Как работает транзистор в схеме

Транзистор

как работает транзистор в схеме

Транзистор По-моему самая сложная и очень любопытная тема во всей электронике. Ничего нигде  про них толком не написано.  Ну что же, дорогие читатели, попробуем пролить свет истины на самое величайшее изобретение XX века, с которого началась Великая Эра цифровой электрон ики.

Что такое транзистор?

Транзистор  (от англ. transfer — переносить и resistor — сопротивление) радиоэлектронный компонент, способный усиливать слабые электрические сигналы. Все, пока на этом хватит Дальше интереснее.

Из чего состоит транзистор?

Как вы знаете, все мы из чего-то состоим. Люди состоят из мяса, воды и костей. А некоторые состоят вообще из другого материала, поэтому не тонут в воде ))). Так и наш транзистор – он тоже из чего-то состоит. Но из чего? 

Как вы все знаете, материалы делятся на  проводники и диэле ктрики, а между ними находятся полупроводники. Еще раз напомню вам, что проводники прекраснопроводят электрический ток, диэлектрики не проводят электрический ток, а вот полупроводники проводят электрический ток, но очень плохо.

“И зачем нам нужен этот полупроводниковый материал?” – спросите вы. Сам по себе материал полупроводник с практической точки зрения не представляет никакого интереса, но вот когда в него добавить малюсенькую долю некоторых элементов из таблицы Менделеева, по-научному “пролегировать”, то мы получим полупроводниковый материал, но с очень странными свойствами.

Самым знаменитым полупроводником является кремний

и германий

Как вы видите, они  мало чем отличаются.

Кремний составляет почти 30% (!) земной коры, германий 1.5х10-4% . Может быть поэтому полупроводниковые радиоэлементы очень дешевые, особенно из кремния?

P и N полупроводники

Когда в кремний добавляют мышьяк, получается так, что в кремнии стает очень много свободных электронов. А материалы, в которых очень много свободных электронов, мы уже называем проводниками.

Следовательно, кремний, после легирования (смешивания) с мышьяком превращается из полупроводника в очень хороший проводник.

Электроны обладают отрицательным зарядом, и их в полупроводнике как песчинок в пустыне, значит такой полупроводник будем называть полупроводникомN-типа. N – от англ. Negative – отрицательный. 

А вот если пролегировать кремний с индием, то мы получим очень забавную вещь В первом случае у нас появились лишние электроны, которые превратили полупроводник в проводник. Но здесь ситуация абсолютно противоположная. Представьте себе, как это бы странно не звучало, электрон с положительным зарядом. Да да, именно так. Но самое-самое интересное знаете что? Его не существует! Он как бы есть, но его как бы нет))). 

Это все равно, что магнитное, электрическое или гравитационное поле. Оно существует, но мы его не видим.

Такой “электрон” мы будем называть дыркой. Так как дырка обладает положительным зарядом,  то полупроводниковый материал в котором очень-очень много этих дырок, мы будем называть полупроводникомP-типа.P

Источник: https://www.ruselectronic.com/bipolyarniy-tranzistor/

Транзистор. Принцип работы

как работает транзистор в схеме

Транзистор — полупроводниковый электронный прибор, относящийся к категории активных электронных компонентов.

NPN транзистор иPNP транзистор на схемах

В зависимости от расположения полупроводниковых слоев, транзисторы подразделяют на два основных типа — NPN-транзисторы и PNP-транзисторы.

Электроды обычного биполярного транзистора называются базой, эмиттером и коллектором. Коллектор и эмиттер составляют основную цепь электрического тока в транзисторе, а база предназначается для управления величиной тока в этой цепи.

На условном обозначении транзистора стрелка эмиттерного вывода показывает направление тока.

Как работает транзистор

Базовая цепь транзистора управляет током, протекающим в цепи коллектор-эмиттер. Изменяя в небольших пределах малое напряжение, поданное на базу, можно в достаточно широких пределах изменять ток в цепи коллектор-эмиттер.

