Как сделать блок питания

Как включить блок питания без компьютера?

как сделать блок питания

Компьютер не включается — это очень распространенная проблема, которая может быть вызвана чем угодно. В такой ситуации чаще всего виновником «торжества» выступает какая-либо комплектующая. Чаще всего это блок питания или процессор.

Проверить ЦПУ в домашних условиях на работоспособность довольно трудно. Для этого потребуется найти аналог, который подойдет в сокет материнской платы. И тогда методом исключения можно прийти к выводу, что процессор не работает.

Но у кого из вас дома валяется несколько камней, подходящих в один сокет? То-то же.

А вот проверить БП на домашнем операционном столе вполне реально. Для этого существует несколько способов. И при этом не потребуется сам ПК. То есть, если у вас имеется не подключенный блок, то его не обязательно вставлять в корпус и соединять с остальными комплектующими. Сегодня мы расскажем, как проверить блок питания без компьютера. 

Как завести блок питания без компьютера: принципы работы компьютера

Перед любой диагностикой полезно знать, как вообще устроен компьютер. Блок питания — это комплектующая, которая отвечает за снабжение остальных элементов компьютера электроэнергией. Все компоненты компьютера имеют множество параметров, которые являются стандартизированными. Поэтому на любом блоке питания вы найдете коннекторы определенных типов. Например, для подключения материнской платы, жестких дисков, видеокарты и так далее.

В первую очередь необходимо проверять работоспособность БП, ведь бесполезно диагностировать остальные комплектующие без питания. И только после этого следует переходить к проверке проводов, которые идут от корпуса к материнской плате и отвечают за старт компьютера. А затем можно уже тестировать и остальные комплектующие.

Как стартануть блок питания без компьютера: подготовка к «операции»

Как мы уже говорили, проверить блок питания можно несколькими способами. В зависимости от конкретно вашей ситуации, вы можете подобрать метод, который будет удобен и доступен именно вам. Но независимо от выбранного способа, вы должны перед началом диагностики выполнить следующие действия:

1. Выключите компьютер. Отключите блок питания от всех комплектующих. Сам блок можно не вынимать из корпуса и провести диагностику прям внутри «тушки». В дальнейшем нам понадобятся некоторые коннекторы. Так что если кабели внутри корпуса протянуты очень туго, освободите их для дальнейших манипуляций чтобы вам было удобно.

2. Подключите к блоку питания любой рабочий жесткий диск. Но соединять его с материнской платой не нужно. Если этого не сделать, то после проделанной процедуры в работе БП могут возникнуть неисправности. Если жесткий диск вышел из строя, то на его роль может подойти проигрыватель CD/DVD дисков.

Как включить блок питания без компьютера: перемычка

Суть способа заключается в том чтобы заставить блок питания завестись без подключения к материнской плате. По идее сколько второстепенных устройств не подключай к БП — он не стартанет.

Обязательно потребуется подсоединенный основной 20 или 24-pin кабель. Но можно обойти это правило. Для этого нам потребуется сделать специальную перемычку из любого материала, который проводит электричество.

Лучше всего на эту роль подойдет скрепка, медная проволока. Но можно использовать то, что найдется под рукой. 

Источник: https://ichip.ru/sovety/ekspluataciya/kak-vklyuchit-blok-pitaniya-bez-kompyutera-715982

Простой блок питания

как сделать блок питания

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1.

Все это подробно описано в статье как получить из переменного напряжения постоянное.  И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T.

На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор  будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема  может быть исполнена в корпусе ТО-220:

или  в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших  электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в  нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор  в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат ;-)

Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.

А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.

Все это аккуратно упаковываем в корпус и выводим провода.

Ну как вам ? ;-)

Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.

Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт

Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели, которая используется для сверления плат.

Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.

Ссылка на этот кит-набор здесь.

Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:

Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:

Вот ссылка.

Также неплохо было бы доработать этот блок питания ампервольтметром

который также можно купить на Али здесь.

С трансформатором и корпусом уже будет подороже:

Вот так он будет выглядеть при сборке

Глянуть его можно по этой ссылке. Может быть найдете подешевле.

А лучше вообще не заморачиваться и взять готовый лабораторный мощный блок питания со всеми прибамбасами:

Выбирайте на ваш вкус и цвет!

