой мощности, диапазону рабочих частот, принципу действия. В зависимости от исходного материала их делят на две группы: германиевые и кремниевые. Германиевые транзисторы работают в интервале температур от -60 до 885°С, кремниевые — от -60 до +120150°С.

По диапазону рабочих частот их делят на транзисторы низких, средних и высоких частот, по мощности — на классы транзисторов малой, средней и большой мощности. Транзисторы малой мощности делят на шесть групп: усилители низких и высоких частот, малошумящие усилители, переключатели насыщенные, ненасыщенные и малотоковые (прерыватели); транзисторы большой мощности — на три группы: усилители, генераторы, переключатели.

ЭТО ИНТЕРЕСНО:  Как проверить генератор мультиметром

По технологическому признаку различают транзисторы сплавные, сплавно-диффузионные, диффузионно-сплавные, планарные, эпитаксиальные, конверсионные, эпитаксиально-планарные.

Параметры постоянного тока биполярных транзисторов

Рис. 2. Схемы измерения: а — обратного тока коллектора; б — обратного тока эмиттера; в — обратного тока коллектор — эмиттер.

Параметры постоянного тока характеризуют неуправляемые токи транзистора, связанные с обратными токами перехода. Обратный ток коллектора IКБО — ток через коллекторный переход при заданном обратном напряжении коллектор — база и разомкнутом выводе эмиттера (рис. 2,а).

Обратный ток эмиттера IЭБО — ток через эмиттерный переход при заданном обратном напряжении эмиттер — база и разомкнутом выводе коллектора (рис. 2,б). Обратный ток коллектор — эмиттер IКЭ (При разомкнутом выводе базы IКЭО; при коротко замкнутых выводах эмиттера и базы КЭК; при заданном сопротивлении в цепи база — КЭR; при заданном обратном напряжении эмиттер — база IКЭХ.) — ток в цепи коллектор — эмиттер при заданном обратном напряжении коллектор — эмиттер (рис. 2,в).

Обратные токи коллектора и эмиттера биполярного транзистора зависят от температуры переходов:

IКБО=I(25)КБОek1(Tп-25); IЭБО=I(25)ЭБОek1(Tп-25)

где I(25)КБО, I(25)ЭБО — обратные токи коллектора и эмиттера при 25 °С; k1 — коэффициент, равный 0,060,09 1/°С для германия и 0,080,12 1/°С для кремния; Тп — температура перехода, °С.

Эти зависимости могут быть нарушены вследствие протекания тока поверхностной утечки, особенно при низких температурах, когда объемные токи IКБО и IЭБО малы, и больших напряжениях, когда поверхностные токи сравнительно велики.

Обратный ток коллектора является основным дестабилизирующим фактором в каскадах на транзисторах.

Рис. 3. Схема четырехполюсник эквивалентного транзистору.

Малосигнальные параметры характеризуют работу транзистора при воздействии малого сигнала, т. е. сигнала, возрастание амплитуды которого в 1,5 раза приводит к незначительному изменению параметра (обычно не более чем на 10 %).

При воздействии малого сигнала транзистор рассматривают как линейный активный несимметричный четырехполюсник (рис. 3), у которого один из зажимов всегда является общим для входа и выхода.

В зависимости от того, какой из электродов транзистора подключен к общему зажиму, различают включения с общей базой, общим эмиттером и общим коллектором. Варианты схем включения транзистора приведены на рис. 4.

В соответствии с теорией четырехполюсников входные и выходные напряжения и токи (U1 I1 и U2, I2) однозначно связаны между собой системой уравнений, содержащей четыре параметра четырехполюсника.

Рис. 4. Схемы включения биполярного транзистора.

Система h-параметров получила широкое распространение, так как при измерении этих параметров требуется воспроизведение холостого хода на входе (I1=0) или короткого замыкания на выходе (U2= 0), что легко выполнять. В этой системе параметров уравнения четырехполюсника записываются в виде

U1=h11I1+h12U2; I2=h21I1+h22U2.

Все h-параметры имеют определенный физический смысл: h11=U1/I1 — входное сопротивление транзистора при короткозамкнутом выходе (U2=0); h12=U1/U2 — коэффициент обратной связи по напряжению при разомкнутом по переменному току входе (I1=0); h21=I2/I1 — коэффициент передачи тока при короткозамкнутом выходе (U2=0); h22=I2/U2 — выходная проводимость при разомкнутом по переменному току входе (I1=0).