Принцип работы биполярного транзистора со структурой NPN.Ток, поданный на базу, открывает транзистор и обеспечивает протекание тока в цепи коллектор-эмиттер. С помощью малого тока, поданного на базу, можно управлять током большой мощности, идущим от коллектора к эмиттеру.
Транзисторы различной мощности Цоколевка транзисторов 2N3904 и 2N3906Транзистор 2N3904 имеет структуру NPN, а 2N3906 — PNP. Эти два транзистора являются наиболее популярными при построении BEAM-роботов

Схема, демонстрирующая принцип работы транзистора

Соберем схему, которая наглядно демонстрирует работу транзистора
и принцип его включения. Нам понадобится транзистор с NPN структурой, например 2N3094, переменный или подстроечный резистор, резистор с постоянным сопротивлением и лампочка для карманного фонарика. Номиналы электронных приборов указаны на схеме.

Изменяя сопротивление переменного резистора R1, будем наблюдать как изменяется яркость свечения лампочки H1.

Постоянный резистор R2 в этой схеме играет роль ограничителя, предохраняя базу транзистора от слишком большого тока, который может быть подан на нее, в тот момент, когда сопротивление переменного резистора будет стремиться к нулю. Ограничительный резистор предотвращает выход транзистора из строя.

Теперь попробуем заменить лампу маломощным электродвигателем. Вращая ось переменного резистора, мы может наблюдать плавное изменение скорости вращения электродвигателя M1.

Транзисторы применяются в схемах роботов для усиления сигналов от датчиков, для управления моторами, на транзисторах можно собрать логические элементы, которые реализуют операции логического отрицания, логического умножения и логического сложения. Транзисторы являются основой практически всех современных микросхем.

Транзисторы подразделяют на две большие подгруппы — биполярные и полевые. Они обычно используются для усиления, генерации и преобразования электрических сигналов.В 1956 г. за изобретение биполярного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Биполярный транзистор — это полупроводниковый прибор с двумя p-n -переходами, имеющий три вывода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов), а управление протекающим через него током осуществляется с помощью управляющего тока.

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р-n-р или n-р-n) и соответственно два p-n -перехода. Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу.

Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод — коллектором.

Дадим схематическое, упрощенное изображение структуры транзистора типа n-р-n (рис. 1, а) и два допустимых варианта условного графического обозначения (рис. 1, б). Транзистор типа р-n-р устроен аналогично. При этом «стрелочка» эмиттера будет напрвлена в противоположном направлении — в сторону базы. Стрелки эмиттеров показывают направление токов через транзистор.

Рис. 1. Cхематическое изображение структуры транзистора

Транзистор называют биполярным, так какв процессе протекания электрического тока участвуют носители электричества двух знаков — электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна.

Транзисторы типа n-р-n более распространены в сравнении с транзисторами типа р-n-р, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа n-р-n играют электроны, а в транзисторах р-n-р — дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.

Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора.

Источник: http://unradio.ru/?p=2097

Схемы включения транзистора

как работает транзистор в схеме

Усилитель представляет собой четырехполюсник, два вывода которого предназначены для подключения входного сигнала и два оставшихся вывода служат для снятия с них усиленного сигнала (напряжения или тока).

У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.

В зависимости от того, какой вывод транзистора является общим, как для входа, так и для выхода усилителя, схемы включения транзистора называются:

  • Схема с общим эмиттером
  • Схема с общей базой
  • Схема с общим коллектором

Следует отметить, что данные схемы включения применяются не только для биполярных транзисторах, но и для всех типов полевых транзисторов. В них эти схемы будут называться схемами с общим истоком, общим затвором и общим стоком соответственно. Во всех последующих схемах границы четырехполюсника усилителя будут показаны пунктирной линией. Для подключения источника сигнала и нагрузки в них предусмотрено по два вывода.

Схема с общим эмиттером

Наиболее распространенной схемой включения транзистора является схема с общим эмиттером (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.

