Что такое сопротивление в электричестве

Какой прибор измеряет сопротивление в электрической цепи?

что такое сопротивление в электричестве

Радиоэлектроника для начинающих

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора.

В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм).

На зарубежных схемах «Ом» пишется как «Ohm».

Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

  • Короткое замыкание, где его быть не должно.
  • Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры.

Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании.

А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора.

Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.

Практическая работа с мультиметром DT-830B

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

  • 200 — на этом пределе измеряются сопротивления величиной до 200 Ом;
  • 2000 — на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);
  • 20k — на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);
  • 200k — предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);
  • Ну, и наконец, 2000k — предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0

Источник: https://1000eletric.com/kakoy-pribor-izmeryaet-soprotivlenie-v-elektricheskoy-tsepi/

Что называется электрическим сопротивлением — Все об электричестве

что такое сопротивление в электричестве

26 марта 2013.
Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду.

Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводника Удельное сопротивление ρ в
Серебро Медь Алюминий Вольфрам Железо Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца) 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.

1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Металл α Металл α
Серебро Медь Железо ВольфрамПлатина 0,0035 0,0040 0,0066 0,00450,0032 Ртуть Никелин Константан НихромМанганин 0,0090 0,0003 0,000005 0,000160,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (t – t0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

ЭТО ИНТЕРЕСНО:  Как подключить электросчетчик однофазный

  Электрический котел для отопления дома 380в

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: https://contur-sb.com/chto-nazyvaetsya-elektricheskim-soprotivleniem/

Что такое Ом

что такое сопротивление в электричестве

  • Справочник
  • Электротехника
  • Единицы измерений
  • Что такое Ом

Ом (Ом, Ω) — единица измерения электрического сопротивления. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

\[ Ом = \frac{В}{А} \]

Ом — единица электрического сопротивления в системе СИ. Если проводник соединяет две точки с разными электрическими потенциалами, то через проводник течёт ток. Величина тока зависит от разности потенциалов, а также от сопротивления проводника этому току. Электрическое сопротивление является характеристикой цепи и измеряется в омах.

Что такое Ом?

1 ом представляет собой “электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила”. CIPM, резолюция 2, 1946 год.

Это небольшое сопротивление, в применяемых на практике цепях сопротивление часто измеряется в мегаомах, то есть в миллионах ом. Единица ом названа в честь немецкого физика Георга Симона Ома (1787–1854). Имя Ома впервые было применено в качестве электрической единицы в 1861 году, когда Чарльз Брайт и Латимер Кларк предложили использовать название ohma для единицы электродвижущей силы.

В качестве обозначения для ома применяется большая греческая буква омега Ω, поскольку букву O можно легко принять за ноль. Хотя в Юникоде и присутствует значок ома (Ω, Ohm sign, U+2126), но его каноническим разложением[1] является заглавная греческая буква омега (Ω, U+03A9), т. е. эти два символа должны быть неразличимы с точки зрения пользователя.

Рекомендуется для обозначения ома использовать омегу.

Закон Ома

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так:
сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

\[ I = \frac{U}{R} \]

где

I – сила тока в проводнике, единица измерения силы тока — ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].

Ом и зависимости от других величин

Еще на заре исследования электричества ученые заметили, что сила тока, проходящего через разные материалы, отличается, хотя эксперимент проводится в одинаковых условиях, образцы подключаются одинаково к одинаковым источникам. Было сделано предположение, что разные образцы обладают разным сопротивлением электрическому току, которое и определяет силу этого тока.

Был экспериментально получен закон, связывающий силу тока и напряжение (закон Ома). Коэффициент в этом законе назвали сопротивлением электрическому току.

Раньше ученые работали только с постоянным током и только со средами, чье сопротивление электричеству не зависит от силы тока, напряжения, времени и условий, то есть постоянно. Сейчас представления усложнились, но для постоянного тока и постоянного сопротивления по-прежнему верен закон Ома.

Определение омического сопротивления электрическому току:

[Сила тока, А] = [Напряжение, В] / [Сопротивление, Ом]

Говорят, что проводник имеет сопротивление один Ом, если при напряжении в один Вольт через него течет ток один Ампер.

