Силовые трансформаторы
При проектировании электроустановок, разработке вариантов реконструкции существующих объектов рассматриваем в первую очередь отечественное трансформаторное оборудование, зарекомендовавшее себя при эксплуатации, имеющее требуемые допуски.
Cхемы соединения обмоток трехфазных трансформаторов
Схема соединений обмотки трёхфазных трансформаторов обозначается символом соединений данной схемы. Символ состоит из букв и цифр.
Литерный символ обозначает способ соединения обмотки:
- большие буквы Y — звезда; D – треугольник – для первичной обмотки;
- маленькие буквы y — звезда; d – треугольник; z – зигзаг – для вторичного напряжения;
- буква N — означает вывод нейтрального зажима первичной обмотки на клеммную колодку;
- буква n — означает вывод нейтрального зажима вторичной обмотки на клеммную колодку;
Цифровой символ означает сдвиг по фазе между вторичным напряжением (например, фазы 2U) по отношению к первичному напряжению (фазы 1U). Фазовый сдвиг выражается в часах от 0 до 11 по часовой стрелке. Например, схема соединений Dy5 означает сдвиг по фазе напряжения фазы 2U по отношению к напряжению фазы 1U на 5 часов. Один час эквивалентен сдвигу по фазе на 30 электрических градусов.Выбор группы соединений обмоток в трёхфазных трансформаторах
На практике чаще всего встречаются следующие схемы соединений: Yy, Dy, Yd, Yz и Dz. Кроме того, обмотки, соединённые в звезду и зигзаг, имеют нейтральную точку, которая может быть выведена или скрыта. Правильный выбор схемы соединений трёхфазных трансформаторов зависит от нескольких факторов:
- схемы питания трансформатора:
- трансформатор с питанием от сети (трёхпроводной, четырёхпроводной);
- трансформатор с питанием от преобразователя;
- мощности трансформатора;
- уровня напряжения;
- асимметрии нагрузки:
- асимметрии нагрузки при питании от симметрической схемы напряжений;
- асимметрии нагрузки вследствие асимметричной схемы напряжения питания;
- экономических соображений (стоимость изготовления трансформатора с различными схемами соединений).
1. Схема соединений обмоток Yy используется, в основном, в трансформаторах небольшой номинальной мощности, питающих симметричные трёхфазные электроприемники. Иногда данный вид соединений применяется в схемах большой номинальной мощности, в том случае если требуются заземление нейтральной точки звезды.
Схема неудобна, принимая во внимание необходимость ограничения негативного влияния высших гармоник ряда v=3n (n=1,3,7) в токе холостого хода при питании от трёхпроводной сети. Кроме того, она невыгодна при асимметричной нагрузке (токи нулевой последовательности), когда выведена нейтральная точка звезды вторичных обмоток.
Это вызывает необходимость дополнительной, так называемой компенсационной, обмотки, соединённой в треугольник.2. Схема соединения обмоток Dy используется, в основном, в понижающих трансформаторах большой мощности. Трансформаторы с таким соединением обмоток работают в составе систем питания токораспределительных сетей низкого напряжения.
Как правило, нейтральная точка звёзды заземляется, обеспечивая возможность использования как линейного, так и фазного напряжений. Данное соединение очень выгодно, принимая во внимание сокращение третьей гармоники тока и токов нулевой последовательности при ассиметричной нагрузке.
3. Схема соединений обмоток Yd используется, в основном, в повышающих трансформаторах.
Трансформатор с такой схемой соединений удобен, если нейтральная точка звезды первичной обмотки должна быть глухо заземлена или заземлена через дроссель.
Соединение обмоток в треугольник в первичной или вторичной обмотках очень выгодно, из-за того, что третья гармоника намагничивающего тока протекает по замкнутой цепи треугольника и магнитный поток третьей гармоники практически отсутствует.
4. Схема соединений обмоток Yz и Dz используется, в основном, в понижающих трансформаторах небольшой номинальной мощностью. При такой схеме нейтральная точка соединения обмоток в зигзаг выведена на клеммную колодку для того, чтобы иметь возможность использовать фазные напряжения. Данное решение применяется редко, прежде всего, из экономических соображений.
Сравнивая, например, звезду и зигзаг, при одинаковом номинальном токе и одинаковом сечении проводов, можно сделать вывод, что количество витков зигзага при одинаковом наименьшем линейном напряжении в 2/√3 раза превышает количество витков звезды, отсюда стоимость меди в зигзаге более чем на 15% превышает стоимость меди в звезде.