Рисунок 1. Функциональная схема включения транзистора с общим эмиттером

На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.

Что касается амплитудно-частотной характеристики схемы с общим эмиттером, то в данном включении транзистора верхняя частота усиления будет минимальная по сравнению с остальными схемами включения транзистора. Верхняя частота усиления транзистора, включенного по схеме с общим эмиттером, ограничена частотой (fh21э). [Подробнее]

Схема с общей базой

Схема с общей базой обычно применяется на высоких частотах. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером. Это связано с тем, что схема включения транзистора с общей базой не усиливает по току. В данной схеме производится усиление только по напряжению. Функциональная схема включения транзистора с общей базой приведена на рисунке 2.

Рисунок 2. Функциональная схема включения транзистора с общей базой

На этой схеме цепи питания коллектора и базы тоже не показаны. В качестве входного сопротивления схемы включения транзистора с общей базой служит эмиттерное сопротивление транзистора, поэтому входное сопротивление схемы с общей базой мало. Её входное сопротивление самое маленькое из всех схем включения транзистора, однако для данной схемы это не является недостатком, т.к. входное сопротивление высокочастотных усилителей должно быть равно 50 Ом.

Амплитудно-частотная характеристика схемы с общей базой — самая широкополосная из всех схем включения транзистора, поэтому она широко используется в высокочастотных усилителях радиочастоты. Частотная характеристика схемы с общей базой ограничивается предельной частотой усиления транзистора (fh21б). [Подробнее]

Схема с общим коллектором

Схема с общим коллектором обычно применяется для получения высокого входного сопротивления.

Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером и соизмерим с коэффициентом усиления схемы с общей базой.

Это связано с тем, что схема включения транзистора с общим коллектором не усиливает по напряжению. В данной схеме производится усиление только по току. Функциональная схема включения транзистора с общим коллектором приведена на рисунке 3.

Рисунок 3. Функциональная схема включения транзистора с общим коллектором

На схеме, приведенной на рисунке 5, цепи питания коллектора и базы не показаны. В качестве входного сопротивления схемы включения транзистора с общим коллектором служит сумма сопротивления базы транзистора (как в схеме с общим эмиттером) и пересчитанного ко входу сопротивления резистора в цепи эмиттера, поэтому входное сопротивление схемы с общим коллектором очень велико. Её входное сопротивление самое большое из всех схем включения транзистора.

Амплитудно-частотная характеристика схемы включения транзистора с общим коллектором достаточно широкополосна.

Однако полоса пропускания усилителя может быть серьёзно ограничена из-за шунтирования высокого входного сопротивления схемы с общим коллектором паразитными емкостями, поэтому в основном схема с общим коллектором применяется в качестве буферного усилителя с высоким входным сопротивлением. Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. [Подробнее]

Источник: https://digteh.ru/Sxemoteh/ShVklTrz/

Как работает транзистор npn, pnp

 Нашу сильную зависимость от электроники в современном мире не описать. Если сказать, что без электроники мы не проживем. Это не сказать ничего. Она уже сродни самому неотъемлемому, самому нужному и востребованному.  То количество мест и гаджетов, где мы с ней встречаемся, мы даже перечислять не будем, на это хватит фантазии и у вас.

Мы же хотели рассказать об одном обязательной составляющей каждого электронного девайса, о транзисторе.
 Именно на транзисторах строятся все аналоговые и цифровые схемы применяемые в современных устройствах. А значит, от его работы зависит то, как эти самые гаджеты будут работать и то, как впоследствии электроника будет работать на нас.

ЭТО ИНТЕРЕСНО:  Как пользоваться электрическим тестером

Такая неоспоримая цепочка

Какие бывают транзисторы

 Мы не будем вводить вас в далекий экскурс с чего все начиналось, что электронные лампы были дедушками и бабушками современных транзисторов. Не будем рассказывать об электронной эмиссии. О том, что процесс в этих самых лампах схож с транзисторами. Не будем описывать и различия между ними.  Мы сразу приступим к главному.