Основные соотношения между электрическим сопротивлением (Ом) и другими физическими величинами:

[Выделяемая тепловая мощность, Вт] = [Сила тока, А] 2 × [Сопротивление проводника, Ом]

[Выделяемая тепловая мощность, Вт] = [Напряжение, В] 2 / [Сопротивление проводника, Ом]

[Действующая сила тока, А] = [Действующее напряжение, В] / [Сопротивление, Ом]

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные величина название обозначение величина название обозначение 101 Ом

10−1 Ом

102 Ом

10−2 Ом

103 Ом

10−3 Ом

106 Ом

10−6 Ом

109 Ом

10−9 Ом

1012 Ом

10−12 Ом

1015 Ом

10−15 Ом

1018 Ом

10−18 Ом

1021 Ом

10−21 Ом

1024 Ом

10−24 Ом

декаом даОм daΩ дециом дОм
гектоом гОм сантиом сОм
килоом кОм миллиом мОм
мегаом МОм микроом мкОм µΩ
гигаом ГОм наноом нОм
тераом ТОм пикоом пОм
петаом ПОм фемтоом фОм
эксаом ЭОм аттоом аОм
зеттаом ЗОм зептоом зОм
йоттаом ИОм йоктоом иОм
     применять не рекомендуется      не применяются или редко применяются на практике

Что такое резисторы?

Радиоэлектронные элементы, имеющие заданное постоянное омическое сопротивление, не проявляющие в разумных пределах индуктивность и емкость, называются в электронике резисторами.

В практике применяются резисторы от долей Ома до десятков мегаомов.

мегаом / мегом МОм MOhm 1E6 Ом 1000000 Ом
килоом кОм kOhm 1E3 Ом 1000 Ом

ЭлектротехникаФормулы Физика Теория Электричество

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

Источник: https://calcsbox.com/post/cto-takoe-om.html

Активное сопротивление в электрической цепи. Активное, реактивное и полное сопротивление цепи

biathlonmordovia.ru → Электротехника

Активное сопротивлениезависит от материала, сечения и температуры. Активное сопротивление обусловливает тепловые потери проводов и кабелей. Определяется материалом токоведущих проводников и площадью их сечения.

Различают сопротивление проводника постоянному току (омическое) и переменному току (активное). Активное сопротивление больше активного (R а >R ом) из-за поверхностного эффекта.

Переменное магнитное поле внутри проводника вызывает противоэлектродвижущую силу, благодаря которой происходит перераспределение тока по сечению проводника. Ток из центральной его части вытесняется к поверхности.

Таким образом, ток в центральной части провода меньше, чем у поверхности, то есть сопротивление провода возрастает по сравнению с омическим. Поверхностный эффект резко проявляется при токах высокой частоты, а также в стальных проводах (из-за высокой магнитной проницаемости стали).

Для ЛЭП, выполненных из цветного металла, поверхностный эффект на промышленных частотах незначителен. Следовательно, R а ≈ R ом.

Обычно влиянием колебания температуры на R а проводника в расчётах пренебрегают. Исключение составляют тепловые расчеты проводников. Пересчет величины сопротивления выполняют по формуле:

где R 20 – активное сопротивление при температуре 20 о;

текущее значение температуры.

Активное сопротивление зависит от материала проводника и сечения:

где ρ –удельное сопротивление, Ом мм 2 /км;

l – длина проводника, км;

F – сечение проводника, мм 2 .

Сопротивление одного километра проводника называют погонным сопротивлением:

где удельная проводимость материала проводника, км См/мм 2 .

Для меди γ Cu =53×10 -3 км См/мм2 , для алюминия γ Al =31.7×10 -3 км См/мм2 .

На практике значение r 0 определяют по соответствующим таблицам, где они указаны для t 0 =20 0 С.

Величина активного сопротивления участка сети рассчитывается:

R= r 0 ×l.

Активное сопротивление стальных проводов намного больше омического из-за поверхностного эффекта и наличия дополнительных потерь на гистерезис (перемагничивание) и от вихревых токов в стали:

r 0 = r 0пост + r 0доп,

где r 0пост – омическое сопротивление одного километра провода;

r 0доп – активное сопротивление, которое определяется переменным магнитным полем внутри проводника, r 0доп = r 0поверх.эф + r 0гистер. + r 0вихр.

Изменение активного сопротивления стальных проводников показано на рисунке 4.1.

При малых величинах тока индукция прямо пропорциональна току. Следовательно, r 0 увеличивается. Затем наступает магнитное насыщение: индукция и r 0 практически не изменяются. При дальнейшем увеличении тока r 0 уменьшается из-за снижения магнитной проницаемости стали (m).