Обычно h-параметры измеряют при включениях транзисторов ОБ или ОЭ. Связь между h-параметрами для разных схем включения определяется формулами

h11б≈h11э/(1+h21э); h11к≈h11э

h12б≈h11эh22э/(1+h21э); h12к≈1/(1+h12э)

h21б≈-h21э/(1+h21э); h21к≈1/-(1+h21э)

h22б≈h22э/(1+h21э); h22к≈h22э

Для наиболее часто используемых параметров (коэффициент передачи тока при включении с ОБ и ОЭ) введены дополнительные обозначения: h12б= -α; h21э=β. Зависимость между α и β определяется выражением β=α/(1-α). Так как малосигнальные параметры измеряют на низкой частоте (в основном 270 и 1000 Гц), их можно считать действительными величинами.

Система y-параметров используется преимущественно на высоких частотах. По способу определения y-параметры являются параметрами короткого замыкания по переменному току на входе или выходе, что вытекает из уравнений I1=y11U1+y12U2; I2=y21U1+y22U2

Все y-параметры имеют определенный физический смысл: y11=I1/U1 — входная проводимость при короткозамкнутом выходе (U2 = 0); y12=I1/U2 — обратная взаимная проводимость при короткозамкнутом входе (U1 = 0); y21=I2/U1 — прямая взаимная проводимость (крутизна) при короткозамкнутом выходе; y22=I2/U2 — выходная проводимость при короткозамкнутом входе.

Связь между h и y-параметрами выражается формулами:

h11=1/y11; y11=1/h11;

h12=-y12/y11; y12=-h12/h11;

h21=y21/y11; y21=h21/h11;

h22=y22-y12y21/y11; y22=h22-h12h21/h11

Обычно в справочниках приводятся h-параметры при включении транзистора с ОБ. По этим параметрам можно определить y-параметры при включении с ОЭ:

y11э=(1-h21б)/h11б; y12э=h22б-h12б(1-h21б)/h11б;

y21э=S0=h21б/h11б; y22э=h22б+h12бh21б/h11б.

Если вместо h21б в справочнике приведено h21э, то следует воспользоваться формулой h21б=h21э/(1+h21э).

Малосигнальные параметры транзисторов зависят от схемы его включения, режима работы, температуры и частоты. Так, параметр h21э прямо пропорционален, a h11б — обратно пропорционален току коллектора. Это необходимо учитывать, если режим работы транзистора отличается от режима измерения параметров.

Высокочастотные параметры биполярных транзисторов

Высокочастотные параметры характеризуют транзисторы на высоких частотах. Граничная частота по определенному параметру — это частота, выше которой транзистор не может быть использован как усилительный элемент. Граничная частота коэффициента передачи тока при включении с общим эмиттером fгр — частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером экстраполируется к единице.

Предельная частота по определенному параметру — частота, при которой этот параметр уменьшается на определенную величину (обычно 3 дБ) по сравнению с первоначальным (низкочастотным).

Предельная частота передачи тока при включении с ОБ fh21б — частота, при которой модуль коэффициента передачи тока уменьшается на 3 дБ по сравнению со значением на низкой частоте.

Предельная частота по крутизне прямой передачи fy21э — частота, при которой модуль крутизны прямой передачи в схеме с ОЭ уменьшается на 3 дБ по сравнению с его значением на низкой частоте. Максимальная частота генерации fmax — наибольшая частота, при которой транзистор способен генерировать в схеме автогенератора.

Емкость коллекторного перехода Ск — емкость между выводами базы и коллектора при заданном обратном напряжении эмиттер — база и разомкнутой эмиттерной цепи. Емкость Ск в первом приближении является функцией напряжения на коллекторе U`кэ:

Ск≈√U`кэ/Uкэ Ск.справ

где, Ск.справ — емкость коллекторного перехода, приведенная в справочнике для определенного Uкэ. Сопротивление базы rб, — сопротивление между выводами базы и переходом база — эмиттер. На достаточно высокой частоте rб=|h11э|.

Постоянная времени цепи обратной связи на высокой частоте τк произведение сопротивления базы на емкость коллекторного перехода (τк=rбСк). Эта величина используется при расчетах y-параметров на высоких частотах. В справочных данных приводятся Ск, rб, измеренные при определенном режиме.

Высокочастотные параметры транзистора связаны между собой определенными зависимостями, например:

fmax≈180√fгрτк;

fh21б≈h21бfгр;

fy21э=fгрh11б/rб`; fy21э=fгр/(1+h21э)

где fmax — максимальная частота генерации, МГц; fгр — граничная частота коэффициента передачи тока в схеме с ОЭ, МГц; τк — постоянная времени, fh21б — предельная частота коэффициента передачи тока в схеме с ОБ, МГц; fy21э — предельная частота по крутизне прямой передачи, МГц, fh21э — предельная частота коэффициента передачи тока в схеме с ОЭ, МГц.

Активные составляющие входной и выходной проводимостей транзистора на высокой частоте f < 500 МГц в схеме с ОЭ можно определить по формулам:

Источник: http://www.xn--b1agveejs.su/radiotehnika/202-bipolyarnye-tranzistory.html

Что такое транзистор: его виды, назначение и принципы работы — Станок

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье ????