Источник: https://www.ruselectronic.com/prostoj-blok-pitanija/

Переделка блока питания для шуруповерта своими руками

как сделать блок питания

Чтобы самостоятельно сделать блок питания для вашего инструмента, нужно обладать определенными навыками и умениями в области электрики. Если ваш уровень знаний в этой сфере находится на начальном уровне, во избежание потери времени и получения травм электрическим током, лучшим решением будет заказать в магазине новый блок или отнести вышедший из строя в ремонтную мастерскую.

Блок питания для шуруповерта

Все современные шуруповерты работают от аккумулятора. Чтобы он всегда оставался в заряженном состоянии, требуется блок питания. Зарядные устройства разных производителей могут существенно различаться. Во-первых, блоки комплектуются разными элементами, а во-вторых, их вольтаж бывает 12, 14 или 18 вольт.

В зарядных устройствах на 12 В используются транзисторы емкостью до 4,4 пФ, проводимость при этом находится на уровне 9 мк. Для нивелирования показателей тактовой частоты используются конденсоры. В зарядниках, использующих такое напряжение, чаще всего устанавливаются полевые резисторы.

Схема блока питания 12 В

В блоках на 14 В уже применены 5 транзисторов и импульсные конденсаторы. Используется микросхема преобразования тока четырехканального типа. Емкость резистора не превышает 6,3 пФ.

Схема зарядного устройства 14 В

В зарядниках 18 В используются только транзисторы переходного типа. Для нормализации максимальной частоты установлен сеточный триггер. Проводимость тока находится в районе 5,4 мк. На микросхеме находятся 3 конденсатора. Вместе с диодным мостом располагается тетрод. В некоторых моделях используются хроматические резисторы. Иногда применяются дипольные транзисторы.
Схема зарядного устройства 18 В

Блок питания для шуруповерта своими руками

Стандартное зарядное устройство использует трехканальную микросхему. На ней, в зависимости от вольтажа, размещается различное количество транзисторов, например, в заряднике на 12 вольт ставится 4 транзистора.
Чтобы снижать негативные воздействия тактовой частоты, в блоках устанавливаются конденсаторы. Они бывают импульсного или переходного типа. Чтобы минимизировать последствия от перегрузок электрической сети, в зарядных устройствах применяются тиристоры.

Стандартная схема зарядки шуруповерта

Это важно: в различных моделях устанавливается не только разное количество транзисторов – они существенно отличаются по своей емкости.

Блок питания для шуруповерта из энергосберегающей лампыДля того чтобы сделать ИБП из энергосберегающей лампы, необходимо содержащийся в каждой лампе электронный дроссель немного изменить, поставив перемычку, и после подключить к импульсному трансформатору и выпрямителю.

Для источников питания небольшой мощности (от 3.

7 в до 20 ватт), можно обойтись без трансформатора. Для этого необходимо просто добавить несколько витков полупроводника на магнитопровод располагающегося в балласте лампы дросселя, если там будет место для этого. Обмотку можно делать прямо поверх заводской. Для этого лучше использовать провод с изоляцией из фторопласта.

Блок питания для шуруповерта из зарядного устройства

Один из самых дешевых способов сделать блок питания – это использовать обычное зарядное устройство для смартфона. В каждом доме сейчас их два или более, а если у вас нет лишнего, можно приобрести за 50–100 рублей.

Так выглядят внутренности зарядки от смартфона

Переделка зарядки производится в следующей последовательности:

• С помощью эмалированного проводника маленького диаметра нужно добавить один виток обмотки. После этого включаем зарядку и подключаем к аккумулятору шуруповерта.

Посредством осциллографа замеряем амплитуду импульсов и определяем напряжение, создаваемое одним витком дополнительной обмотки.• Выпаиваем разъем USB, снимаем тестовый виток и доматываем нужное количество витков до получения необходимого напряжения.

Новая обмотка припаивается к заводской последовательно.

• Меняем штатный конденсатор и стабилитрон на новые, соответствующие требуемому напряжению.

Импульсный блок питания для шуруповерта своими руками

Для импульсного блока подбирается подходящая микросхема, и сборка осуществляется в следующей последовательности:

• Диодные мосты и термистор ставятся на входе.• Устанавливаются два конденсатора.• Для синхронизации работы затворов полевых транзисторов применяются драйвера.• При установке транзисторов фланцы не закорачивают. С помощью изоляционных шайб и прокладок они крепятся к радиатору.