Сопротивление, оказываемое проводником проходящему на нему переменному току, называется активным сопротивлением.

Если какой-либо потребитель не содержит в себе индуктивности и емкости (лампочка накаливания, нагревательный прибор), то он будет являться для переменного тока также активным сопротивлением.

Активное сопротивление зависит от частоты переменного тока, возрастая с ее увеличением.

Однако многие потребители обладают индуктивными и емкостными свойствами при прохождении через них переменного тока. К таким потребителям относятся трансформаторы, дроссели, электромагниты, конденсаторы, различного рода провода и многие другие.

При прохождении через них переменного тока необходимо учитывать не только активное, но и реактивное сопротивление, обусловленное наличием, в потребителе индуктивных и емкостных свойств его.

Активное сопротивление определяет действительную часть импеданса:

Где — импеданс, — величина активного сопротивления, — величина реактивного сопротивления, — мнимая единица.

Активное сопротивление — сопротивление электрической цепи или её участка, обусловленное необратимыми превращениями электрической энергии в другие виды энергии(в тепловую энергию)

Реакти́вное сопротивле́ние — электрическое сопротивление, обусловленное передачей энергии переменным током электрическому или магнитному полю (и обратно).

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений:

Величина полного реактивного сопротивления

Индуктивное сопротивление () обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи.

Ёмкостное сопротивление ().

Здесь — циклическая частота

Полное сопротивление цепи при переменном токе:

z = r 2 + x 2 = r 2 +(x L −x C) 2

Билет №12.

1. 1) Согласование генератора с нагрузкой —обеспечение требуемой величины активного эквивалентного сопротивления нагрузки генераторной лампы, R э, при всех возможных значениях входного сопротивления антенного фидера, которое зависит от его волнового сопротивления и коэффициента бегущей волны (КБВ)

Согласование (в электронике) сводится к правильному выбору сопротивлений генератора (источника), линии передачи и приёмника (нагрузки). Идеального Согласование (в электронике) между линией и нагрузкой можно достичь при равенстве волнового сопротивления линии r полному сопротивлению нагрузки Zh = RH + j ХН, или при RH= r и XH= 0, где RH -активная часть полного сопротивления, XH — его реактивная часть.

В этом случае в передающей линии устанавливается режим бегущих волн и характеризующий их коэффициент стоячей волны (КСВ) равен 1.

Для линии с пренебрежимо малыми потерями электрической энергии Согласование и, благодаря ему, максимально эффективная передача энергии из генератора в нагрузку достигаются при условии, что полные сопротивления генератора Zr и нагрузки ZH являются комплексно-сопряжёнными, т. е. Zr = Z*H, или Rr = r = R Н =Xr- XH.

В этом случае реактивное сопротивление цепи равно нулю, и соблюдаются условия резонанса, способствующие повышению эффективности работы радиотехнических систем (улучшается использование частотных диапазонов, повышается помехозащищенность, снижаются частотные искажения радиосигналов и т.п.). Оценку качества Согласование (в электронике) производят, измеряя коэффициент отражения и КСВ.

Практически Согласование (в электронике) считают оптимальным, если в рабочей полосе частот КСВ не превышает 1,2-1,3 (в измерительных приборах 1,05). В отдельных случаях косвенными показателями Согласование (в электронике) могут служить реакции параметров генератора (частоты, мощности, уровня шумов) на изменение нагрузки, наличие электрических пробоев в линии, разогрев отдельных участков линии.

При таком режиме работы в приёмнике выделяется наибольшая мощность, равная половине мощности источника. В этом случае К.П.Д. =0,5. Такой режим используется в измерительных цепях, устройствах средств связи.

При передаче больших мощностей, например по высоковольтным линиям электропередач, работа в согласованном режиме, как правило, недопустима.

Полное сопротивление, или импеданс, характеризует сопротивление цепи переменному электрическому току. Данная величина измеряется в омах. Для вычисления полного сопротивления цепи необходимо знать значения всех активных сопротивлений (резисторов) и импеданс всех катушек индуктивности и конденсаторов, входящих в данную цепь, причем их величины меняются в зависимости от того, как меняется проходящий через цепь ток. Импеданс можно рассчитать при помощи простой формулы.