Поэтому использование таких схем ограничивается, прежде всего, питанием асимметричных потребителей (например, в случае большого количества однофазных потребителей), когда необходимо симметричное распределение фазных напряжений во вторичной части трансформатора.
Предлагаем Вам к поставке:
1. Трансформаторы масляные герметичного исполнения производства:
— Минский электротехнический завод им. В.И. Козлова 25-1600кВА,
— ГК «ЭЛЕКТРОЩИТ- ТМ Самара» 25-2500кВА,
— «Тольяттинский Трансформатор» 25-2500кВА,
— АО «Кентауский трансформаторный завод» 25-1600кВА
— Trihal Easy производства Schneider Electric
3. Помимо поставки оборудования мы предлагаем:
· Консультации по подбору оборудования, обеспечение справочной и технической литературой.
· Различные варианты формы оплаты, гибкую систему скидок.
· Доставку продукции, установка, монтаж, ПНР на Вашем объекте, разработка и изготовление щитов тепловой защиты под конкретный объект.
· Профессиональный сервис и гарантийное обслуживание.
Скачать опросный лист на силовой траснформатор Вы можете по ссылке, или обратитесь с запросом написав нам на [email protected].
В случае если происходит проработака различных вариантов проведения реконструкции (строительства нового объекта) также окажем квалифицированную помощь в подборке оборудования.
Полезная информация:
1. Статья «Основные вопросы выбора трансформатора и обеспечения качества электроснабжения»(«Электротехнический рынок», No 5 (29), сентябрь-октябрь 2009 г.
2. Статья «О симметрирующих свойствах силовых трансформаторов».
3. Статья «О сухих и маслонаполненных трансформаторах»
Требования ПУЭ по установке маслонаполненных трансформаторов
Глава 4.2., статья 4.2.69
Для предотвращения растекания масла и распространения пожара при повреждениях маслонаполненных силовых трансформаторов (реакторов) с количеством масла более 1 т в единице должны быть выполнены маслоприемники, маслоотводы и маслосборники с соблюдением следующих требований:
1) габариты маслоприемника должны выступать за габариты трансформатора (реактора) не менее чем на 0,6 м при массе масло до 2 т; 1 м при массе от 2 до 10 т; 1,5 м при массе от 10 до 50 т; 2 м при массе более 50 т. При этом габариты маслоприемника может быть принят меньше чем на 0,5 м со стороны стены или перегородки, располагаемой от трансфотматора (реактора) на расстоянии менее 2 м;
2) объем маслоприемника с отводом масла следует рассчитывать на единовременный прием 100% масла, залитого в трансформатор (реактор).
Объем масла без отвода масла следует рассчитывать на прием 100% объема масла, залитого в трансформатор (реактор), и 80% воды от средств пожаротушения из расчета орошения площадей маслоприемника и боковых поверхностей трансформатора (реактор) с интенсивностью 0,2 л/ (с * м2) в течение 30 минут;
3) устройство маслоприемника и маслоотводов должно исключать переток масла (воды) из одного маслоприемника в другой, растекания масла по кабельным и др. подземным сооружениям, распространение пожара, засорение маслоотвода и забивку его снегом, льдом и т.п.;
4) маслоприемники под трансформаторы (реакторы) с объемом масла до 20 т допускается выполнять без отвода масла. Маслоприемники без отвода масла должны выполняться заглубленной конструкции и закрываться металлической решеткой, поверх которой должен быть насыпан слой чистого гравия или промытого гранитного щебня другой породы с частицами от 30 до 70 мм. Уровень полного объема масла в маслоприемнике должен быть ниже решетки не менее чем на 50 мм.
Удалением масла и воды из маслоприемника без отвода масла должно предусматриваться передвижными средствами. При этом рекомендуется выполнение простейшего устройства для проверки отсутствия масла (воды) в маслоприемнике;
5) маслоприемники с отводом масла могут выполняться как заглубленными, так и не заглубленными (дно на уровне окружающей планировки). При выполнении заглубленного приемника устройство бортовых ограждений не требуется, если при этом обеспечивается объем маслоприемника, указанный в п.2.
Маслоприемники с отводом масла могут выполняться :
с установкой металлической решетки на маслоприемнике, поверх которой насыпан гравий или щебень толщиной слоя 0,25 м;
без металлической решетки с засыпкой гравия на дно маслоприемника толщиной слоя не менее 0,25 м.