• На выходе устанавливаются диоды.

Блок питания для шуруповерта из электронного трансформатора

Чтобы приспособить трансформатор под зарядное устройство вашего инструмента, его нужно доработать. Для этого нужно подключить конденсатор на выходе выпрямительного моста. Емкость определяется следующим образом – 1 мкФ на 1 Вт. Напряжение конденсатора должно быть не меньше 400 В.

В разрыв одного сетевого кабеля нужно установить терморезистор, чтобы ограничить пусковой ток.
Диодный мост устанавливается для выпрямления напряжения частотой 30 кГц. Для нормального функционирования устройства требуется обеспечить плавный пуск. С этим отлично справляется дроссель Л1.

Выпрямитель для шуруповерта своими руками

Выпрямитель необходим для преобразования переменного тока в постоянный. Он функционирует за счет полупроводниковых диодов, которые играют роль преобразователей. Чтобы проанализировать работу устройства, применяют осциллограф.

Главным в изготовлении выпрямителя является правильный выбор диодов. Для использования в блоке питания подойдут элементы с показателями обратного тока до 10 ампер. Количество диодов равно 4, и их следует устанавливать по мостовому типу.

Если применять схему на одном полупроводнике, полезное действие блока снижается вдвое.

Это важно: запрещено работать с электрическими элементами, находящимися под напряжением. Перед тем как совершать какие-либо манипуляции, нужно убедиться, что прибор отключен от сети.

Трансформаторными источниками питания называются такие приборы, в которых располагается понижающий входное напряжение трансформатор. Помимо него, в таких блоках установлен диодный выпрямитель и конденсатор фильтра.
Конденсатор сглаживает пульсации выходного напряжения.

По сути, трансформатор выдает напряжение того же вида, что и в сети 220 вольт, а точнее, синусоидальной. При работе от бесперебойных источников его форма может быть совсем несинусоидальной.

Форма выпрямленного напряжения непостоянна во времени, поэтому необходима установка элемента, поддерживающего выходное напряжение постоянной величины, что выполняется на сглаживающем конденсаторе.

Плюсы трансформаторных блоков:

• Простота и надежность.• Составные элементы легко найти в продаже.

• Отсутствие частей, создающих радиоволновые помехи.

Сетевой блок для питания шуруповерта

Для того чтобы своими руками запитать шуруповерт от бытовой электросети, вам потребуются вышедший из строя аккумулятор, зарядное устройство от него, многожильный провод, изолента, припой, паяльник и кислота.В первую очередь нужно припаять к контактам зарядника электропровод со штепсельной вилкой. Поскольку в блоке используются латунные клеммы, а в проводе медные жилы, чтобы их спаять, следует использовать в качестве соединителя кислоту.

От качества этого соединения напрямую зависит функционирование всего устройства.На втором этапе работа ведется с вышедшим из строя аккумулятором инструмента. Следует разобрать батарею и удалить из нее внутренние части. При этой операции нужно пользоваться средствами личной защиты, а внутреннее наполнение рекомендуется не выбрасывать в бытовой мусор, а утилизировать в безопасном для людей месте.

На заключительном этапе необходимо провода зарядного устройства спаять с выводами аккумулятора, которые располагаются во внутренней части корпуса.

При самодельном изготовлении блока питания для шуруповерта необходимо тщательно соблюдать технику безопасности при работе с электричеством. Перед началом работы нужно тщательно взвесить все за и против (сколько на это потребуется времени, какова будет стоимость материалов и запчастей), иногда будет проще и дешевле отнести зарядник в специализированную мастерскую или приобрести новый блок.

Источник: http://pro-instrument.com/ruchnoj/kak-sdelat-blok-pitaniya-dlya-shurupovyorta.html

Cамодельный блок питания на 12 вольт

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

ЭТО ИНТЕРЕСНО:  Как определить полярность конденсатора

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено.

При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера.

Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс.

Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус.

Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке.

При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать.

Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Источник: https://lampagid.ru/elektrika/komponenty/blok-pitaniya-12v

Блок питания своими руками: как сделать универсальный источник питания

Блок питания является неотъемлемым требованием любой техники. Благодаря этому устройству удается регулировать уровень напряжения, тем самым предотвращая преждевременную поломку электрической конструкции.