Формулы

  1. Полное сопротивление Z = R или X L или X C (если присутствует что-то одно)
  2. Полное сопротивление (последовательное соединение) Z = √(R 2 + X 2) (если присутствуют R и один тип X)
  3. Полное сопротивление (последовательное соединение) Z = √(R 2 + (|X L — X C |) 2) (если присутствуют R, X L , X C)
  4. Полное сопротивление (любое соединение) = R + jX (j – мнимое число √(-1))
  5. Сопротивление R = I / ΔV
  6. Индуктивное сопротивление X L = 2πƒL = ωL
  7. Емкостное сопротивление X C = 1 / 2πƒL = 1 / ωL

Шаги

Часть 1

Вычисление активного и реактивного сопротивлений

    Импеданс обозначается символом Z и измеряется в омах (Ом). Вы можете измерить импеданс электрической цепи или отдельного элемента. Импеданс характеризует сопротивление цепи переменному электрическому току. Есть два типа сопротивления, которые вносят вклад в импеданс:

    • Активное сопротивление (R) зависит от материала и формы элемента. Наибольшим активным сопротивлением обладают резисторы, но и другие элементы цепи обладают небольшим активным сопротивлением.
    • Реактивное сопротивление (X) зависит от величины электромагнитного поля. Наибольшим реактивным сопротивлением обладают катушки индуктивности и конденсаторы.
  1. Сопротивление – это фундаментальная физическая величина, описываемая законом Ома: ΔV = I * R. Эта формула позволит вам вычислить любую из трех величин, если вы знаете две другие. Например, чтобы вычислить сопротивление, перепишите формулу так: R = I / ΔV. Вы также можете при помощи мультиметра.

    • ΔV – это напряжение (разность потенциалов), измеряемое в вольтах (В).
    • I – сила тока, измеряемая в амперах (А).
    • R – это сопротивление, измеряемое в омах (Ом).
  2. Реактивное сопротивление имеет место только в цепях переменного тока. Как и активное сопротивление, реактивное сопротивление измеряется в омах (Ом). Есть два типа реактивного сопротивления:

    Вычислите индуктивное сопротивление. Это сопротивление прямо пропорционально быстроте изменения направления тока, то есть частоты тока. Эта частота обозначается символом ƒ и измеряется в герцах (Гц). Формула для расчета индуктивного сопротивления: X L = 2πƒL, где L – индуктивность, измеряемая в генри (Гн).

  3. Вычислите емкостное сопротивление. Это сопротивление обратно пропорционально быстроте изменения направления тока, то есть частоты тока. Формула для вычисления емкостного сопротивления: X C = 1 / 2πƒC. С – это емкость конденсатора, измеряемая в фарадах (Ф).

    • Вы можете .
    • Эту формулу можно переписать так: X C = 1 / ωL (объяснения см. выше).

Часть 2

Вычисление полного сопротивления

  1. Если цепь состоит исключительно из резисторов, то импеданс вычисляется следующим образом. Сначала измерьте сопротивление каждого резистора или посмотрите значения сопротивления на схеме цепи.

    • Если резисторы соединены последовательно, то полное сопротивление R = R 1 + R 2 + R 3
    • Если резисторы соединены параллельно, то полное сопротивление R = 1 / R 1 + 1 / R 2 + 1 / R 3
  2. Сложите одинаковые реактивные сопротивления. Если в цепи присутствуют исключительно катушки индуктивности или исключительно конденсаторы, то полное сопротивление равно сумме реактивных сопротивлений. Вычислите его следующим образом:

    • Последовательное соединение катушек: X total = X L1 + X L2 +
    • Последовательное соединение конденсаторов: C total = X C1 + X C2 +
    • Параллельное соединение катушек: X total = 1 / (1/X L1 + 1/X L2 )
    • Параллельное соединение конденсаторов: C total = 1 / (1/X C1 + 1/X C2 )

Источник: https://biathlonmordovia.ru/elektrotehnika/active-resistance-in-the-electrical-circuit-active-reactive-and-impedance-circuits/

Закон Ома

Программа КИП и А

В программу «КИП и А», в разделе «Электрика» включен блок расчета закона Ома для постоянного и переменного тока. Сначала немного теории..

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / R где I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × U где P — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока, I= U/R P/U √(P/R)
Напряжение, U= I×R P/I √(P×R)
Сопротивление, R= U/I P/I² U²/P
Мощность, P= I×U I²×R U²/R
ЭТО ИНТЕРЕСНО:  Как подключить электросчетчик трехфазный

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.

Последовательное включение R, L, C
Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, C При параллельном включении R, L, C
Z=√(R2+(ωL-1/ωC)2) Z=1/ √(1/R2+(1/ωL-ωC)2)
где,
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Cos(φ) = P / S

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.

Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / Z где I — сила переменного тока, измеряемая в Амперах, (A)   
U — напряжение переменного тока, измеряемое в Вольтах, (V)
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω)

Производные формулы:

Сила тока, I= U/Z P/(U×Cos(φ)) √(P/Z)
Напряжение, U= I×Z P/(I×Cos(φ)) √(P×Z)
Полное сопротивление, импеданс Z= U/I P/I² U²/P
Мощность, P= I²×Z I×U×Cos(φ) U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:

Закон Ома для постоянного тока
Закон Ома для переменного тока
Расчет полного сопротивления
Расчет коэффициента мощности Cos(φ)

Источник: https://www.axwap.com/kipia/docs/elektrika/zakon-oma.htm

Полное сопротивление электрической цепи

Для расчетов напряжений и токов через элементы электрической цепи нужно знать их общее сопротивление. Источники энергии делятся на два типа:

  • постоянного тока (батарейки, выпрямители, аккумуляторы), электродвижущая сила (ЭДС) которых не изменяется во времени;
  • переменного тока (бытовые и промышленные сети), ЭДС которых изменяется по синусоидальному закону с определенной частотой.

Активные и реактивные сопротивления

Сопротивление нагрузки бывает активным и реактивным. Активное сопротивление (R) не зависит от частоты сети. Это означает, что ток в нем изменяется синхронно с напряжением. Это то сопротивление, которое мы измеряем мультиметром или тестером.

Обозначение активного сопротивления

Реактивное сопротивление делится на два вида:

индуктивное (трансформаторы, дроссели);

Обозначение индуктивного сопротивления

емкостное ( конденсаторы).

Обозначение емкостного сопротивления

Отличительная черта реактивной нагрузки – наличие опережения или отставания тока от напряжения. В емкостной нагрузке ток опережает напряжение, а в индуктивной – отстает от него.

Физически это выглядит так: если разряженный конденсатор подключить к источнику постоянного тока, то в момент включения ток через него максимальный, а напряжение – минимальное. Со временем ток уменьшается, а напряжение — возрастает, пока конденсатор не зарядится.

Если подключить конденсатор к источнику переменного тока, то он будет постоянно перезаряжаться с частотой сети, а ток — увеличиваться раньше, чем напряжение.

Подключив к источнику постоянного тока индуктивность, получим обратный результат: ток через нее будет нарастать некоторое время после подключения напряжения.

Величина реактивного сопротивления зависит от частоты. Емкостное сопротивление:

Угловая частота, связанна с частотой сети f формулой:

Как видно из формулы, при повышении частоты емкость уменьшается.

Индуктивное сопротивление:

Физические величины в формулах
Обозначение Единица измерения Наименование
С Фарада (Ф) емкость
ѡ 1/с угловая частота
f Герц (Гц) частота
L Генри (Гн) индуктивность

Полное сопротивление электрической цепи переменного тока

В сети переменного тока нет нагрузки только активной или только реактивной. Нагревательный элемент помимо активного содержит индуктивное сопротивление, в электродвигателе индуктивное сопротивление преобладает над активным.

Величину полного сопротивления, учитывающего все активные и реактивные составляющие электрической цепи, подсчитывают по формуле:

Расчет эквивалентного сопротивления элементов цепи

К одному источнику питания может быть подключено несколько сопротивлений. Для вычисления тока нагрузки источника подсчитывают эквивалентное сопротивление нагрузки. В зависимости от соединения элементов между собой, используются два способа.

Последовательное соединение сопротивлений.

В этом случае их величины складываются:

Последовательное соединение двух сопротивлений

Чем больше сопротивлений соединено последовательно, тем больше эквивалентное сопротивление этой цепи. Бытовой пример: если контакт в штепсельной вилке ухудшится, это равносильно подключению последовательно с нагрузкой дополнительного сопротивления. Эквивалентное сопротивление нагрузки вырастет, а ток через нее – уменьшится.

Параллельное соединение сопротивлений.

Формула расчета выглядит намного сложнее:

Случай применения этой формулы для двух параллельно соединенных сопротивлений:

Случай для соединения n одинаковых сопротивлений R:

Чем больше сопротивлений соединить параллельно, тем итоговое сопротивление цепи меньше. Это мы наблюдаем и в повседневной жизни: чем больше к сети подключить потребителей, тем меньше эквивалентное сопротивление и больше ток нагрузки.