Незаглубленный маслоприемник следует выполнять в виде бортовых ограждений маслонаполненного оборудовнаия. Высота бортовых ограждений должна быть не более 0,5 м над уровнем окружающей планировки.
Дно маслоприемника (заглубленного и незаглубленного) должно иметь уклон не менее 0,005 в сторону приямка и быть засыпано чисто промытым гранитным (либо другой непористой породы) гравием или щебнем фракцией от 30 до 70 мм. Толщина засыпки должна быть не менее 0,25 м.
Верхний уровень гравия (щебня) должен быть не менее чем на 75 мм ниже верхнего края борта (при устройстве маслоприемников с бортовыми ограждениями) или уровня окружающей планировки (при устройстве маслоприемников без бортовых ограждений).
Допускается не производить засыпку дна маслоприемников по всей площади гравием. При этом на системах отвода масла от трансформаторов (реакторов) следует предусматривать установку огнепреградителей;
6) при установке маслонаполненного электрооборудования на железобетонном перекрытии здания (сооружения) устройство маслоотвода является обязательным;
7) маслоотводы должны обеспечивать отвод из маслоприемника масла и воды, применяемой для тушения пожара, автоматическими стационарными устройствами и гидрантами на безопасное в пожарном отношении расстояние от оборудования и сооружений: 50% масла и полное количество воды должны удаляться не более чем за 0,25 ч. Маслоотводы могут выполняться в виде подземных трубопроводов или открытых кюветов и лотков;
маслосборники должны предусматриваться закрытого типа и должны вмещать полный объем масла единичного оборудования (трансформаторов, реакторов), содержащего наибольшее количество масла, а также 80% общего (с учетом 30-минутного запаса) расхода воды от средств пожаротушения.
Маслосборники должны оборудоваться сигнализацией о наличии воды с выводом сигнала на щит управления. Внутренние поверхности маслоприемника, ограждений маслоприемника и маслосборника должны быть защищены маслостойким покрытием.
г.)
Источник: https://meselectro.ru/silovye-transformatory
Обозначения в эл. схемах
Правила выполнения нормальных схем электрических соединений объектов электроэнергетики, определены двумя стандартами. Это Стандарт Организации ОАО «ФСК ЕЭС» СТО 56947007-25.040.70.101-2011 Раздел 2 и ГОСТ Р 56303-2014.
Несмотря на то, что на данный момент оба стандарта действующие и определяют требования к выполнению одних и тех же типов схем, требования в них, несколько отличаются (вероятно разработчики стандартов не дружат ).
В данном материале, при составлении примеров графических обозначений элементов схем электрических соединений объектов электроэнергетики, за основу взят ГОСТ Р 56303-2014, так как по дате введения в действие он новее.
Если вид графических обозначений, приведенных в примерах стандарта СТО 56947007-25.040.70.101-2011, отличается от аналогичных, приведенных в ГОСТ Р 56303-2014, добавлены соответствующие примечания.
Цветовое исполнение классов напряжения
Класс напряжения | ГОСТ Р 56303-2014 | СТО 56947007-25.040.70.101-2011 | ||
Наименование цвета | Спектр (RGB) | Наименование цвета | Спектр (RGB) | |
1150 кВ | сиреневый | 205:138:255 | сиреневый | 205:138:255 |
800 кВ | темно синий | 0:0:168 | темно синий | 0:0:200 |
750 кВ | темно синий | 0:0:168 | темно синий | 0:0:200 |
500 кВ | красный | 213:0:0 | красный | 165:15:10 |
400 кВ | оранжевый | 255:100:30 | оранжевый | 240:150:30 |
330 кВ | зеленый | 0:170:0 | зеленый | 0:140:0 |
220 кВ | желто-зеленый | 181:181:0 | желто-зеленый | 200:200:0 |
150 кВ | хаки | 170:150:0 | хаки | 170:150:0 |
110 кВ | голубой | 0:153:255 | голубой | 0:180:200 |
60 кВ | лиловый | 255:51:204 | — | — |
35 кВ | коричневый | 102:51:0 | коричневый | 130:100:50 |
20 кВ | ярко-фиолетовый | 160:32:240 | коричневый | 130:100:50 |
15 кВ | ярко-фиолетовый | 160:32:240 | — | — |
10 кВ | фиолетовый | 102:0:204 | фиолетовый | 100:0:100 |
6 кВ | темно-зеленый | 0:102:0 | светло-коричневый | 200:150:100 |
3 кВ | темно-зеленый | 0:102:0 | — | — |
ниже 3 кВ | серый | 127:127:127 | — | — |
до 1 кВ | — | — | серый | 190:190:190 |
Условные графические обозначения элементов нормальных схем электрических соединений объектов электроэнергетики
В примерах, использованы условные графические обозначения из библиотеки трафаретов Visio Нормальная схема ПС.
