Как обозначается магнитный пускатель

Схемы подключения магнитного пускателя на 220 В и 380 В + как подключить контактор своими руками

как обозначается магнитный пускатель

Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.

Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.

В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.

Отличие магнитного пускателя от контактора

Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.

В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.

Предельное напряжение, с которым работает магнитный пускатель, зависит от электромагнитной катушки индуктивности. Бывают МП небольших номиналов — 12, 24, 110 В, но наиболее часто применяют на 220 и 380 В

Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.

Устройство и назначение прибора

Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.

Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.

Назначение магнитного пускателя

Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.

Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.

Стартовые кнопки, которыми оснащают схему, обеспечивают удобную эксплуатацию. Если нужно отключить нагрузку, достаточно задействовать клавишу «Стоп». При этом поступление напряжения на катушку пускателя закончится и цепь разорвется

МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.

После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».

Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.

Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.

Конструкция и функционирование прибора

Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.

Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.

Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.

Вариантов исполнения четыре:

  • открытый;
  • защищенный;
  • пылеводозащищенный;
  • пылебрызгонепроницаемый.

Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.

Буквы обозначают тип устройства, следующие за ними цифры — от 1 до 6 —величину. Вторая цифра — исполнение. Единица указывает на нереверсивный МП без тепловой защиты, двойка — то же, но с тепловой защитой, три — реверсивный, не имеющий тепловой защиты, четыре — с тепловой защитой, реверсивный

При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.

Состоит МП из следующих основных узлов:

  • сердечника;
  • электромагнитной катушки;
  • якоря;
  • каркаса;
  • механических датчиков работы;
  • групп контакторов — центральной и дополнительной.

Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.

МП включает в свою конструкцию основание (1), контакты неподвижные (2), пружину (3), сердечник (4), дроссель (5), якорь (6), пружину (7), контактный мостик (8), пружину (9), дугогасительную камеру (10), нагревательный элемент (11)

По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.

Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.

Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.

Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.

Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.

В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.

Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.

Можно вручную проконтролировать работу системы путем нажатия на якорь с целью почувствовать силу сокращения пружины. Как раз усилие сокращения справляется с магнитным полем. При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются

Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.

Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.

Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.

Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.

На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Различают два вида контактов блокировки: нормально закрытые, нормально разомкнутые. Первого вида контакт имеет кнопка «Стоп», а нормально открытый — «Пуск»

Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.

Провода из меди до подключения нужно залудить. Если они многожильные, их концы перед лужением скручивают. У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Популярные схемы подключения МП

Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.

Это предельно простая схема. Она собирается, когда замыкается выключатель автоматический QF. От КЗ (короткого замыкания) схему управления защищает предохранитель PU

В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.

При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.

Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Тонкости подключения устройства на 220 В

Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.

Особенности силовой цепи

Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.

Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Как подключить магнитный пускатель

как обозначается магнитный пускатель

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Магнитный пускатель и магнитный контактор

Отличие между магнитным пускателем и магнитным контактором  в том, какую мощность нагрузки могут коммутировать эти  устройства.

Магнитный пускатель может быть «1»,  «2»,  «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:

Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами.

За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов  на включение могут размещаться в рабочих зонах пользователя.

На схеме пускатель и контактор обозначаются таким схематичным знаком:

где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.

Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются.

А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.

Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C».

Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них.

Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1».

  Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются , после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать.

ЭТО ИНТЕРЕСНО:  Как подключить узо и автоматы

При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут.

Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста.

В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно.

При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону.

Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю  добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем.  Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз».

Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема.

Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок.

После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку.

На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Источник: http://electry.ru/elektromontazhnye-raboty/kak-podklyuchit-magnitnyiy-puskatel.html

Краткий обзор условных обозначений, используемых в электросхемах

как обозначается магнитный пускатель

Вы здесь: Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта Сам Электрик условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Буквенные

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Также читают:

  • Технология проверки работоспособности транзистора
  • Как правильно проверить, работает ли конденсатор?
  • Технология правильного лужения проводов

  • Источник: https://samelectrik.ru/kratkij-obzor-uslovnyx-oboznachenij-ispolzuemyx-v-elektrosxemax.html

    Контактор | Обозначение на схеме

    Схематическое обозначение электромагнитного контактора показывает общий принцип его работы и сформировано согласно правил действующего ГОСТ Р МЭК 60617-DB-12M-2015 «Графические символы для схем (в формате базы данных)».

    Ниже показана однолинейная схема электрического щита, в котором установлен ряд модульных устройств.

    Контактор обозначается как электромагнит КМ, катушка которого запитана через автомат QF2, а сердечник механически связан с контактами, разрывающими линию питания с автоматического выключателя QF2.

    Схематический вид включает:

    1. Электромагнит — катушка с магнитным сердечником

    2. Механическую связь сердечника с силовыми контактами

    3. Силовые контакты коммутирующими нагрузку

    4. Контур корпуса (показывается не всегда)

    Для трехфазных устройств принцип не изменяется, лишь добавляются дополнительные силовые контакты:

    Этой информации достаточно, чтобы любой смог понять принцип действия этого оборудования и его тип.