Надеясь на то, что все мы пропустили хотя и останется темным пятном, но не станет обременяющим обстоятельством препятствующим пониманию того, как же все-таки работает транзистор. Итак, транзисторы бывают биполярные и полевые. Суть работы тех и других одинакова, разве что их кристаллы, вернее то как сращены разные типы кристаллов, различны. В биполярных транзисторах это своеобразный гамбургер: p-n-p или n-p-n.

То есть кристаллы с различной проводимостью напаяны последовательно друг за друга. Таким образуют они образуют своеобразный «бутерброд».  В полевых транзисторах есть также n кристалл и p кристалл, но они между спаяны не последовательно, а параллельно. При этом ток не проходит через разные типы проводимости кристаллов, а идет все время по одному типу. А запирается в этом случае проводимый кристалл с помощью электрического поля управляющего затвора.

Отсюда и название полевой.

 Еще транзисторы бывают низкочастотные, среднечастотные и высокочастотные.  А также могут работать  с различными токами, но это все нюансы

Как работает транзистор (картинка с анимацией — видео)

Итак, теперь непосредственно о насущном. То есть о том, ради чего мы собственно и начали эту статью. Самое сложное, что нам придется вам объяснить, так это то, что как раз и скрыто от глаз человека. Ведь движение тока в проводнике, в различного рода проводимости кристаллах, не посмотришь и не увидишь.

Именно поэтому необходимо иметь большую фантазию и очень наглядное пособие, чтобы довести до вас принцип работы транзистора.

 Есть и еще одно «но».

Человек всегда привык строить какие-то эквивалентные системы, если непосредственно изучаемая система не дает ему полного представления, а самое главное наглядного примера  о том, как же все-таки все устроено. Так и в нашем случае, взгляните на картинку

Работа транзистора представлена в виде канала с управляемой средой, даже здесь два канала. В качестве каналов выступают контакты транзистора, а управляемой средой является ток. Управляя запорным клапаном на базе или затворе (маленький канал) мы тем самым открываем и большой канал, между эмиттером и коллектором или стоком и истоком.

Именно этот большой канал и является нашей целью управления. Открывая маленький канал, мы открываем и большой! Вот главное правило работы транзистора. По-другому не бывает, по крайней мере, в нормальных режимах работы транзистора без пробоев. Управляющий клапан на базе, то есть  малый канал открывается первым, тем самым провоцируя и открывание большого канала.

 Не знаем, нужны ли вам другие описания почему именно так? Если кратко, то потому что есть зоны запирания, есть сопротивления этих зон и изменения сопротивления в зависимости от потенциала, подаваемого на них. Конечно это не описывает особенностей работы транзистора полностью и подробно, но об этом мы вам и не обещали рассказать.

Самое главное было рассказать о принципе срабатывания и показать это на наглядной картинке, что собственно мы и выполнили. Принцип работы в этом случае действителен для всех видов транзисторов о которых, мы упоминали в нашем предыдущем абзаце.

А также, для того чтобы закрепить ваше визуально- ассоциативное мышление с реальной невидимой действительностью необходимо взглянуть и на нижний правый угол картинки.

 На нем видно как в зависимости от пропуска тока, через контакты транзистора будут происходить и коммутации вокруг его выводов.

Схема подключения транзистора (полевой транзистор)

Теперь о том же самом, но на примере подключения транзистора в схеме. На входе имеется сигнал достаточный для свечения лампы (светодиода) даже с учетом сопротивления транзистора. Но если подать на управляющий вывод (затвор) запирающий потенциал, то сопротивление увеличиться и лампа погаснет.

На самом деле это лишь один из примеров подключения транзистора. Вариаций его подключений великое множество. Здесь главное донести суть работы радиоэлемента, а не саму схему подключения.

Последнее о чем хотелось сказать в статье о принципах работы транзистора, так это о том, что база должна всегда оставаться чуть «зажата», то есть ограничена сопротивлением. Это видно из схемы.
 Это позволяет разграничить управляющий малый ток и большой управляемый.