Шаг модульной сетки 2,5 мм.
Толщина линий условных обозначений и линий электрической связи 0,4 мм (По стандарту от 0,2 до 1,0 мм. Рекомендуемая — от 0,3 до 0,4 мм.)
Графическое обозначение трансформаторов
Наименование | Обозначение |
1. | Трансформатор двухобмоточный. |
2. | Трансформатор трехобмоточный. |
3. | Трансформатор четырехобмоточный. |
4. | Трансформатор пятиобмоточный. |
5. | Автотрансформатор двухобмоточный. |
6. | Автотрансформатор трехобмоточный. |
7. | Автотрансформатор четырехобмоточный. |
8. | Трансформатор собственных нужд двухобмоточный. |
9. | Трансформатор собственных нужд трехобмоточный. |
10. | Трансформатор напряжения двухобмоточный. |
11. | Трансформатор напряжения трехобмоточный. |
12. | Трансформатор напряжения четырехобмоточный. |
13. | Трансформатор тока |
14. | Трансформатор тока с двумя обмотками: на общем сердечнике и на раздельных сердечниках. |
15. | Бустер. |
Примечания: | |
1. | Каждая обмотка автотрансформатора и трансформатора должна выполняться цветом, соответствующим классу напряжения, на который она выполнена. Возможность регулирования на оборудовании и символы способов соединения обмоток трансформатора, необходимо отображать стрелкой черного цвета. |
Графическое обозначение коммутационных аппаратов
Наименование | Обазначение |
1. | Выключатель. |
2. | Разъединитель. |
3. | Выключатель нагрузки. |
4. | Выключатель нагрузки — альтернативное условное обозначение (используется некоторыми организациями). |
5. | Автоматический выключатель. |
6. | Выкатная тележка выключателя. |
7. | Разъединитель выдвижной. |
8. | Выкатная тележка выключателя нагрузки. |
9. | Выкатная тележка выключателя нагрузки — альтернативное условное обозначение. |
10. | Выкатная тележка автоматического выключателя |
11. | Выкатная тележка разъединителя. Положение рабочее, ремонтное и контрольное. |
12. | Заземляющий разъединитель. |
13. | Короткозамыкатель без земли. |
14. | Короткозамыкатель. |
15. | Отделитель |
16. | Отделитель двухстороннего действия |
17. | 3-х позиционный КА. Положение включено, отключено и заземлено. |
Примечания: | |
1. | Ремонтное и контрольное положения выкатной тележки. Аналогично для п. 7-10. |
2. | Выкатная тележка выключателя по СТО 56947007-25.040.70.101-2011.Положение выключателя включено, ремонтное и контрольное положение тележки. |
Графическое обозначение устройств компенсации, фильтров
Наименование | Обозначение |
1. | Реактор токоограничивающий одинарный. |
2. | Реактор токоограничивающий сдвоенный. |
3. | Реактор токоограничивающий. |
4. | Дроссельная катушка с сердечником и регулируемая, без сердечника. Высокочастотный заградитель линии электропередачи. |
5. | Дугогасящий реактор без регулирования и с регулированием. |
6. | Синхронный компенсатор. |
7. | Асинхронизированный синхронный компенсатор. |
Заградительный фильтр. | |
8. | Конденсатор. |
9. | Конденсаторная батарея. |
10. | Батарея статических конденсаторов. |
11. | Устройство продольной компенсации |
12. | Устройство продольной компенсации регулируемое. |
13. | Фильтр присоединения. |
Примечания: | |
1. | Услоное обозначение должно выполняться цветом, соответствующим классу напряжения устройства, а символ регулирования, черным.На примере, реактор токоограничивающий регулируемый. |
Графическое обозначение разрядников, ОПН
Наименование | Обозначение |
1. | Разрядник. |
2. | Разрядник трубчатый. |
3. | Разрядник шаровой. |
4. | Разрядник роговой. |
5. | Искровой промежуток. |
6. | Разрядник вентильный и магнитовентильный. |
7. | Разрядник вентильный. |
8. | ОПН — ограничитель напряжения нелинейный. |
Графическое обозначение генераторов, электродвигателей
Наименование | Обозначение |
1. | Генератор. |
2. | Дизельная электростанция. |
3. | Двигатель. |
4. | Двигатель синхронный. |
5. | Двигатель асинхронный. |
Графическое обозначение предохранителей