Сегодня собрать регулируемый блок питания своими руками достаточно просто. В интернете представлено множество схем, которые помогают облегчить поставленную задачу даже для новичков радиолюбителей. Процесс изготовления этой конструкции довольно увлекательное и интересное занятие.

Перед тем как приступить к рабочему процессу, необходимо подобрать простую схему для изготовления блока питания. Чем легче чертеж, тем быстрее удастся собрать установку. В специализированных магазинах представлен широкий ряд радио и электрических деталей для данной конструкции.

Разновидности и типы блоков питания

Перед тем как приступить к сборке устройства, необходимо ознакомиться с видами и типами блоков питания. Каждая модель имеет свои характерные особенности.

К ним относят:

  • стабилизированные типы. Они отвечают за бесперебойную работу электрического устройства;
  • бесперебойные виды. Они позволяют работать прибору даже при отключении от электрической цепи.

Классификация по принципу работы

По принципу работы они классифицируются на следующие типы. К ним относят:

Импульсный. Он представляет собой инверторную систему, в которой происходит преобразование переменного тока в постоянное высокочастотное напряжение.

Для того чтобы сделать импульсный блок питания своими руками необходимо приобрести специальную гальваническую развязку, которая будет передавать преобразованную мощность к трансформаторной установке.

Трансформаторный. Он состоит из понижающего трансформатора и специального выпрямителя. Он в дальнейшем преобразовывает переменную мощность в постоянную. Здесь дополнительно устанавливают фильтр-конденсатор. Он позволяет сгладить чрезмерную пульсацию и колебания в процессе работы устройства.

Мастер-класс по изготовлению регулируемого блока питания

Как сделать подобное устройство в домашних условиях? Подробная инструкция как сделать блок питания своими руками поможет справиться с поставленной задачей. Первым делом необходимо иметь четкое представление, для каких целей будет собрано это устройство.

Главными принципами работы сооружения является подача максимального тока, который в дальнейшем будет направлен в сторону нагрузки. Помимо этого он будет обеспечивать выходное напряжение. Благодаря этому электрический прибор может нормально функционировать.

Сделать мощный блок питания своими руками достаточно просто. Здесь устанавливают специальный ограничитель выходного напряжения, который позволяет регулировать процесс подачи тока при помощи рукоятки.

Например, устройство на выходе дает от 3 до 15 Вт, а прибор требует 5 Вт. Для этого определенным положением регулятора меняем диапазон преобразованной мощности.

Из чего можно сделать блок питания?

Для понадобятся следующие детали:

  • трансформатор;
  • диодный мост;
  • микросхема;
  • конденсаторный фильтр;
  • дросселя;
  • блоки защиты;
  • стабилизатор напряжения.

Трансформатор может иметь мощность в пределах 10 Вт. Как правило, его обмотка способна выдержать напряжение от 220 Вт до 250 вт. Вторичная обмотка проводит от 20 до 50 Вт.

Эту деталь можно купить в специализированном отделе или найти в любом старом электроприборе.

Микросхема выпускается под определенной маркировкой (PDIP – 8). Здесь можно делать неограниченное количество проводящих электрических дорожек.

Диодный мост делают из четырех диодов размером 0,2 х 0,5 мм. Изделия серии SOIC значительно уменьшают перепады электрического напряжения.

Блоки защиты будут выполнены из двух предохранителей марки FU2. При срабатывании данных изделий вырабатывается ток мощностью 0,16А. Дроссели L1 и L2 можно сделать самостоятельно. Для этого понадобятся два элемента из магнитного феррита. Их размер должен быть К 17,5 х 8,3 х 6 мм.

Подсоединение всех элементов осуществляются по определенной схеме, которая представлена ниже. Здесь каждая деталь обозначена соответствующим обозначением. На фото самодельного блока питания изображено готовое устройство.

Фото блоков питания своими руками

Источник: https://tytmaster.ru/blok-pitaniya-svoimi-rukami/

Переделать блок питания от компа. Как сделать регулируемый блок питания из компьютерного. Добавление переменного резистора

Сегодня стоимость лабораторного блока питания составляет примерно 10 тыс. рублей. Но, оказывается, есть вариант переделки компьютерного блока питания в лабораторный. Всего за тысячу рублей вы получаете защиту от короткого замыкания, охлаждение, защиту от перегрузки и несколько линий напряжения: 3В, 5В и 12В. Однако мы будем модифицировать его, чтобы получить диапазон от 1,5 до 24В, который идеально подойдет для большинства электроники.