Если же убрать сопротивление, то ток будет течь по наименьшему сопротивлению, то есть весь через базу, а в этом случае теряется весь смысл транзистора, так как он ни чем ни будет управлять, а будет просто пропускать через себя ток.

При этом большой ток через базу может еще и вывести его из строя, что нам ну совсем не надо!

Источник: http://xn-----7kcglddctzgerobebivoffrddel5x.xn--p1ai/kommunikatsii/elektronika/737-kak-rabotaet-tranzistor-npn-pnp

Как работает транзистор: принцип и устройство

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры.

Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к. кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры.

Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Транзисторы

Устройство транзисторов

Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.

  • Б – база, очень тонкий внутренний слой;
  • Э – эмиттер, предназначается для переноса заряженных частиц в базу;
  • К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.

Типы проводимости:

  • n-типа — носителями зарядов являются электроны.
  • p-типа — носители зарядов – положительно заряженные «дырки».

Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.

Принцип работы транзистора

Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.

Простое изложение принципа работы биполярного транзистора:

  • Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
  • Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
  • При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.

Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.

Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://www.radioelementy.ru/articles/princip-raboty-tranzistora/

xTechx.ru

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор) подаётся сильный ток, а на другой (база) подаётся слабый (управляющий ток). При определённой силе управляющего тока, как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер).

То есть транзистор – это своеобразный клапан, который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер). Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами. Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний, арсенид галлия и германий. Также существуют транзисторы на углеродных нанотрубках, прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера, так и в сторону коллектора. Для управления потоком применяются определённые токи управления.

Полевые транзисторы – распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше.

То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзистор с управляемым p—n—переходом).

Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году. Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий.

Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор.

С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм, на основе графена.

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах, лампах, электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вклвыкл.

Транзистор умеет ограничивать силу тока либо плавно, либо методом импульспауза. Второй чаще используется для ШИМ-управления.

Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе ЦАП. Часто им требуется дополнительное охлаждение. В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания, как цифровых, так и аналоговых (материнские платы, видеокарты, блоки питания & etc).

Центральные процессоры, микроконтроллёры и SOC тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений.

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды ОЗУ и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

Источник: http://www.xtechx.ru/c40-visokotehnologichni-spravochnik-hitech-book/transistor-element-kak-rabotaet/

Как работает транзистор: простым языком для чайников, схемы

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

ЭТО ИНТЕРЕСНО:  Как работает реле напряжения

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторыРис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Источник: https://www.asutpp.ru/kak-rabotaet-tranzistor.html

Как работает транзистор: устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы:

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Полевой

Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.

Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности. Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.

Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:

  • МДП (к ним можно отнести и МОП — металл-оксид-проводник)
  • JGBT

МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+», а «n» подключается к «-«) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-«, а к «n» — «+». Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.

Источник: https://220v.guru/elementy-elektriki/tranzistory/prostym-yazykom-kak-rabotaet-tranzistor.html

Как работает транзистор?

Подробности Категория: Начинающим 29.11.2013 14:41 Admin 34894

Транзисторы – это радиоэлектронные компоненты из полупроводникового материала, которые предназначены для преобразований, усилений и генерации электрических колебаний.

Но всё же, как работает транзистор? Говоря простым языком с помощью транзистора можно управлять током. Транзисторами называются любые устройства, которое способно имитировать главные его свойства, а именно – изменять сигнал между двумя разными типами состояний при изменениях сигнала на управляющем электроде.

Транзисторы бывают двух типов:

Материалами изготовления служат германий и кремний, но при добавлении примесей способность проводить ток возрастает. Нужно рассмотреть оба типа транзисторов, для того чтобы понять как работает транзистор? На рисунке представлены три области p-n-p или n-p-n из которых состоит любой биполярный транзистор.