Таким образом, расчет полного сопротивления электрической цепи происходит поэтапно:

  1. Рисуется схема замещения цепи, содержащая активные и реактивные сопротивления.
  2. Рассчитываются эквивалентные сопротивления отдельно для активной, индуктивной и емкостной составляющих нагрузки.
  3. Рассчитывается полное сопротивление электрической цепи
  4. Рассчитываются токи и напряжения в цепи источника питания.

Источник: http://electric-tolk.ru/polnoe-soprotivlenie-elektricheskoj-cepi/

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

где,p— удельное сопротивление (единицы измерения ом*м/мм2);

l — длина проводника (м);

Источник: https://pue8.ru/elektrotekhnik/413-elektricheskoe-soprotivlenie.html

Расчет сопротивления электрической цепи: резисторов

Многие люди, которые изучают электрику, сталкиваются с таким понятием, как расчет сопротивления. Что собой представляет эта величина, в каких единицах измеряется сопротивление проводника, от чего зависит и как его вычислить — далее.

Описание явления

Электрическим сопротивлением называется физическая величина, которая характеризует проводниковое свойство препятствовать электротоку. Она равна напряжению, поделенному на силу тока, которое проходит по проводниковому элементу.

Расчет сопротивляемости

Электросопротивление бывает активным, реактивным и удельным. Активным является часть полного, находящегося в электроцепи. В нем энергия целиком преобразовывается во все энергетические виды. Бывает тепловой, механической и химической. Отличительным свойством является процесс полного потребления всей электрической энергии.

Обратите внимание! Согласно международной системе единиц, измеряется величина в омах, умноженных на метр. В некоторых случаях применяется единица ом, умноженная на миллиметр в квадрате, поделенная на метр. Это обозначение для проводника, имеющего метровую длину и миллиметровую площадь сечения в квадрате.

Определение из учебного пособия

Зачем нужно рассчитывать сопротивление

Рассчитывать сопротивление нужно, чтобы избежать появления короткого замыкания. Резисторы, образующие его, преобразовывают ток в напряжение, ограничивают протекающий электроток и получают заданную величину. Они создают делители напряжения в измерительном оборудовании и решают другие специальные задачи, к примеру, уменьшают радиопомехи.

Рассчитывать сопротивление нужно, чтобы сохранялась работоспособность резисторов и их нормальная регулировочная функция. Если будут находиться в целости резисторы, в которых преобразовывается энергия, то будут работать все электрические приборы.

Защита от короткого замыкания

Факторы влияния

Сопротивляемость зависит от температуры. Она увеличивается, когда повышается столбик термометра. Это поясняется физиками так, что при росте температуры атомные колебания в кристаллической проводниковой решетке повышаются. Это препятствует тому, чтобы свободные электроны двигались. Что касается полупроводников и диэлектриков, то там величина понижается из-за того, что увеличивается структура концентрации зарядных носителей.

Сопротивление у металлических монокристаллов с металлами и сплавами разные. Их вычисления, соответственно, неодинаковые. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства.

Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью.

Под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в антикоррозийном и легком составе, как правило, равна не больше 0,1 %.

Зависимость от температуры

Электрические величины

Электрическое сопротивление является физической величиной, которая равна напряжению, поделенному на силу тока. Сила тока в участке цепи является прямо пропорциональной величиной напряжению на окончаниях данного участка и обратно пропорциональной его сопротивляемости. Последнее значение имеет прямую пропорциональность проводниковой длине и обратную пропорциональность площади его сечения. Оно зависит от проводникового вещества.

Формулы нахождения единицы

Тип и геометрические параметры

Бывают резисторы постоянными, переменными, подстрочными по типу сопротивляемости и термическими. Имеют свои геометрические обозначения и параметры. Как правило, первые цифры обозначают материал, вторые — стержневую, дисковую или микромодульную конструкцию, а третьи — порядковый разработочный номер.

Температурные показатели

Каждый резистор, полупроводник и проводник, образующий сопротивляемость, имеет свой температурный коэффициент. Он равен удельной сопротивляемости вещества на единицу времени. Температурный коэффициент проводимости — тот коэффициент, который идет с обратным знаком.

Расчет сопротивления электрической цепи резисторов

Перед тем как рассчитать общее сопротивление электрической цепи, нужно изучить формулу ниже. Также это можно сделать при помощи специального измерительного прибора под названием омметр или мультиметр.