 Принцип работы биполярного транзистора

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
  • Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
  • -коэффициент усиления по току.
  • Его также обозначают как 
  • Исходы из выше сказанного транзистор может работать в четырех режимах:
  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто.

К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может.

Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

  1. В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
  2. Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
  3. Чтож, теперь давайте попробуем рассчитать значение базового резистора.
  4. На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти ????

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

ЭТО ИНТЕРЕСНО:  Как сделать контроллер заряда аккумулятора своими руками

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности.

Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора.

Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей.

Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине.

Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в х, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит получит подарок.

  • Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
  • Желаю вам удачи, успехов  и солнечного настроения!
  • С н/п Владимир Васильев

Источник: https://regionvtormet.ru/beton/chto-takoe-tranzistor-ego-vidy-naznachenie-i-printsipy-raboty.html

Принцип работы биполярного транзистора кратко – Как работает биполярный транзистор | Volt-info

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Введение в биполярные транзисторы (BJT)

Изобретение биполярного транзистора (БТ, BJT) в 1948 году привело к революции в электронике.

Технические трюки, ранее требующие относительно больших, механически хрупких, потребляющих много энергии вакуумных ламп, неожиданно достигались с помощью крошечных, механически прочных, потребляющих мало энергии частиц кристаллического кремния.

Эта революция позволила разработать и изготовить легкие, недорогие электронные устройства, которые мы сейчас считаем само собой разумеющимися. Понимание того, как работают транзисторы, имеет первостепенное значение для всех, кто интересуется электроникой.

Я собираюсь максимально сосредоточиться на практических назначении и применении биполярных транзисторов, а не исследовать квантовый мир теории полупроводников. Обсуждение электронов и дырок, по-моему, лучше оставить для другой главы. Здесь я хочу выяснить, как использовать эти компоненты, а не анализировать их внутренние детали.

Я не хочу умалять важность понимания физики полупроводников, но иногда интенсивное фокусирование на физике твердотельных приборов умаляет понимание функций этих приборов на уровне компонентов.

Однако, используя этот подход, я полагаю, что читатель обладает определенными минимальными знаниями о полупроводниках: о разнице между легированными «P» и «N» полупроводниками, о функциональных характеристиках PN (диодного) перехода, о значениях терминов «обратное смещение» и «прямое смещение». Если эти понятия вам не совсем ясны, то прежде, чем приступить к этой главе, лучше обратиться к предыдущим главам этой книги.

Биполярный транзистор состоит из трехслойного «сэндвича» из легированных полупроводниковых материалов, либо P-N-P на рисунке ниже (b), либо N-P-N на рисунке ниже (d). Каждый слой, образующий транзистор, имеет определенное название, и каждый слой снабжен проводным контактом для подключения к внешней схеме. Условные графические обозначения показаны на рисунке ниже (a) и (c).

Биполярный транзистор (БТ, BJT): PNP (a) условное обозначение и (b) физический макет, NPN (c) условное обозначение и (d) физический макет

Функциональной разницей между PNP транзистором и NPN транзистором является правильность (полярность) смещения перехода во время работы. Для любого заданного режима работы направления токов и полярности напряжений для каждого типа транзисторов находятся в точности противоположно друг другу.

Биполярные транзисторы работают как регуляторы тока, управляемые током. Другими словами, транзисторы ограничивают величину проходящего тока в соответствии с меньшим управляющим током. Основной поток электронов, который управляется, протекает от коллектора к эмиттеру или от эмиттера к коллектору в зависимости от типа транзистора (PNP и NPN, соответственно).

Маленький поток электронов, который управляет основным током, протекает от базы к эмиттеру или от эмиттера к базе опять же в зависимости от типа транзистора (PNP и NPN, соответственно). В соответствии со стандартами обозначений полупроводниковых приборов стрелка всегда указывает в направлении, противоположном направлению потока электронов (рисунок ниже).

Маленький поток электронов база-эмиттер управляет большим потоком электронов коллектор-эмиттер, протекающим в направлении, противоположном направлению стрелки эмиттера (направления электрического тока, которое принято считать направлением от «+» к «–», совпадает с направлением стрелки эмиттера)

Биполярные транзисторы называются биполярными потому, что основной поток электронов через них происходи в двух типах полупроводникового материала: P и N, поскольку основной ток идет от эмиттера к коллектору (или наоборот). Другими словами, два типа носителей заряда – электроны и дырки – входят в состав этого основного тока через транзистор.

Как вы можете видеть, управляющий ток и управляемый ток всегда соединяются вместе в выводе эмиттера, и их электроны всегда текут против направления стрелки транзистора. Это первое и главное правило в использовании транзисторов: все токи должны протекать в правильном направлении, чтобы устройство работало как регулятор тока.