Я считаю, что этот способ переделки компьютерного блока питания на 24 вольта лучший, учитывая, что я смог воплотить его в реальность своими руками всего в 14 лет.

ПРЕДУПРЕЖДЕНИЕ: Здесь ведется работа с током, будьте осторожны и соблюдайте меры безопасности!

Вам понадобится:

  • рулетка
  • отвертка
  • Компьютерный блок питания (рекомендую 250 Вт +) и кабель для него
  • Проволочные защелки
  • Паяльник
  • Резистор на 10Ом 10Вт или больше (некоторые новые блоки питания не работают должным образом без нагрузки, поэтому резистор должен её обеспечить)

Необязательно:

  • переключатель
  • 2 светодиода любого цвета (красный и зеленый подойдут лучше всего)
  • Если вы используете светодиоды, понадобится 1 или 2 резистора на 330 Ом,
  • Термоусадка
  • Внешний корпус (можно поместить всё в оригинальный корпус, а можно взять другой).

В зависимости от того, какой метод для регулируемого блока питания из БП компьютера вы используете (подробнее об этом позже):

  • Клеммные колодки
  • Дрель
  • Резистор 120 Ом
  • Переменный резистор 5 кОм
  • Разъемы
  • Зажимы «крокодил»

Шаг 1: Сбор и подготовка блока питания

Предупреждение: ПЕРЕД ТЕМ, КАК НАЧАТЬ, УБЕДИТЕСЬ, ЧТО БЛОК ПИТАНИЯ НЕ ПОДКЛЮЧЕН

Конденсаторы могут ударить током, что довольно больно. Дайте блоку питания полежать в течение нескольких дней, чтобы он разрядился, или подключите резистор на 10 Ом к красному и черному проводу.

Если вы слышите жужжание при включении питания, это означает, что где-то происходит короткое замыкание или другая серьезная проблема. Если вы слышите жужжание (не от паяльника) во время пайки, это означает, что блок питания подключен. Помните, что если блок, который подключен к питанию, отключить кнопкой, в нем все еще останется ток.

Хорошо, давайте вынем блок питания из компьютера. Обычно он крепится на 4 винтах к задней панели корпуса. Выньте провода из отверстия, затем сгруппируйте их по цветам и отрежьте концы.

Кстати, вы только что аннулировали свою гарантию.

Шаг 2: Делаем проводку

Теперь приступим к сложной части, где нужно добавить светодиоды, переключатели и другие подобные детали. Мы имеем много проводов каждого типа, поэтому я рекомендую использовать 2-4 провода. Некоторые люди перебирают все внутри коробки, а я сделал всё снаружи. Это зависит от того, какой метод вы используете на следующем шаге.

Если вы хотите добавить индикатор ожидания или индикатор включения питания, вам понадобится светодиод (рекомендую красный, но не обязательно) и резистор на 330 Ом. Припаяйте черный провод к одному концу резистора, а короткий конец светодиода — к другому.

Резистор уменьшит напряжение, чтобы не повредить светодиод. Перед пайкой, наденьте небольшой кусок термоусадки, чтобы защитить контакты от короткого замыкания.

Припаяйте фиолетовый провод к более длинной ноге, и когда вы подадите питание (не включая блок), светодиод должен загореться.

Для включенного блока питания вы также можете установить другой светодиод (рекомендую зеленый). Некоторые говорят, что нужно использовать серый провод для питания светодиода, но тогда нужен еще один резистор на 330 Ом. Я просто подключил его к оранжевому проводу 3,3 В.

Если вы используете метод с серым проводом:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте серый провод к одному концу резистора, а другой конец резистора — к более длинной ножке светодиода. Черный провод припаяйте к короткой ножке.

При использовании оранжевого провода 3.3В:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте оранжевый провод к более длинной ножке светодиода, а черный провод — к более короткой ножке.

Теперь к переключателю: если на задней стенке вашего блока питания уже есть переключатель, этот пункт вам не сильно пригодится. Подключите зеленый провод к одному контакту на переключателе, а черный — к другому. Если вы не хотите использовать переключатель, просто соедините зеленый и черный провода.

Вы также можете использовать предохранитель на 1А. Всё, что нужно сделать, это обрезать черные провода примерно в середине, и соединить их с предохранителем в держателе.