    Нередко контактор на однолинейной схеме путают с магнитным пускателем, особенно на больших сложных сборках. Чтобы это не произошло, обращайте внимание на две основные детали:

    1) Обозначение силовых контактов: в случае с расцепителем, механическая связь показывается с рычагом автоматического выключателя (контакт с «кубиком»), а не просто с силовыми контактами (контакты с полукругом или без дополнительного графического знака).

    2) Корпус щитового устройства: Контур контактора, показанный пунктирной линией, обязательно включает в себя электромагнит и связанные с ним силовые контакты, у расцепителя он часто вообще не показывается.

    На сложных однолинейных схемах, где большое количество сгруппированных в определенной последовательности аппаратов защиты, автоматики и т.д. встречается упрощенная схема отображения контакторов:

    В таких случаях, для удобства, обозначение контактора разбивается на части — отдельно показывается электромагнит (КМ1 и КМ2) и линии питания, проходящие через его силовые контакты (КМ1.1, КМ1.2, КМ2.1., КМ2.2).

    Условные обозначения другого модульного оборудования, которое чаще всего встречается в электрических щитах, мы рассмотрим в следующий раз. Подписывайтесь на нашу группу вконтакте, узнайте первыми о выходе новых материалов.

    Источник: https://rozetkaonline.ru/poleznie-stati-o-rozetkah-i-vikluchateliah/item/202-kontaktor-oboznachenie-na-skheme

    Магнитный пускатель 380в характеристики

    Освещение в доме мы включаем обыкновенным выключателем, при этом через него проходит ток небольшой величины. Для включения мощных нагрузок однофазных на 220 Вольт и 3 фазных на 380 Вольт используются специальные коммутирующие электротехнические аппараты— магнитные пускатели. Они позволяют дистанционно при помощи кнопок (можно сделать и от обычного выключателя) включать-выключать мощные нагрузки, например освещение целой улицы или мощный электродвигатель.

    В квартирах пускатели не используются, за то довольно часто применяются на производстве, в гаражах на даче для запуска, защиты и реверсирования асинхронных электрических двигателей.

    Да же из названия понятно, что главное его предназначение заключается в запуске электродвигателей.

    А кроме того вместе с тепловым реле, магнитный пускатель защищает мотор от ошибочных включений и повреждений в аварийных ситуациях: возникновении перегрузок, нарушении изоляции обмоток, пропадании одной фазы и т. п.

    Часто пускатели устанавливаются для включения и выключения не только двигателей, но и других много киловаттных нагрузок- уличное освещение, обогреватели и т. п.

    После пропадания электричества он сам отключится и включится только после повторного нажатия кнопки «Пуск». Но если использовать для дома простейшую схему управления при помощи обычного выключателя, тогда во включенном его положении всегда будет срабатывать пускатель.

    Он работает по принципу реле, только в отличие от него управляет мощными нагрузками до 63 Киловатт, при больших используется контактор. Для автоматизации управления, например уличным освещением можно к контактам катушки подключить управляющие таймеры, датчики движения или освещения.

    Устройство и принцип работы магнитного пускателя

    Основой является электромагнитная система, состоящая из катушки, неподвижной части сердечника и подвижной- якоря, который крепится к изоляционной траверсе с подвижными контактами. К неподвижным контактам при помощи болтовых соединений подключаются с одной стороны провода от электросети, а с другой- к нагрузке.

    Для осуществления защиты от ошибочных включений устанавливаются по бокам или сверху над основными- блок контакты, которые например в реверсивной схеме с двумя пускателями при включении одного пускателя, блокируют включение второго.

    Если включится сразу два, то возникнет межфазное короткое замыкание, потому что изменение направления вращения асинхронного двигателя достигается благодаря замене местами 2 фаз. То есть со стороны подключения электродвигателя между пускателями делаются перемычки с чередованием на одном из них 2 фаз.

    Так же одна пара блок контактов необходима для удержания во включенном состоянии пускателя после отпускания кнопки «Пуск». Подробно схему подключения Мы рассмотрим в следующей статье.

    Принцип работы пускателя довольно прост. Для включения необходимо подать рабочее напряжение на катушку. Она при включении потребляет по цепи управления очень маленький ток, их мощность находится в пределах от 10 до 80 Ватт, в зависимости от величины.

    При включении катушка намагничивает сердечник и происходит втягивание якоря, который при этом замыкает главные и вспомогательные контакты. Цепь замыкается и электрический ток начинает протекать через подключенную нагрузку.

    Для отключения необходимо обесточить катушку, и возвратная пружина возвращает якорь на место- блок и главные контакты размыкаются.

    Между пускателем и 3 фазным асинхронным двигателем устанавливается тепловое реле, которое защищает его то токов перегрузки во внештатных ситуациях.

    Внимание, тепловое реле не защищает от коротких замыканий, поэтому требуется установка перед пускателем необходимой величины автоматического выключателя.

    Принцип работы теплового реле прост— оно подбирается под определенный рабочий ток двигателя, при превышении его предела происходит нагревание и размыкание биметаллических контактов, которые размыкают цепь управления с отключением пускателя. Схема подключения будет рассмотрена в следующей статье.