Структура транзистора

В биполярных транзисторах носители зарядов двигаются от эмиттера к коллектору. База отделяется от коллектора и эмиттера p-n переходами. Протекает ток через транзистор лишь при инжектировании носителей заряда через p-n переход из эмиттера в базу. Находясь в базе, они начинают становиться неосновными носителями заряда и достаточно легко проникают через p-n переходы. Управление током между коллектором и эмиттером осуществляется за счет изменения напряжения между базой и эмиттером.

Как работает транзистор в цепи электрического тока? 

Основной принцип работы транзистора заключается в управлении электрическим током с помощью незначительного тока являющегося своего рода управляющим током. В полевых транзисторах носители зарядов движутся к коллектору от эмиттера через базу. Существует канал, в легированном проводнике находясь в промежутке между нелегированной подложкой и затвором. В подложке отсутствует заряд, и она не проводит ток. Перед затвором есть область обеднения с отсутствием носителей заряда.

ЭТО ИНТЕРЕСНО:  Ардуино что это такое

Таким образом, вся ширина канала ограничивается пространством между областью обеднения и пространством между подложкой. Напряжение, прикладываемое к затвору, уменьшает или увеличивает область обеднения, и тем самым ширину самого канала, контролируя при этом ток.

Многие начинающие радиолюбители не так представляют себе принцип работы транзистора. Они думают, что транзистор способен усилить мощность источника питания, но это далеко не так. Важно понимать, что транзистор управляет большим током коллектора с помощью маленького тока протекающего через базу. Здесь речь идет скорее всего об управлении чем об усилении. 

Схема подключение транзистора

Схема состоит из двух электрических цепей : 

  • цепь эмиттера;
  • цепь коллектора;

В цепи эмиттера протекает незначительный ток, который управляет током коллектора. На выходе мы получаем «копию» тока эммитера но усиленного в несколько раз.

Интересное видео о принципе действия транзистора

Источник: https://radio-magic.ru/beginners/5-tranzistor

Составной транзистор. Транзисторная сборка Дарлингтона

Радиоэлектроника для начинающих

Если открыть любую книгу по электронной технике, сразу видно как много элементов названы по именам их создателей: диод Шоттки, диод Зенера (он же стабилитрон), диод Ганна, транзистор Дарлингтона.

Инженер-электрик Сидни Дарлингтон (Sidney Darlington) экспериментировал с коллекторными двигателями постоянного тока и схемами управления для них. В схемах использовались усилители тока.

Инженер Дарлингтон изобрёл и запатентовал транзистор, состоящий из двух биполярных и выполненный на одном кристалле кремния с диффундированными n (негатив) и p (позитив) переходами. Новый полупроводниковый прибор был назван его именем.

В отечественной технической литературе транзистор Дарлингтона называют составным. Итак, давайте познакомимся с ним поближе!

Устройство составного транзистора

Как уже говорилось, это два или более транзисторов, изготовленных на одном полупроводниковом кристалле и запакованные в один общий корпус. Там же находится нагрузочный резистор в цепи эмиттера первого транзистора.

У транзистора Дарлингтона те же выводы, что и у всем знакомого биполярного: база (Base), эмиттер (Emitter) и коллектор (Collector).

Схема Дарлингтона

Как видим, такой транзистор представляет собой комбинацию нескольких. В зависимости от мощности в его составе может быть и более двух биполярных транзисторов. Стоит отметить, что в высоковольтной электронике также применяется транзистор, состоящий из биполярного и полевого. Это IGBT транзистор. Его также можно причислить к составным, гибридным полупроводниковым приборам.

Основные особенности транзистора Дарлингтона

Основное достоинство составного транзистора это большой коэффициент усиления по току.

Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h21). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.

Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости.

Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n.

Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.

схема Шиклаи

К недостаткам составных транзисторов следует отнести невысокое быстродействие, поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.

Хорошо зарекомендовал себя для работы в электронных схемах зажигания мощный n-p-n транзистор Дарлингтона BU931.