Маленький управляющий ток обычно называют просто током базы, потому что он является единственным током, который проходит через вывод базы транзистора. И наоборот, большой управляемый ток называется током коллектора, потому что он является единственным током, который проходит через вывод коллектора.

Ток эмиттера представляет собой сумму тока базы и тока коллектора в соответствии с законом токов Кирхгофа.

Отсутствие тока через базу транзистора выключает его подобно разомкнутому ключу и предотвращает протекание тока через коллектор.

Ток базы превращает транзистор в что-то похожее на замкнутый ключ и дает пропорциональному значению тока пройти через коллектор. Ток коллектора в основном ограничивается током базы, независимо от величины напряжения, доступного для его раскачки.

В следующем разделе будет более подробно рассмотрено использование биполярных транзисторов в качестве переключающих элементов.

Подведем итоги:

  • Биполярные транзисторы названы так потому, что контролируемый ток должен проходит через два типа полупроводникового материала: P и N. Ток в разных частях транзистора состоит из обоих потоков: и электронов, и дырок.
  • Биполярные транзисторы состоят либо из P-N-P, либо из N-P-N полупроводниковой «сэндвичной» структуры.
  • Три вывода биполярного транзистора называются эмиттер, база и коллектор.
  • Транзисторы функционируют как регуляторы тока, позволяя небольшому току управлять большим током. Величина тока, доступного между коллектором и эмиттером, в основном определяется величиной тока, протекающего между базой и эмиттером.
  • Для правильного функционирования транзистора в качестве регулятора тока, управляющий (базовый) ток и управляемый (коллекторный) ток должны идти в правильных направлениях: складываться в эмиттере, поток электронов должен быть направлен противоположно направлению стрелки эмиттера, и, следовательно, направление электрического тока (протекающего от «+» к «–») должно совпадать с направлением стрелки эмиттера.

Оригинал статьи:

  • Introduction to Bipolar Junction Transistors (BJT)

Теги

PN переходБиполярный транзисторОбучениеЭлектроника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Источник: https://radioprog.ru/post/215

Как работает транзистор?

Подробности Категория: Начинающим 29.11.2013 14:41 Admin 34894

Транзисторы – это радиоэлектронные компоненты из полупроводникового материала, которые предназначены для преобразований, усилений и генерации электрических колебаний.

Но всё же, как работает транзистор? Говоря простым языком с помощью транзистора можно управлять током. Транзисторами называются любые устройства, которое способно имитировать главные его свойства, а именно – изменять сигнал между двумя разными типами состояний при изменениях сигнала на управляющем электроде.

Транзисторы бывают двух типов:

Материалами изготовления служат германий и кремний, но при добавлении примесей способность проводить ток возрастает. Нужно рассмотреть оба типа транзисторов, для того чтобы понять как работает транзистор? На рисунке представлены три области p-n-p или n-p-n из которых состоит любой биполярный транзистор.

Структура транзистора

В биполярных транзисторах носители зарядов двигаются от эмиттера к коллектору. База отделяется от коллектора и эмиттера p-n переходами. Протекает ток через транзистор лишь при инжектировании носителей заряда через p-n переход из эмиттера в базу. Находясь в базе, они начинают становиться неосновными носителями заряда и достаточно легко проникают через p-n переходы. Управление током между коллектором и эмиттером осуществляется за счет изменения напряжения между базой и эмиттером.

Как работает транзистор в цепи электрического тока? 

Основной принцип работы транзистора заключается в управлении электрическим током с помощью незначительного тока являющегося своего рода управляющим током. В полевых транзисторах носители зарядов движутся к коллектору от эмиттера через базу. Существует канал, в легированном проводнике находясь в промежутке между нелегированной подложкой и затвором. В подложке отсутствует заряд, и она не проводит ток. Перед затвором есть область обеднения с отсутствием носителей заряда.

Таким образом, вся ширина канала ограничивается пространством между областью обеднения и пространством между подложкой. Напряжение, прикладываемое к затвору, уменьшает или увеличивает область обеднения, и тем самым ширину самого канала, контролируя при этом ток.

Многие начинающие радиолюбители не так представляют себе принцип работы транзистора. Они думают, что транзистор способен усилить мощность источника питания, но это далеко не так. Важно понимать, что транзистор управляет большим током коллектора с помощью маленького тока протекающего через базу. Здесь речь идет скорее всего об управлении чем об усилении. 

Схема подключение транзистора

Схема состоит из двух электрических цепей : 

  • цепь эмиттера;
  • цепь коллектора;

В цепи эмиттера протекает незначительный ток, который управляет током коллектора. На выходе мы получаем «копию» тока эммитера но усиленного в несколько раз.

Интересное видео о принципе действия транзистора

Источник: https://radio-magic.ru/beginners/5-tranzistor

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]