    Технические характеристики магнитных пускателей

    Основные технические характеристики можно узнать из условного обозначения, состоящего чаще всего из трех букв и четырех цифр . Например, ПМЛ-Х Х Х Х:

        1. Первые две буквы обозначают- пускатель магнитный.
        2. Третья буква указывает на серию или тип пускателя. Бывают ПМЛ, ПМЕ, ПМУ, ПМА
        3. Первая после букв цифра указывает на величину пускателя по номинальному току:
          Величина, первая цифра Номинальный ток
          1 2 3 4 5 6 7
          10 или 16 А 25 А 40 А 63 или 80 А 125 А 160 А 250 А
        4. Вторая цифра — наличие тепловой защиты и характеристику работы электродвигателя.
          Реверсивный С тепловым реле Электрическая блокировка Механическая блокировка
          1 2 3 4 5
          да да да
          да да да
          есть есть
          есть есть
        5. Третья цифра указывает на наличие кнопок и степень защиты.
          В корпусе С кнопками «пуск» и «стоп» Класс защищенности Сигнальные лампы
          1 2 3 4
          да да да да
          да да
          IP00 IP54 IP54 IP54 IP40
          есть

        IP54- брызго- и пылезащитный корпус, IP40- только пылезащитный корпус.

      1. Четвертая цифра — количество контактов вспомогательной цепи.
        Количество замкнутых контактов Количество разомкнутых контактов
        1 2 3 4
        1 2 3 3 5
        1 2 3 1 1
    ЭТО ИНТЕРЕСНО:  Что такое кпд источника тока

    При покупке обращайте и на другие параметры:

    • Самый важный параметр- это рабочее напряжение катушки оно может быть как переменным 24, 36, 42, 110, 220 ил 380 Вольт, так и постоянным. Для домашнего хозяйства берите с катушкой на переменное напряжение величиной 380 Вольт для подключения 3 фазных электромоторов, и на 220 В- для подключения других нагрузок. Будьте внимательны всегда проверяйте величину напряжения только на корпусе самой катушки, а не пускателя.
    • Не менее важно обратить на тип крепления— под болты или на Din рейку.
    • Класс износостойкости обозначается буквами «А» (3 мл. рабочих циклов), «Б» (1.5 мл. циклов) и «В» (300 тыс. циклов).
    • Рабочее напряжение коммутации главных контактов- 380 или 660 Вольт.
    • Ток теплового реле. Должен соответствовать мощности электрического двигателя. Для других устройств нет необходимости в установке теплового реле.

    Предлагаю в сводной таблице ознакомиться с основными характеристиками самых распространенных пускателей серии ПМЛ.

    Есть еще целый ряд не существенных параметров- потребляемый ток катушки, максимальный ток вспомогательных контактов. На них не стоит обращать внимание при покупке.

    Источник: https://instrument16.ru/instrument/magnitnyj-puskatel-380v-harakteristiki.html

    Контакторы и пускатели — условные обозначения и надписи. Расшифровка и технические характеристики

    Контактор – это одна из разновидностей электромагнитного реле.

    Он имеет в своей конструкции катушку, при подаче напряжения на которую, происходит втягивание сердечника, после чего собственно и замыкаются контакты.

    Многие путают контакторы с пускателями. Чем же они отличаются между собой?

    Контактор по сути, это одиночное устройство, предназначенное для замыкания и размыкания электрических цепей. А пускатель представляет собой некое комплексное устройство, выполняющее ту же функцию, но с дополнительными элементами в своей схеме.

    Например, различные виды защит или пусковые кнопки.

    Большой проблемы нет, в том что многие применяют эти термины по-другому.

    Главное понимать функциональность каждого оборудования.

    Ниже приведены расшифровки условных обозначений и наименований популярных марок пускателей и контакторов ПМЛ, КМЭ, ПАЕ, ПМА.

    По ним можно узнать, что означают те или иные цифробуквенные обозначения и как они расшифровываются.

    Получается, что только из одного названия можно понять:

    • какая у него функциональность
    • какие дополнительные возможности он в себе несет

    Чтобы ознакомиться с каждым типом пускателя нажмите на соответствующую вкладку.

    Однако помимо названия, очень много информации содержится на самом корпусе контактора.

    Рассмотрим на примере двух изделий от IEK КМИ и Schneider Electric LC1D25 какие же надписи и обозначения наносят производители на корпуса, как они расшифровываются и что обозначают.

    Начнем с контактора от Шнайдер Электрик. На боковой грани указывается максимально возможная подключаемая к контактору мощность в лошадиных силах (HP — horsepower). Зависит данная мощность от питающего напряжения.

    В ряде стран, лошадиные силы до сих пор применяются, хотя и есть рекомендации международной организации по метрологии о том, чтобы лошадиную силу исключить из употребления.

    Далее указываются общие рекомендации по выбору автоматических выключателей или предохранителей.

    • надпись CB – Circuit Breaker относится к автоматам

    Обязательно прописывается максимальное рабочее напряжение (а.с. max).

    Cont. current – это длительный номинальный ток при категории нагрузки АС1.

    Если говорить упрощенно, то категория АС1 – это нагрузка типа утюг или обыкновенный нагреватель.

    AWG 6-14 Cu – показывает сечение проводов, которые можно подключать к контактам.