Некоторым блокам питания нужна нагрузка для правильной работы. Для обеспечения этой нагрузки припаяйте красный провод к одному концу резистора 10 Ом\10 Вт и черный провод к другому. Таким образом блок будет думать, что он что-то делает.

Если вы ничего не поняли, загляните в схему, которую я приложил. В ней показан способ подключения проводов. Об этом я расскажу в следующем шаге. Там изображен способ с серым проводом на светодиод (но вы можете использовать оранжевый, как написано выше), а также показывает проводку для высокоомного резистора.

Шаг 3: Пускаем ток!

В учебных пособиях, которые я прочитал, существует множество различных способов подключения разъемов для подключения ваших устройств к питанию. Мы начнем с самого лучшего и дойдем до худшего.

Некоторые учебные пособия расскажут вам, как собрать все детали внутри корпуса, но это опасно и приведет к чрезмерному нагреву и поломкам. Я рекомендую использовать внешний монтаж.

Добавление переменного резистора

Я лично считаю, что это лучший метод, так как он может обеспечить любое напряжение от 1,5 до 24 В. Причина того, что он на 22В, а не 12В, потому что он использует синий провод, который имеет напряжение -12 В, а не обычную землю (черный провод).

ЭТО ИНТЕРЕСНО:  Как проверить термодатчик мультиметром

Нам понадобится:

  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм

Сначала постройте схему с основного изображения и соедините ваши линии +12 и -12 В. Затем просверлите отверстия в блоке питания или в внешнем корпусе, чтобы установить переменный резистор. Все остальные детали должны находиться внутри. Теперь я предлагаю добавить две клеммных колодки, чтобы вы могли подключать устройства напрямую. Также можно подключить к ним «крокодилы». Когда вы поворачиваете переменный резистор, напряжение должно находиться в диапазоне от 1,5 до 24 В.

ПРИМЕЧАНИЕ. На главном изображении есть опечатка, которую следует учесть: + 24В вместо 22В. Если у вас есть старый вольтметр, вы можете подключить его в цепь, чтобы отслеживать выходящее напряжение.

Разъемы

Теперь нужно установить разъемы для подключения оборудования. Просверлите для них отверстия (обязательно оберните печатную плату в пластик, так как металлические осколки могут закоротить ее), а затем проверьте, подходят ли они по размеру, вставив разъемы и затянув болт. Выберите, какое напряжение должно идти на каждый разъем и сколько разъемов нужно вставить. Обозначения проводов по цветам:

  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3В
  • Черный: Земля
  • Белый: -5В

Выше приведено изображение с использованием метода с разъемами.

Крокодиловые зажимы

Если у вас не так много опыта или у вас нет вышеуказанных деталей, и по какой-то причине вы не можете их купить, вы можете просто подключить любые линии напряжения, которые вы хотите к крокодиловым зажимам. Если вы выбрали этот вариант, я рекомендую использовать изоляцию, чтобы предотвратить КЗ.

  1. Не бойтесь добавлять ингредиенты в коробку: светодиоды, наклейки и т.д.
  2. Убедитесь, что вы используете блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у вас нет данных о проводке, даже не начинайте никаких работ, иначе вы просто сломаете свой блок.
  3. Если светодиод на передней панели не горит, значит ножки подключены неправильно. Просто поменяйте провода местами и он должен загореться.
  4. Некоторые современные блоки питания имеют провод «Сигнал обратной связи стабилизатора», который должен быть подключен к источнику питания для работы блока. Если провод серый, подключите его к оранжевому проводу, если он розовый, подключите его к красному проводу.
  5. Силовой резистор с высокой мощностью может довольно сильно нагреваться; вы можете использовать радиатор, чтобы охладить его, но убедитесь, что он не создает КЗ.
  6. Если вы решили монтировать детали внутрь корпуса, вентилятор можно установить снаружи, чтобы освободить немного места.
  7. Вентилятор может шумно работать, ведь он питается от 12В. Так как это не компьютер, который сильно нагревается, можно обрезать красный провод вентилятора и подключить оранжевый 3,3 В. Следите за температурой после этого. Если она слишком большая, подключите обратно красный провод.

Поздравляю! Вы успешно сделали ваш блок питания.

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Переделка

Основная переделка заключается в следующем, все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты. Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к. Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду, что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А, ее следует поменять на ту, которая стоит на 5 вольтовом выпрямителе, она расчитана до 10 А, 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус, используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита, хотя у меня при 9А не срабатывает, если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Для самодельного блока хорошо подойдут индикаторы напряжения и тока. Вы их можете купить на сайте «Мастерок».