Основные электрические параметры:

  • Напряжение коллектор – эмиттер 500 V;
  • Напряжение эмиттер – база 5 V;
  • Ток коллектора – 15 А;
  • Ток коллектора максимальный – 30 А;
  • Мощность рассеивания при 250С – 135 W;
  • Температура кристалла (перехода) – 1750С.

На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.

Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n, а TIP125, TIP126, TIP127 — p-n-p.

Также на принципиальных схемах можно встретить и вот такое обозначение.

Примеры применения составного транзистора

Рассмотрим схему управления коллекторным двигателем с помощью транзистора Дарлингтона.

При подаче на базу первого транзистора тока порядка 1мА через его коллектор потечёт ток уже в 1000 раз больше, то есть 1000мА. Получается, что несложная схема обладает приличным коэффициентом усиления. Вместо двигателя можно подключить электрическую лампочку или реле, с помощью которого можно коммутировать мощные нагрузки.

Если вместо сборки Дарлингтона использовать сборку Шиклаи то нагрузка подключается в цепь эмиттера второго транзистора и соединяется не с плюсом, а с минусом питания.

Если совместить транзистор Дарлингтона и сборку Шиклаи, то получится двухтактный усилитель тока. Двухтактным он называется потому, что в конкретный момент времени открытым может быть только один из двух транзисторов, верхний или нижний. Данная схема инвертирует входной сигнал, то есть выходное напряжение будет обратно входному.

Это не всегда удобно и поэтому на входе двухтактного усилителя тока добавляют ещё один инвертор. В этом случае выходной сигнал в точности повторяет сигнал на входе.

Широко используются интегральные микросхемы, содержащие несколько составных транзисторов. Одной из самых распространённых является интегральная сборка L293D. Её частенько применяют в своих самоделках любители робототехники. Микросхема L293D — это четыре усилителя тока в общем корпусе.

Поскольку в рассмотренном выше двухтактном усилителе всегда открыт только один транзистор, то выход усилителя поочерёдно подключается или к плюсу или к минусу источника питания. Это зависит от величины входного напряжения. По сути дела мы имеем электронный ключ.

То есть микросхему L293 можно определить как четыре электронных ключа.

Вот «кусочек» схемы выходного каскада микросхемы L293D, взятого из её даташита (справочного листа).

Как видим, выходной каскад состоит из комбинации схем Дарлингтона и Шиклаи. Верхняя часть схемы — это составной транзистор по схеме Шиклаи, а нижняя часть выполнена по схеме Дарлингтона.

Многие помнят те времена, когда вместо DVD-плееров были видеомагнитофоны. И с помощью микросхемы L293 осуществлялось управление двумя электродвигателями видеомагнитофона, причём в полнофункциональном режиме. У каждого двигателя можно было управлять не только направлением вращения, но подавая сигналы с ШИМ-контроллера можно было в больших пределах управлять скоростью вращения.

Весьма обширное применение получили и специализированные микросхемы на основе схемы Дарлингтона. Примером может служить микросхема ULN2003A (аналог К1109КТ22). Эта интегральная схема является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки можно легко применять в радиолюбительских схемах, например, радиоуправляемом реле. Об этом я поведал тут.

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Параметры транзисторов MOSFET.
  • Что такое супрессор?

Источник: https://go-radio.ru/coctavnoy-transistor.html

Как работает биполярный транзистор

Если рассматривать механические аналоги, то работа транзисторов напоминает принцип действия гидравлического усилителя руля в автомобиле. Но, сходство справедливо только при первом приближении, поскольку в транзисторах нет клапанов. В этой статье мы отдельно рассмотрим работу биполярного транзистора.

Устройство биполярного транзистора

Основой устройства биполярного транзистора является полупроводниковый материал. Первые полупроводниковые кристаллы для транзисторов изготавливали из германия, сегодня чаще используется кремний и арсенид галлия. Сначала производят чистый полупроводниковый материал с хорошо упорядоченной кристаллической решеткой.