    Измерение идет в западных единицах. Для того, чтобы узнать аналог нашего сечения в мм2, потребуется воспользоваться таблицей перевода AWG в мм2.Torque 20lb.in – момент усилия, с которым допускается затягивать клеммы.

    Более точные цифры в привычных единицах измерения, можно также найти в технических данных на сайте производителя, либо воспользоваться вот здесь специальной программой конвертером lb-in в Nm (ньютон-метры).

    Lb-in расшифровывается как фунт на квадратный дюйм.

    Качественные контакторы всегда имеют надписи о наличии сертификатов, которым соответствует данный механизм.

    Ith-40А – условный тепловой ток в открытом исполнении. Проще говоря, это тот ток, который может через себя пропустить контактор при нормальных условиях окружающей среды.

    Ui=690V – номинальное напряжение изоляции изделия.

    IEC/EN 60947-4-1 – соответствие пускателя данному стандарту. ГОСТ Р50030.4.1-2012 – это наш модифицированный аналог этого стандарта.

    Uimp=6kV – допустимое импульсное перенапряжение.

    В отдельной табличке указываются возможные подключаемые к контактору мощности, в зависимости от питающего напряжения. 

    Мощности прописываются уже в киловаттах. У некоторых может возникнуть вопрос, почему такая разница в зависимости от напряжения.

    Объясняется это просто. По большому счету, контактору все равно на какое напряжение рассчитана нагрузка. Самое главное, это величина тока, протекающего через его контакты.
    Например, у вас есть напряжение 100В и ток 10А. Нагрузка в этом случае будет 1кВт.

    А если напряжение будет в 2 раза больше, т.е. 200В, то при подключении той же нагрузки в 1кВт, через изделие будет течь ток в 2 раза меньше I=5А.

    Поэтому, чем ниже напряжение, тем меньшей мощности нагрузку можно подключить к контактору. При этом, всегда обращайте внимание, для какого типа нагрузки указаны данные.

    Например в данной случае, мощности указаны для нагрузки AC3. Образец такой нагрузки – асинхронный двигатель.

    JIS C8201-4-1 – это японский промышленный стандарт. Соответственно, здесь также прописывается возможные подключаемые к контактору мощности, в зависимости от питающего напряжения по данному стандарту. 

    Почему прописывается такой большой и странный набор напряжений? Потому что в различных странах разные стандарты, которые и определяют уровни силовых напряжений.

    Например, в Японии в обычной розетке 100 вольт. А для мощных нагрузок применяется уже 200В.

    Переходим к надписям на лицевой панели пускателя=контактора.

    А1 и А2 – это точки подключения катушки управления.

    Сами клеммы маркируются двумя альтернативными способами:

    • числовая последовательность 1-2-3-4-5-6
    • буквенно цифровая. Сверху L1-L2-L3. Снизу T1-T2-T3.

    Вспомогательные контакты маркируются в соответствии со стандартами. Есть один нюанс, о котором не все знают.

    Первая цифра обозначения – это порядковый номер контакта. А вторая цифра – это функция контакта.

    Например, сверху можно увидеть надписи 13-21. Снизу 14-22.

    То есть, первые цифры 1-2 это порядковый номер контакта. Слева идет один вспомогательный контакт, справа второй.

    А вторая цифра – это функция. Число 1-2 – это общий провод или часть нормально закрытого контакта цепи.

    Число 3-4 это часть нормально открытого контакта. То есть по номерам, не раскручивая и не прозванивая механизм, не изучая его схему в паспорте, можно сразу понять, что 13-14 является нормально открытым контактом №1 (NO – normal open).

    А 21-22 – нормально закрытый контакт №2 (NC – normal closed).

    Все другие привычные нам электромагнитные реле, имеют такую же маркировку, облегчающую визуальное понимание функциональности устройства. Вот пример другого реле и обозначение его контактов.

    Вам не нужно искать документацию на него, чтобы понять как здесь подключаться или какую функцию несет тот или иной винтовой зажим.

    На корпусе также обязательно прописывается напряжение катушки, которая управляет пускателем.

    Буква М7 (или другая) – это определение типа катушки в заказном номере.

    Например, если у вас в контакторе марки LC1D25 сгорит катушка, вам достаточно будет при заказе указать напряжение и ее номер М7. Вы точно будете знать, что придет именно то изделие, и того размера, которое необходимо.

    Еще один важный момент, на который стоит обратить внимание – это возможность использования разных типов проводов в клеммах. Если площадки будут медными, это означает, что применять алюминиевые провода недопустимо. 

    Сечение и типы подключаемых проводов указываются в технической документации.

    С контактором IEK все гораздо проще. Его маркировка построена практически по такому же принципу.

    Цифро-буквенное обозначение рабочих клемм:

    Двойная маркировка вспомогательных контактов: 13-14

    • первая группа (первые цифры 1-1)
    • с нормально открытым контактом (вторые цифры 3-4)

    Для российского рынка может быть и сокращенное обозначение “НО” – нормально открытый.

    Сбоку прописывается напряжение катушки 230В (50Гц). И другие технические параметры.