Формулы для расчета

Сопротивление — важный параметр, без которого работа электрооборудования невозможна. Его нужно научиться рассчитывать, чтобы правильно составлять электросхему и не допускать короткого замыкания. Зависит оно, прежде всего, от температуры, что и выражается в формулах измерения.

Источник: https://rusenergetics.ru/polezno-znat/raschet-soprotivleniya

Как найти силу тока с помощью формул и измерительных приборов

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I2R, откуда

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).
ЭТО ИНТЕРЕСНО:  Как включить электричество в щитке

Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепи
показатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ0) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В. Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U  = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

  • I1 = U/R1 =100/5 = 20 А;
  • I2 = U/R2 =100/25 ≈ 4 А;
  • I3 = U/R3 =100/50 = 2 А.

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях:  I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U2/R)*t или

A = ((220 В)2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Источник: https://www.asutpp.ru/kak-nayti-silu-toka.html

Что такое резистор и для чего он нужен в электрической цепи

Вы здесь: Один самых часто используемых элементов в электронике – это резистор. Простым языком его называют «сопротивление». С его помощью можно ограничивать ток или измерять его, делить напряжение, создавать цепи обратной связи. Без сопротивлений не обходится ни одна схема. В этой статьи мы расскажем о том, что такое резистор, какой у него принцип работы, а также для чего нужен этот элемент электрической цепи.

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Виды

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

Источник: https://samelectrik.ru/chto-takoe-rezistor.html

Что такое короткое замыкание по-простому

КОРОТКОЕ ЗАМЫКАНИЕ – это электрическое соединение разных фаз или потенциалов электроустановки между собой или с землей, не предусмотренное в нормальном режиме работы, при котором в проводниках, в месте контакта, резко возрастает сила тока, превышая максимально допустимые величины.

Если же говорить простым языком, короткое замыкание – этолюбое незапланированное, нештатное соединение электрических проводников с разным потенциалом, например, фазы и ноля, при котором образуются разрушительные токи.

Как вы заметили, акцент на том, что короткое замыкание в электрической цепи — это именно незапланированный, не предусмотренный процесс, сделан не зря, ведь, по большому счету, контролируемое замыкание (некоторые еще назывыают его по-аналогии длинным) запускает электроприборы. Все они включаются в розетку, и, так или иначе, фазный провод, посредством электроприбора соединяется с нулевым, но короткого замыкания при этом не происходит, давайте разберемся почему.

Для того чтобы понять почему происходит короткое замыкание, нужно вспомнить закон Ома для участка цепи – «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке», формула при этом следующая:

I=U/R

 где I – сила тока, U – напряжение на участке цепи, R – сопротивление.

Любой электроприбор в квартире, включающийся в розетку, это активное сопротивление (R – в формуле), напряжение в бытовой электросети вам должно быть известно – 220В-230 В и оно практически не меняется. Соответственно, чем выше сопротивление электроприбора (или материала, проводника и т.д.) включаемого в сеть, тем меньше величина тока, так, как зависимость между этими величинами обратно пропорциональная.

Теперь представьте, что мы включаем в сеть электроприбор практически без сопротивления, допустим его величина R=0.05 Ом, считаем, что тогда будет с силой тока по закону Ома.

I=220В(U)/0,05(Ом)=4400А

В результате получается очень высокий ток, для сравнения стандартная электрическая розетка в нашей квартире, выдерживает лишь ток 10-16А, а у нас по расчетам 4,4 кА.

Современные медные провода, используемые в проводке, имеют настолько хорошие показатели электрической проводимости, что их сопротивление, при относительно небольшой длине, можно принять за ноль. Соответственно, прямое соединение фазного и нулевого провода, можно сравнить, с подключением к сети электроприбора, с очень низким сопротивлением. Чаще всего, в бытовых условиях, мы сталкиваемся именно с таким типом короткого замыкания.

Конечно, это очень грубый пример, в реальных условиях, при расчете силы тока при коротком замыкании, учитывать приходится гораздо больше показателей, таких как: сопротивление всей линии проводов, идущих к вам, соединений, дополнительного оборудования сети и даже дуги образующейся при коротком замыкании, а также некоторых других.Поэтому, чаще всего, сопротивление будет выше тех 0,05 Ом, что мы взяли в расчете, но общий принцип возникновения КЗ и его разрушительных эффектов понятен.