Наименование | Обозначение |
1. | Предохранитель плавкий. |
2. | Предохранитель. |
3. | Предохранитель инерционно-плавкий. |
4. | Предохранитель пробивной. |
5. | Предохранитель плавкий на тележке. |
6. | Предохранитель на тележке. |
7. | Предохранитель инерционно-плавкий на тележке. |
8. | Разъединитель-предохранитель: положение отключено, положение включено. |
9. | Выкатная тележка разъединителя-предохранителя: положение отключено, положение включено. |
10. | Выкатная тележка разъединителя-предохранителя: ремонтное и контрольное положения. Аналогично для п. 5-7. |
Графическое обозначение линий электрической связи, шин, заземления
Наименование | Обозначение |
1. | Линия электрической связи, ошиновка. |
2. | ЛЭП — линия электропередач. Отображается утолщенными линиями (двухкратное или большее увеличение толщины по отношинию к линиям, которыми выполнены УГО и ошиновка). |
3. | Кабельная линия. Линию электрической связи с одним ответвлением допускается изображать без точки. |
4. | Пересечение линий электрической связи. |
5. | Ответвления линии электрической связи. Точка соединения, должна выполняться цветом, соответствующим классу напряжения линий электрической связи. Линию электрической связи с одним ответвлением допускается изображать без точки. |
6. | Шина. Выполняться цветом, соответствующим классу напряжения, а точки подключения отводов, белым. |
7. | Заземление. |
Примечания: | |
1. | Для линий электропередач (п. 2,3), в СТО 56947007-25.040.70.101-2011, особых указаний не найдено. Вероятно, их толщина, по этому стандарту, равна толщине линий электрической связи. |
Пример изображения нормальной схемы электрических соединений условной подстанции, выполненной по ГОСТ Р 56303-2014 (формат PDF).
Схема выполнена в программе Visio с использование библиотеки трафаретов:
Как начертить нормальную схему электрических соединений объекта электроэнергетики (электрической подстанции, распределительного устройства)
Источник: https://elektroshema.ru/2009-02-05-22-57-45/ugo-2/144-normalnaya-sxema.html
Понижающие трансформаторы. Виды и работа. Особенности
Большинство электрических бытовых устройств работает от сети питания 220 В. Иногда необходимо понизить это напряжение до определенного значения, чтобы подключить низковольтные потребители нагрузки. Такими потребителями могут быть галогенные светильники, низковольтные нагреватели, светодиодные ленты и множество других.
Такое снижение напряжение могут выполнить понижающие трансформаторы, которые приобретают в магазине, или изготавливают самостоятельно. Такие трансформаторы популярны в электротехнике и радиоэлектронике, а также в бытовых условиях.
Особенности конструкции
Основной частью трансформатора выступает ферромагнитный сердечник, на котором расположены две обмотки, намотанные медным проводником. Эти обмотки разделяют на первичную и вторичную, в зависимости от принципа действия. На первичную обмотку подается сетевое напряжение, а с вторичной – снимается пониженное напряжение для потребителей нагрузки.
Обмотки связаны между собой переменным магнитным потоком, который наводится в ферромагнитном сердечнике. Между обмотками нет электрического контакта. Первичная обмотка имеет большее количество витков, чем вторичная. Поэтому напряжение на выходе понижено.
Обычно понижающие трансформаторы со всеми элементами находятся в корпусе. Однако не все модели его имеют. Это зависит от фирмы изготовителя, а также назначения понижающего трансформатора.
Принцип действия
Работу понижающего трансформатора можно описать следующим образом. Действие трансформатора основывается на принципе электромагнитной индукции. Напряжение, подключенное на первичную обмотку, образует в ней магнитное поле, которое пересекает витки вторичной обмотки. В ней образуется электродвижущая сила, под действием которой возникает напряжение, отличное от входного напряжения.