    КМИ – 10910 – его заказной номер

    АС-3 In=9А и АС1 In=25А – возможно подключаемая нагрузка, для различных категорий.

    Также указываются мощности подключаемой нагрузки в зависимости от их напряжения питания. 

    Может быть изображена даже условная схема контактора со всеми его контактами (рабочими и вспомогательными).

    Внизу прописывается нормативный документ, которому соответствует данное изделие – ГОСТ Р50030.4.1

    Источник: https://domikelectrica.ru/kontaktory-i-puskateli-uslovnye-oboznacheniya-i-nadpisi/

    Обозначение пускателя на схеме — советы электрика — Electro Genius

    09.06.2019

    Контактор – это одна из разновидностей электромагнитного реле.

    Он имеет в своей конструкции катушку, при подаче напряжения на которую, происходит втягивание сердечника, после чего собственно и замыкаются контакты.

    Многие путают контакторы с пускателями. Чем же они отличаются между собой?

    Контактор по сути, это одиночное устройство, предназначенное для замыкания и размыкания электрических цепей. А пускатель представляет собой некое комплексное устройство, выполняющее ту же функцию, но с дополнительными элементами в своей схеме.

    Например, различные виды защит или пусковые кнопки.

    Большой проблемы нет, в том что многие применяют эти термины по-другому.

    Главное понимать функциональность каждого оборудования.

    Ниже приведены расшифровки условных обозначений и наименований популярных марок пускателей и контакторов ПМЛ, КМЭ, ПАЕ, ПМА.

    По ним можно узнать, что означают те или иные цифробуквенные обозначения и как они расшифровываются.

    Получается, что только из одного названия можно понять:

    • какая у него функциональность
    • какие дополнительные возможности он в себе несет

    Чтобы ознакомиться с каждым типом пускателя нажмите на соответствующую вкладку.

    Однако помимо названия, очень много информации содержится на самом корпусе контактора.

    Рассмотрим на примере двух изделий от IEK КМИ и Schneider Electric LC1D25 какие же надписи и обозначения наносят производители на корпуса, как они расшифровываются и что обозначают.

    Начнем с контактора от Шнайдер Электрик. На боковой грани указывается максимально возможная подключаемая к контактору мощность в лошадиных силах (HP – horsepower). Зависит данная мощность от питающего напряжения.

    В ряде стран, лошадиные силы до сих пор применяются, хотя и есть рекомендации международной организации по метрологии о том, чтобы лошадиную силу исключить из употребления.

    Далее указываются общие рекомендации по выбору автоматических выключателей или предохранителей.

    • надпись CB – Circuit Breaker относится к автоматам

    Обязательно прописывается максимальное рабочее напряжение (а.с. max).

    Cont. current – это длительный номинальный ток при категории нагрузки АС1.

    Если говорить упрощенно, то категория АС1 – это нагрузка типа утюг или обыкновенный нагреватель.

    AWG 6-14 Cu – показывает сечение проводов, которые можно подключать к контактам.

    Измерение идет в западных единицах. Для того, чтобы узнать аналог нашего сечения в мм2, потребуется воспользоваться таблицей перевода AWG в мм2.Torque 20lb.in – момент усилия, с которым допускается затягивать клеммы.

    Более точные цифры в привычных единицах измерения, можно также найти в технических данных на сайте производителя, либо воспользоваться вот здесь специальной программой конвертером lb-in в Nm (ньютон-метры).

    Lb-in расшифровывается как фунт на квадратный дюйм.

    Качественные контакторы всегда имеют надписи о наличии сертификатов, которым соответствует данный механизм.

    Ith-40А – условный тепловой ток в открытом исполнении. Проще говоря, это тот ток, который может через себя пропустить контактор при нормальных условиях окружающей среды.

    Ui=690V – номинальное напряжение изоляции изделия.

    IEC/EN 60947-4-1 – соответствие пускателя данному стандарту. ГОСТ Р50030.4.1-2012 – это наш модифицированный аналог этого стандарта.

    Uimp=6kV – допустимое импульсное перенапряжение.

    В отдельной табличке указываются возможные подключаемые к контактору мощности, в зависимости от питающего напряжения. 

    Мощности прописываются уже в киловаттах. У некоторых может возникнуть вопрос, почему такая разница в зависимости от напряжения.

    Объясняется это просто. По большому счету, контактору все равно на какое напряжение рассчитана нагрузка. Самое главное, это величина тока, протекающего через его контакты.
    Например, у вас есть напряжение 100В и ток 10А. Нагрузка в этом случае будет 1кВт.

    А если напряжение будет в 2 раза больше, т.е. 200В, то при подключении той же нагрузки в 1кВт, через изделие будет течь ток в 2 раза меньше I=5А.

    Поэтому, чем ниже напряжение, тем меньшей мощности нагрузку можно подключить к контактору. При этом, всегда обращайте внимание, для какого типа нагрузки указаны данные.

    Например в данной случае, мощности указаны для нагрузки AC3. Образец такой нагрузки – асинхронный двигатель.

    JIS C8201-4-1 – это японский промышленный стандарт. Соответственно, здесь также прописывается возможные подключаемые к контактору мощности, в зависимости от питающего напряжения по данному стандарту. 