Почему короткое замыкание так называется

Подключая какую-то нагрузку к сети, например, утюг, телевизор или любой другой электроприбор, мы создаём сопротивление для протекания электрического тока.

Если же мы умышленно или случайно соединим, например, фазу и ноль напрямую, без нагрузки, мы, в каком-то смысле, укорачиваем путь, делаем его коротким.

Поэтому, короткое замыкание и называют коротким, подразумевая движение электронов по кротчайшему пути, без сопротивления.

Чем опасно короткое замыкание

Самая значительная опасность при коротком замыкании – это большая вероятность возникновения пожара.

При значительном увеличении силы тока, которое происходит при КЗ, выделяется большое количество теплоты в проводниках, что вызывает разрушение изоляции и возгорание.
Кроме того, в быту, чаще всего происходит дуговое короткое замыкание, при котором, между проводниками в месте КЗ, возникает мощнейший электрический разряд, который нередко воспламеняет окружающие предметы.

Так же не стоит забывать про опасность поражения электрическим током или резким выделением тепла человека, которая так же достаточно высока.

Из менее опасных последствий, происходящих при КЗ, стоит отменить значительное снижение напряжения в электрической сети особенно в месте его возникновения, что негативно влияет на различные электроприборы, в частности оснащенные двигателями. Также, не стоит забывать про сильное электромагнитное воздействие на чувствительное к этому оборудование.

Как видите, последствия от возникновения короткого замыкания могут быть очень серьезными, поэтому, при проектировании любой электроустановки и монтаже электропроводки, необходимо предусмотреть защиту от короткого замыкания.

Защита от короткого замыкания

Большинство современных способов защиты от короткого замыкания основаны на принципе разрыва электрической цепи, при обнаружении КЗ.

Самые простые устройства, которые есть во многих электроприборах, защищающие от последствий коротких замыканий – это плавкие предохранители.

Чаще всего, плавкий предохранитель представляет собой проводник, рассчитанный на определенный предельный ток, который он сможет пропускать через себя, при превышении этого значения, проводник разрушается, тем самым разрывая электрическую цепь. Плавкий предохранитель — это самый слабый участок электрической цепи, который первый выходит из строя под действием высокого тока, тем самым защищает все остальные элементы.

Для защиты от коротких замыканий в квартире или доме, используются автоматические выключатели -АВ (чаще всего их называют просто автоматы), они устанавливаются на каждую группу электрической сети.

Каждый автоматический выключатель рассчитан на определенный рабочий ток, при превышении которого он разрывает цепь. Это происходит либо с помощью теплового расцепителя, который при нагреве, вследствие протекания высокого тока, механически разъединяет контакты, либо с помощью электромагнитного.

Принцип работы автоматических выключателей — это тема отдельной статьи, о них мы поговорим в другой раз. Сейчас же, хочу еще раз напомнить, что от короткого замыкания не спасает УЗО, его предназначение совсем в другом.

Для того, чтобы правильно выбрать защитный автоматический выключатель, делаются расчеты величины возможного тока короткого замыкания для конкретной электроустановки. Чтобы в случае, если КЗ произойдёт, автоматика сработала оперативно, не пропустив резко возросший ток и не сгорев от него, не успев разорвав цепь.

Причины короткого замыкания

Чаще всего в бытовых условиях квартиры или частного дома, короткое замыкание возникает по нескольким причинам, основные из которых:

— в следствии нарушения изоляции электрических проводов или мест их соединений. Факторов приводящих к этому достаточно много, здесь и банальное старение материалов, и механическое повреждение, и даже загрязнения изоляторов.

— из-за случайного или преднамеренного соединения проводников с различным потенциалом, чаще всего фазного и нулевого. Это может быть вызвано ошибками при работе с электропроводкой под напряжением, неисправностью электроприборов, случайным попаданием проводников на контактные группы и т.д.

Поэтому, очень важно ответственно относится как к монтажу электроустановки, так и к её эксплуатации и обслуживанию.

Будьте аккуратны и осмотрительны при обращении с электрическими приборами и оборудованием, не включайте их в сеть если они повреждены или открыты. Не хватайтесь за электрические провода, если точно не знаете, что они не под напряжением.

Ну и как всегда, если у вас есть что добавить, вы нашли неточности или ошибки – обязательно пишите в комментариях к статье, кроме того задавайте свои вопросы, делитесь полезным опытом.

Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/163-chto-takoe-korotkoe-zamykanie-po-prostomu

Понравилась статья? Поделиться с друзьями:
220 вольт