П О П У Л Я Р Н О Е:

    Когда я выезжаю на машине, беру с собой ноутбукОднажды наткнулся на одном радиолюбительском сайте статью о том, как сделать автомобильный адаптер для ноутбука.Несложная схема (см. ниже) — одна микросхема и пара транзисторов

Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.

Последовательность действий по переделке БП ATX в регулируемый лабораторный

1. Удаляем перемычку J13 (можно кусачками)

2. Удаляем диод D29 (можно просто одну ногу поднять)

Источник: https://montazhtv.ru/peredelat-blok-pitaniya-ot-kompa-kak-sdelat-reguliruemyi-blok/

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

Бп на основе силового трансформатора

рассмотрим упрощенную структурную схему данного устройства. как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 в получаем 15 в.

следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме.

их принцип работы можно найти на нашем сайте.

упрощенная структурная схема аналогового бп

следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. во-первых, его вес и габариты, ограничивают миниатюризацию. чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 в номинальной мощностью 250 вт. вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. можете представить, сколько бы весила зарядка для ноутбука на его основе.

понижающий трансформатор осо-0,25 220/12

во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

импульсные устройства

как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

рисунок 3. структурная схема импульсного блока питания

рассмотрим алгоритм работы такого источника:

  • питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • на следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. обратная связь с инвертором осуществляется через блок управления.
  • следующий блок – ит, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. помимо этого в задачу ит входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

в отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи вч сигналов, которые могут быть в диапазоне 20-100 кгц.

характерная особенность ит заключается в том, что при его подключении критично включение начала и конца обмоток.

небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

пример миниатюрных импульсных бп

  • далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды шоттки.
  • на завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя.

Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

https://www.youtube.com/watch?v=k2b8fKw3QoU

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств;Зарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.

Импульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Источник: https://www.asutpp.ru/impulsnyj-blok-pitaniya.html

Блок питания на 12 В своими руками — схема и пошаговая инструкция выполнения работ

Блоки питания различаются по конструкции, технических характеристикам и назначению.

Блок питания является вторичным источником энергии для технических устройств, преобразующим напряжение питающей электрической сети в их рабочее напряжение.

Наиболее востребованными являются блоки питания, у которых первичное напряжение – это переменное напряжение бытовой электрической сети, равное 220 Вольт, а вторичное − преобразуемое в постоянное, равное 24/12/5/3,3 V. По принципу преобразования напряжения блоки питания (БП) подразделяются на два вида:

  • трансформаторные – когда преобразование осуществляется посредством понижающего трансформатора, они называются линейными;
  • импульсные – преобразование осуществляется благодаря наличию электронных компонентов, обеспечивающих преобразование напряжения, они называются инверторными.
ЭТО ИНТЕРЕСНО:  Как определить неисправность конденсатора

Если в схеме БП предусмотрен стабилизатор выходного напряжения, то такое устройство называется стабилизированным блоком питания.

Основными техническими характеристиками, определяющими возможность использования подобных технических устройств, являются:

  • электрическая мощность, измеряемая в Ваттах (Вт или В×А);
  • напряжение на входе и выходе, измеряемое в Вольтах (В);
  • выходной ток, измеряемый в Амперах (А);
  • коэффициент полезного действия – параметр полезный при использовании БП большой мощности, измеряется в %;
  • наличие элементов защиты внутренних электрических цепей от перегрузок и токов короткого замыкания.

Область применения

Блоки питания с вторичным напряжением в 12 Вольт импульсного типа используются для подключения к бытовой электрической сети:

  • персональных компьютеров различного типа – для зарядки их аккумуляторных батарей и работы непосредственно от сети;
  • для зарядки электронных гаджетов, в том числе сотовых телефонов и смартфонов, плееров и видеокамер, а также прочих устройств, имеющих в своей конструкции аккумуляторные батареи;
  • для зарядки ручного переносного электрического инструмента – шуруповёрт, болгарка и т.д.;
  • для подключения LED светотехнических приборов (светодиодные светильники и ленты);
  • для использования прочих устройств, предполагающих работу от сети постоянного тока с напряжением 12 В и до 5 ампер, – автомагнитола или автоприёмник в условиях дома или гаража.