    Почему прописывается такой большой и странный набор напряжений? Потому что в различных странах разные стандарты, которые и определяют уровни силовых напряжений.

    Например, в Японии в обычной розетке 100 вольт. А для мощных нагрузок применяется уже 200В.

    Переходим к надписям на лицевой панели пускателя=контактора.

    А1 и А2 – это точки подключения катушки управления.

    Сами клеммы маркируются двумя альтернативными способами:

    • числовая последовательность 1-2-3-4-5-6
    • буквенно цифровая. Сверху L1-L2-L3. Снизу T1-T2-T3.

    Вспомогательные контакты маркируются в соответствии со стандартами. Есть один нюанс, о котором не все знают.

    Первая цифра обозначения – это порядковый номер контакта. А вторая цифра – это функция контакта.

    Например, сверху можно увидеть надписи 13-21. Снизу 14-22.

    ЭТО ИНТЕРЕСНО:  Как посчитать потери электроэнергии в линии

    То есть, первые цифры 1-2 это порядковый номер контакта. Слева идет один вспомогательный контакт, справа второй.

    А вторая цифра – это функция. Число 1-2 – это общий провод или часть нормально закрытого контакта цепи.

    А 21-22 – нормально закрытый контакт №2 (NC – normal closed).

    Все другие привычные нам электромагнитные реле, имеют такую же маркировку, облегчающую визуальное понимание функциональности устройства. Вот пример другого реле и обозначение его контактов.

    Вам не нужно искать документацию на него, чтобы понять как здесь подключаться или какую функцию несет тот или иной винтовой зажим.

    На корпусе также обязательно прописывается напряжение катушки, которая управляет пускателем.

    Буква М7 (или другая) – это определение типа катушки в заказном номере.

    Например, если у вас в контакторе марки LC1D25 сгорит катушка, вам достаточно будет при заказе указать напряжение и ее номер М7. Вы точно будете знать, что придет именно то изделие, и того размера, которое необходимо.

    Еще один важный момент, на который стоит обратить внимание – это возможность использования разных типов проводов в клеммах. Если площадки будут медными, это означает, что применять алюминиевые провода недопустимо. 

    Сечение и типы подключаемых проводов указываются в технической документации.

    С контактором IEK все гораздо проще. Его маркировка построена практически по такому же принципу.

    Цифро-буквенное обозначение рабочих клемм:

    Двойная маркировка вспомогательных контактов: 13-14

    • первая группа (первые цифры 1-1)
    • с нормально открытым контактом (вторые цифры 3-4)

    Для российского рынка может быть и сокращенное обозначение “НО” – нормально открытый.

    Сбоку прописывается напряжение катушки 230В (50Гц). И другие технические параметры.

    КМИ – 10910 – его заказной номер

    АС-3 In=9А и АС1 In=25А – возможно подключаемая нагрузка, для различных категорий.

    Также указываются мощности подключаемой нагрузки в зависимости от их напряжения питания. 

    Может быть изображена даже условная схема контактора со всеми его контактами (рабочими и вспомогательными).

    Внизу прописывается нормативный документ, которому соответствует данное изделие – ГОСТ Р50030.4.1

    Источник: https://orenburgelectro.ru/podklyuchenie/oboznachenie-puskatelya-na-sheme-sovety-elektrika.html

    Условные графические обозначения элементов электрических и электронных схем

    Почти все УОС, все изделия радиоэлектроники и электротехники, изготавливаемые промышленными организациями и предприятиями, домашними мастерами, юными техниками и радиолюбителями, содержат в своем составе определенное количество разнообразных покупных ЭРИ и элементов, выпускаемых в основном отечественной промышленностью. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. К ним можно отнести в первую очередь ППП, конденсаторы, резисторы, трансформаторы, дроссели, электрические соединители, аккумуляторы, ХИТ, переключатели, установочные изделия и некоторые другие виды ЭРЭ.

    Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД.

    Особое внимание уделяется принципиальным электрическим схемам, которые определяют не только основные электрические параметры, но и все входящие в устройства элементы и электрические связи между ними.

    Для понимания и чтения принципиальных электрических схем необходимо тщательно ознакомиться с входящими в них элементами и комплектующими изделиями, точно знать область применения и принцип действия рассматриваемого устройства.

    Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов.

    Связь перечня комплектующих ЭРЭ с их условными графическими обозначениями осуществляется через позиционные обозначения.

    Для построения условных графических обозначений ЭРЭ используются стандартизованные геометрические символы, каждый из которых применяют отдельно или в сочетании с другими. При этом смысл каждого геометрического образа в условном обозначении во многих случаях зависит от того, в сочетании с каким другим геометрическим символом он применяется.

    Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис.1. Эти обозначения касаются всех комплектующих элементов схем, включая ЭРЭ, проводники и соединения между ними. И здесь важнейшее значение приобретает условие правильного обозначения однотипных комплектующих ЭРЭ и изделий.

    Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Основные виды буквенных обозначений элементов схем приведены в табл.

    1.

    Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения, вид соединения, способы регулирования, форму импульса, вид модуляции, электрические связи, направление передачи тока, сигнала, потока энергии и др.