Затем придают необходимую форму кристаллу и вводят в его состав специальную примесь (легируют материал), которая придаёт ему определённые свойства электрической проводимости. Если проводимость обуславливается движением избыточных электронов, она определяется как донорная (электронная) n-типа.

Если проводимость полупроводника обусловлена последовательным замещением электронами вакантных мест, так называемых дырок, то такая проводимость называется акцепторной (дырочной) и обозначается проводимостью p-типа.

 Рисунок 1.

Кристалл транзистора состоит из трёх частей (слоёв) с последовательным чередованием типа проводимости (n-p-n или p-n-p). Переходы одного слоя в другой образуют потенциальные барьеры.

Переход от базы к эмиттеру называется эмиттерным (ЭП), к коллектору – коллекторным (КП). На рисунке 1 структура транзистора показана симметричной, идеализированной.

На практике при производстве размеры областей значительно ассиметричны, примерно как показано на рисунке 2. Площадь коллекторного перехода значительно превышает эмиттерный. Слой базы очень тонкий, порядка нескольких микрон.

 Рисунок 2.

Принцип действия биполярного транзистора

Любой p-n переход транзистора работает аналогично диоду. При приложении к его полюсам разности потенциалов происходит его «смещение». Если приложенная разность потенциалов условно положительна, при этом p-n переход открывается, говорят, что переход смещён в прямом направлении. При приложении условно отрицательной разности потенциалов происходит обратное смещение перехода, при котором он запирается.

Особенностью работы транзистора является то, что при положительном смещении хотя бы одного перехода, общая область, называемая базой, насыщается электронами, или электронными вакансиями (в зависимости от типа проводимости материала базы), что обуславливает значительное снижение потенциального барьера второго перехода и как следствие, его проводимость при обратном смещении.

Режимы работы

Все схемы включения транзистора можно разделить на два вида: нормальную и инверсную.

 Рисунок 3.

Нормальная схема включения транзистора предполагает изменение электрической проводимости коллекторного перехода путём управления смещением эмиттерного перехода.

Инверсная схема, в противоположность нормальной, позволяет управлять проводимостью эмиттерного перехода посредством управления смещением коллекторного. Инверсная схема является симметричным аналогом нормальной, но в виду конструктивной асимметрии биполярного транзистора малоэффективна для применения, имеет более жёсткие ограничения по максимально допустимым параметрам и практически не используется.

При любой схеме включения транзистор может работать в трёх режимах: Режим отсечки, активный режим и режим насыщения.

Для описания работы направление электрического тока в данной статье условно принято за направление электронов, т.е. от отрицательного полюса источника питания к положительному. Воспользуемся для этого схемой на рисунке 4.

Рисунок 4.

Режим отсечки

Для p-n перехода существует значение минимального напряжения прямого смещения, при котором электроны способны преодолеть потенциальный барьер этого перехода. То есть, при напряжении прямого смещения до этой пороговой величины через переход не может протекать ток.

Для кремниевых транзисторов величина такого порога равна примерно 0,6 В.

Таким образом, при нормальной схеме включения, когда прямое смещение эмиттерного перехода не превышает 0,6 В (для кремниевых транзисторов), ток через базу не протекает, она не насыщается электронами, и как следствие отсутствует эмиссия электронов базы в область коллектора, т.е. ток коллектора отсутствует (равен нулю).

Таким образом, для режима отсечки необходимым условием являются тождества:

UБЭ

Источник: https://volt-info.ru/kak-rabotaet-bipolyarnyy-tranzistor

Pnp транзистор в ключевом режиме – Работа транзистора в режиме ключа

Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.

С чего все начиналось

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.

Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.

Транзисторный ключ

Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:

Знакомая схемка не так ли? Здесь все элементарно и просто

Источник: https://i-flashdrive.ru/raznoe/pnp-tranzistor-v-klyuchevom-rezhime-rabota-tranzistora-v-rezhime-klyucha-2.html

Понравилась статья? Поделиться с друзьями:
220 вольт