Принципиальная схема и принцип работы

Принципиальная схема и принцип работы зависит от вида устройства, и поэтому необходимо рассмотреть их отдельно:

Аналоговый вид БП имеет в своей схеме понижающий трансформатор, обеспечивающий величину вторичного напряжения в заданных величинах, и диодный мост, служащий для его выпрямления. Простейшая схема такого устройства выглядит следующим образом:

Принципиальная схема аналогового блока питания

Конденсаторы, установленные в схеме, обеспечивают сглаживание импульсов напряжения на выходе блока питания.

Инверторный вид БП работает за счёт электронных компонентов, входящих в схему устройства. Напряжение питающей сети подаётся на входной диодный мост, а его пики сглаживаются установленными конденсаторами. После этого сигнал преобразуется в прочих элементах схемы (транзисторы, микросхема, тиристоры и т.д.) и подаётся на импульсный трансформатор.

Трансформаторы данного вида изготавливаются на основе ферромагнетных материалов, поэтому имеют малые габаритные размеры, позволяющие минимизировать размеры БП. Напряжение, полученное после трансформации, подаётся к нагрузке (выходам блока питания). Такой тип БП называется схемой с гальванической развязкой.

Импульсный блок питания на интегральной микросхеме и с построечными резисторами

Существуют схемы БП без использования гальванического соединения. В этом случае входной сигнал сразу подаётся на фильтр нижних частот.

Расчёт мощности блока питания на 12 V

Мощность БП является одной из главных технических характеристик, определяющих возможность подключения к нему той или иной нагрузки. Мощность поэтому может быть рассчитана разными способами:

Для светодиодных лент.

В этом случае расчёт выполняется следующим образом:

  • за основу берётся мощность в 1 метра LED-ленты, указываемая производителем на упаковке;
  • определяется её длина;
  • эти значения перемножаются, и полученное выражение увеличивается на 30%.

Увеличение на 30% обеспечивает необходимый запас мощности. Этот расчёт можно выразить следующей формулой:

Pблока = Pуд × Lленты × Kзапаса, где:

Pблока – электрическая мощность блока питания;

Pуд − электрическая мощность 1 метра светодиодной ленты;

Lленты – длина ленты;

Kзапаса — коэффициент запаса мощности.

Для персонального компьютера.

При необходимости определить мощность БП персонального компьютера следует знать мощности всех элементов устройств, входящих в его комплект. Это непростая задача, поэтому существуют специальные программы и онлайн-калькуляторы, служащие для выполнения такого расчёта. Вот некоторые из них:

  • OuterVision®

Источник: https://tehno.guru/ru/kak-sdelat-blok-pitaniya-12-v-svoimi-rukami/

Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания

В разделы: Советы Схемы → Простой блок питания

Как самому собрать простой блок питания и мощный источник напряжения. Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.

Блок питания 12в

Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений. Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник Шаг 1: Какие детали необходимы для сборки блока питания Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок . -Монтажная плата. -Четыре диода 1N4001, или подобные. Мост диодный. -Стабилизатор напряжения LM7812. -Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе. -Электролитический конденсатор емкостью 1000мкФ — 4700мкФ. -Конденсатор емкостью 1uF. -Два конденсатора емкостью 100nF. -Обрезки монтажного провода. -Радиатор, при необходимости. Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы. Шаг 2: Инструменты . Для изготовления блока необходимы инструменты для монтажа: -Паяльник или паяльная станция -Кусачки -Монтажный пинцет -Кусачки для зачистки проводов -Устройство для отсоса припоя. -Отвертка. И другие инструменты, которые могут оказаться полезными. Шаг 3: Схема и другие Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805. Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева. Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.

Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Блок питания 12в 30а

Схема блока питания 12в 30А. При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер. Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор.

Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.

В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.

Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки. Для охлаждения радиатора можно применить небольшой вентилятор.

Проверка блока питания

При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.

Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.

Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458.

При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.

Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.

По какой схеме: импульсный источник питания или линейный? Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.

Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей. Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы.

При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы). Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).

На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W.

R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8). Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты.

Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).

Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета.

Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания.

Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в. Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).

Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.

Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений.

В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.

R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания Ремонт и доработка китайского блока питания для питания адаптера.

Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Источник: https://www.110volt.ru/sovety/power-supp_12v_24v

Понравилась статья? Поделиться с друзьями:
220 вольт