    В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. В магазинах можно приобрести различные типы ЭРИ и ЭРЭ с иностранными обозначениями. В табл. 1. 2 приведены сведения о наиболее часто встречающихся ЭРЭ зарубежных стран с соответствующими обозначениями и их аналоги отечественного производства.

    Эти сведения впервые публикуются в таком объеме.

    Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации

    1— транзистор структуры р- n-р в корпусе, общее обозначение;

    2— транзистор структуры п-р-п в корпусе, общее обозначение,

    3 — транзистор полевой с p-n-переходом и п каналом,

    4 — транзистор полевой с p-n-переходом и р каналом,

    5 — транзистор однопереходный с базой п типа, б1, б2 — выводы базы, э — вывод эмиттера,

    6 — фотодиод,

    7 — диод выпрямительный,

    8 — стабилитрон (диод лавинный выпрямительный) односторонний,

    9 — диод тепло-электрический,

    10 — тиристор диодный, стираемый в обратном направлении;

    11 — стабилитрон (диодолавинный выпрямительный) с двусторонней
    проводимостью,

    12 — тиристор триодный.

    13 — фоторезистор,

    14 — переменный резистор, реостат, общее обозначение,

    15 — переменный резистор,

    16 — переменный резистор с отводами,

    17 — построечный резистор-потенциометр;

    18 — терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева),

    19 — варистор,

    20 — конденсатор постоянной емкости, общее обозначение,

    21 — конденсатор постоянной емкости поляризованный;

    22 — конденсатор оксидный поляризованный электролитический, общее обозначение;

    23 — резистор постоянный, общее обозначение;

    24 — резистор постоянный с номинальной мощностью 0, 05 Вт;

    25 — резистор постоянный с номинальной мощностью 0, 125 Вт,

    26 — резистор постоянный с номинальной мощностью 0, 25 Вт,

    27 — резистор постоянный с номинальной мощностью 0, 5 Вт,

    28 — резистор постоянный с номинальной мощностью 1 Вт,

    29 — резистор постоянный с номинальной мощностью рассеяния 2 Вт,

    30 — резистор постоянный с номинальной мощностью рассеяния 5 Вт;

    31 — резистор постоянный с одним симметричным дополнительным отводом;

    32 — резистор постоянный с одним несимметричным дополнительным отводом;

    Стандартные условные графические и буквенные обозначения элементов электрических схем

    Е

    Источник: http://www.electricdom.ru/article5.htm

    Как обозначается пускатель на однолинейной схеме

    • Условные обозначения элементов электрических схем
    • Введение
    • Виды и типы электрических схем
    • Графические обозначения в электрических схемах
    • Основные УГО для однолинейных схем электрощитов
    • Обозначение измерительных электроприборов для характеристики параметров цепи
    • Буквенные обозначения в электрических схемах
    • Изображение электрооборудования на планах
    • Заключение

    Таблица. Условные обозначения в электрических схемах

    Резистор, активное сопротивление

    Генератор переменного тока, питающая система

    Электродвигатель переменного тока

    Силовой выключатель (на напряжение выше 1 кВ)

    Сборные шины с присоединениями

    Автоматический выключатель на напряжение до 1 кВ

    Контактор, магнитный пускатель

    Трансформатор тока нулевой последовательности

    Трехфазный или три однофазных трансформатора напряжения

    Введение

    Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

    Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.

    Виды и типы электрических схем

    Источник: https://morflot.su/kak-oboznachaetsja-puskatel-na-odnolinejnoj-sheme/

    РЕЛЕ

       В этой статье мы поговорим о Реле. Реле это устройство, созданное для коммутации электрических цепей, которое может осуществляться в устройствах автоматики даже без помощи человека. Рассмотрим поподробнее, какие существуют типы, и для каких целей служат реле.

    Самое распространенное электромагнитное реле может быть в двух положениях: включено и отключено. Состоит реле из контактов, катушки, подвижного якоря, толкателя контактной системы, выводов реле.

    Фото катушки магнитного пускателя (реле), изображено на нижеприведенном рисунке, все катушки сделаны по одному принципу:

    Катушка магнитного пускателя

       Катушка представляет собой медный провод, намотанный на оправке, и представляет собой, в простейшем случае цилиндр, внутри которого находиться сердечник электромагнита. При подаче напряжения на выводы катушки, она втягивает в себя сердечник по принципу электромагнита, при этом толкатель двигает (толкает) подвижную систему контактов, часть из которых при этом замыкается, а часть размыкается.

    Рисунок строение реле

       Далее изображено схематическое обозначение основных деталей, из которых состоит реле и которые необходимы нам для понимания его работы:

    Схематические обозначения деталей реле

     — Под цифрой один изображена катушка электромагнитного реле, так она обозначается на принципиальных схемах. — Под цифрой два изображен свободно разомкнутый контакт. — Под цифрой три изображен свободно замкнутый контакт. 

       А здесь изображены катушка и группы контактов вместе:

    Схематическое обозначение катушки и контактов

       Контакты реле могут быть, как свободно замкнутыми, так и свободно разомкнутыми. Свободно замкнутые, это те контакты, которые в отсутствие напряжения на катушке реле находятся в замкнутом состоянии. Свободно разомкнутые контакты соответственно в отсутствие напряжения находятся в разомкнутом состоянии. Реле бывают рассчитанные на работу, как от переменного, так и от постоянного тока. На фотографии можно видеть маломощное электромагнитное реле:

    Фотография электромагнитного реле

       Электромагнитные реле выпускаются на разную мощность, начиная от низковольтных малогабаритных реле, магнитных пускателей осуществляющих управление двигателями и цепями управления станков, до мощных контакторов (сделанных тоже по типу реле) осуществляющих коммутацию значительных токов и позволяющих управлять работой больших двигателей в насосных станциях, котельных и других объектах электроустановок. На рисунке ниже изображен магнитный пускатель серии ПМЕ:

    Магнитный пускатель ПМЕ

       Подобные магнитные пускатели имеют катушку, рассчитанную на напряжение питания от 110 до 380 вольт для работы от сети переменного тока. Магнитные пускатели помимо силовых контактов, рассчитанных на большую нагрузку, имеют вспомогательные свободно замкнутые и свободно разомкнутые контакты. Вспомогательные контакты используются в цепях управления устройством, например токарным или сверлильным станком. Ниже на рисунке схема нереверсивного пуска электродвигателя.

    Схема нереверсивного пуска электродвигателя

       В левой части, как нам известно, из приведенных выше схематических изображений, изображены под обозначением КМ три спаренных для одновременного включения силовых контактов включения электродвигателя. Прямоугольник, обозначенный КМ, это как мы знаем, обозначение катушки пускателя. Свободно разомкнутый контакт, находящийся под обозначением кнопки SBC (которая, кстати, является кнопкой включения электродвигателя) служит контактом так называемого «самоподхвата питания”. Рассмотрим вкратце эту схему, являющуюся типичной схемой нереверсивного включения двигателя (по такой схеме устроены приводы наждаков на производстве”:

    Наждачная бабка фото

       После нажатия кнопки SBC питание подается на катушку пускателя (реле) КМ. Замыкаются силовые и вспомогательный контакт магнитного пускателя. При этом включается двигатель. Для какой цели нам служит вспомогательный контакт «самоподхвата питания” ? Если бы его не было и мы отпустили кнопку включения SBC, то катушка была бы у нас обесточена и двигатель остановился. Контакт «самоподхвата питания”, замыкаясь враз с силовыми контактами, шунтирует кнопку включения своими контактами и после её отпускания питание с катушки не пропадает, до тех пор, пока не будет нажата кнопка остановки двигателя SBT. Либо не будет обесточен станок или иное устройство, в котором будут установлены этот двигатель и схемы управления. Дальше изображен мощный контактор, устройство которого как уже писалось выше также основано на принципе действия электромагнитного реле:

    Реле контактор

    Тепловые реле

       Второй тип реле, также широко используемый в электротехнике, это тепловые реле. Фото теплового реле приводится на следующем рисунке:

    Фото тепловое реле

       Эти реле очень часто используются в паре с электромагнитными реле (пускателями и контакторами) для защиты электрических цепей с электродвигателями от перегрузок. Если кто-нибудь обратил внимание, на рисунке, где была приведена схема нереверсивного пуска электродвигателя, присутствует и такое схематическое изображение:

    Изображение на схеме тепловое реле

       Ниже на рисунке показано устройство теплового реле:

    Рисунок устройство теплового реле

       Как устроено тепловое реле: в его состав входит биметаллическая пластина, сделанная из двух металлов имеющих различный коэффициент расширения. При нагреве биметаллическая пластина изгибается и освобождает пружину, которая размыкает силовые контакты теплового реле. Происходит это мгновенно, в целях быстрого гашения дуги. Так обозначается, на схемах (выделено красным) тепловое реле.

    Обозначение на схема теплового реле

       На рисунке под цифрой 2 изображены контакты теплового реле, которые размыкаются при срабатывании теплового реле и обесточивают двигатель. Под цифрой 1 показаны контакты теплового реле, которые входят в цепь с биметаллической пластиной. После срабатывания реле можно включить заново, после остывания пластины нажав на толкатель, размещенный на тепловом реле.

    Реле времени

       В радиоэлектронике и электротехнике часто используются так называемые реле времени:

    Реле времени фото

       Такие реле предназначены для выдержки времени, по истечении которого включается другое устройство, подключенное к реле времени. Существуют и находят применение в электронике также герконовые реле. Герконы — это герметичные устройства управляемые магнитным воздействием. Фото герконового реле и его устройство приведено на картинках расположенных ниже:

    Герконовое реле фото

       Современным трендом является использование твердотельных реле — где полностью отсутствуют подвижные части, а функцию коммутатора берут на себя силовые тиристоры или транзисторы, но об этом вы можете почитать здесь. Обзор подготовлен специально для сайта Радиосхемы, с вами был AKV.

       Форум по автоматике и реле 

       Обсудить статью РЕЛЕ

    Источник: https://radioskot.ru/publ/nachinajushhim/rele/5-1-0-762

    Понравилась статья? Поделиться с друзьями:
    220 вольт
    Как подключить светодиодную ленту к компьютеру

    Закрыть