Разница в количестве витков первичной и вторичной обмоток определяет разницу между входным и выходным напряжением понижающего трансформатора. В процессе функционирования трансформатора возникают некоторые потери электроэнергии, которые неизбежны, и составляют около 3% мощности.
Чтобы вычислить точные величины параметров трансформатора, нужно сделать определенные расчеты его конструкции. Электродвижущая сила может возникать при подключении трансформатора только к переменному току. Поэтому большинство бытовых электрических устройств работает от сети переменного тока.
Понижающие трансформаторы входят в состав многих блоков питания, стабилизаторов и других подобных устройств. Некоторые модели трансформаторов могут содержать несколько выводов на вторичной обмотке для разных групп соединений. Такие виды приборов стали популярными, так как являются универсальными, и обладают многофункциональностью.
Понижающие трансформаторы имеют различные исполнения, в зависимости от конструкции и принципа действия:
- Тороидальные. Такой вариант модели трансформатора (рисунок «а») также применяется для незначительных мощностей, имеет сердечник формы в виде тора. Он отличается от других моделей малым весом и габаритами. Применяется в радиоэлектронных устройствах. Его конструкция позволяет достичь более высокой плотности тока, так как обмотка хорошо охлаждается на всем сердечнике, показатели тока намагничивания самые низкие.
- Стержневые. На рисунке «б» изображен стержневой вид трансформатора, в конструкции которого обмотки охватывают сердечники магнитопровода. Такие модели чаще всего выполняют для средней и большой мощности приборов. Их устройство довольно простое и дает возможность легче изолировать и ремонтировать обмотки. Их преимуществом является хорошее охлаждение, вследствие чего требуется меньше проводников для обмоток.
- Броневые. В этом виде трансформатора (рисунок «в») магнитопровод охватывает обмотки в виде брони. Остальные параметры идентичны стержневому виду, за исключением того, что броневые трансформаторы в основном выполняют маломощными, так как они имеют меньший вес и цену в сравнении с предыдущим вариантом, из-за простой сборки и меньшего количества катушек.
- Многообмоточные. Наиболее популярными являются двухобмоточные 1-фазные понижающие трансформаторы.
Для получения нескольких различных величин напряжений от одного трансформатора применяют несколько вторичных обмоток на сердечнике. Эти обмотки разные по числу витков и выдаваемому напряжению.
- Трехфазные. Такая модель применяется для понижения напряжения трехфазной сети. Такие понижающие трансформаторы применяются не только в промышленности, но и для бытовых нужд.
Они могут быть изготовлены из 3-х однофазных трансформаторов на общем сердечнике. Магнитные потоки всех фаз в сумме равны нулю. Промышленные образцы проходят испытания по определенным параметрам. Результаты испытаний сравнивают с документацией.
Если нет соответствия, то трансформатор подлежит выбраковке. 3-фазный трансформатор имеет соединение обмоток по схеме треугольника или звезды. Схема звезды характерна общим узлом выводов всех фаз.
Соединение треугольником выполняется последовательной схемой фаз в кольцо.
- Однофазные. Такие трансформаторы имеют подключение питания от однофазной сети, фаза и ноль поступают на одну первичную обмотку. Принцип их работы аналогичен всем остальным видам трансформаторов. Это наиболее популярный вид устройств.
Маркировка трансформаторов зависит от его свойств. Основными свойствами понижающих трансформаторов являются:
- Мощность.
- Напряжение выхода.
- Частота.
- Габаритные размеры.
- Масса.
Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.
Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.
Обмотки трансформатора
Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.
Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии. К одному трансформатору можно подключать сразу несколько бытовых устройств.
Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой. Проводники бывают различных форм сечения:
- Круглая.
- Прямоугольная (шина).
По способу намотки обмотки делят:
- Концентрические, на стержне.
- Дисковые, намотанные чередованием.
Достоинства
- Применение понижающих трансформаторов, как в промышленности, так и в домашних условиях можно объяснить необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
- Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
- Компактные размеры.
- Малая масса.
- Удобство транспортировки и монтажа.
- Отсутствие помех.
- Плавная регулировка напряжения.
- Незначительный нагрев.
Недостатки
- Недолгий срок службы.
- Незначительная мощность.
- Высокая цена.
При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:
- Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.
- Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.
- Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.
Эксплуатация и ремонт
Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.
Понижающие трансформаторы необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус. Заземление для понижающего трансформатора является обязательным условием.
Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.
Чаще всего обслуживание включает в себя следующие работы:
- Наружный осмотр, очистка от пыли и грязи.
- Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
- Проверка изоляции на пробой.
В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань.
При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/ponizhaiushchie-transformatory/
Обозначение трансформатора на схеме
В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства – трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей.
Основные типы и принцип действия трансформаторов
Существуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и тороидальные. Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления.
Каждое устройство, независимо от типа, состоит из трех основных функциональных частей – магнитопровода, обмоток и системы охлаждения.
Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение.
Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе.
Схематическое обозначение трансформаторов
Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.
Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:
- Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
- Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
- Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.
Трансформатор тока нулевой последовательности
Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой .
В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).
Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.
- Чертеж 1 – ступенчатое регулирование трансформатора.
- Чертеж 2 – однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
- Чертеж 3 – дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.
- Чертеж 4 – однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
- Чертеж 5 – трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
- Чертеж 6 – трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.
- Чертеж 7 – трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
- Чертеж 8 – тип устройства такой же, как и на предыдущих чертежах. Основное соединение – звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.
- Чертеж 9 – три фазы, три обмотки, соединенные по схеме звезда-звезда.
- Чертеж 10 – схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
- Чертеж 11 – типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки – обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.
Как работает трансформатор
- Чертеж 12 – группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
- Чертеж 13 – схема однофазного автотрансформатора с ферромагнитным сердечником.
- Чертеж 14 – однофазный автотрансформатор с функцией регулировки напряжения.
- Чертеж 15 – трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
- Чертеж 16 – автотрансформатор на девять выводов.
- Чертеж 17 – однофазный автотрансформатор с третичной обмоткой.
Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:
- С одной вторичной обмоткой (рисунок 18).
- Две вторичные обмотки и один магнитопровод (рисунок 19).
- Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
- Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).
Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.
Источник: https://electric-220.ru/news/oboznachenie_transformatora_na_skheme/2016-10-26-1097
Трансформаторы
Трафарет Visio Трансформаторы.
Условные обозначения — трансформаторы однофазные
Трансформатор однофазный с отводом от средней точки первичной обмотки.
Трансформатор однофазный с отводом от средней точки вторичной обмотки.
Трансформатор однофазный.
Трансформатор однофазный с отводами от средней точки первичной и вторичной обмотки.
Автотрансформатор однофазный с регулированием напряжения.
В контекстном меню фигуры можно скрыть или показать символ магнитопровода и экрана между обмотками трансформатора, а так же повернуть условное обозначение трансформатора горизонтально и поменять местами вывода первичной и вторичной обмоток, например:
Трансформатор однофазный, символы магнитопровода и экрана скрыты, повернут горизонтально.
Однофазный трансформатор с двумя обмотками и экраном (магнитодиэлектрическим магнитопроводом).
Трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками.
С помощью управляющий маркеров фигур, можно изменить конфигурацию обозначения выводов трансформаторов.
Изменение условного обозначения трансформатора однофазного — видео:
Условные обозначения трансформаторов тока
*Трансформатор тока с одним магнитопроводом и двумя вторичными обмотками.
*Трансформатор тока с двумя магнитопроводами и двумя вторичными обмотками.
Трансформатор тока с одной вторичной обмоткой.
*Примечание: тип магнитопровода для трансформатора тока с двумя вторичными обмотками перключается в таблице данных фигуры.
С помощью управляющих маркеров фигур, можно изменить конфигурацию обозначения выводов трансформаторов тока.
Изменение условных обозначений трансформаторов тока — видео:
Условные обозначения трансформаторов трехфазных
Фигура условного обозначения трехфазного трансформатора трансформируемая. Изменяя в таблице данных фигуры соответствующие пункты: Обмотка 1 и Обмотка 2, можно получить различные конфигурации условного обозначения.
Например:
Трансформатор трехфазный с ферромагнитным магнитопроводом, соединение обмоток звезда / звезда.
Трансформатор трехфазный , соединение обмоток треугольник / звезда.
Трансформатор трехфазный , соединение обмоток звезда / треугольник.
Трансформатор трехфазный, соединение обмоток треугольник / треугольник.
Трансформатор трехфазный, соединение обмоток звезда с выведенной нейтральной (средней) точкой / звезда.
Трансформатор трехфазный, соединение обмоток звезда с нейтральной точкой / звезда с нейтральной точкой.
А так же, для любого условного обозначения, в таблице данных фигуры, можно выбрать способ регулирования: без регулирования, плавное, ступенчатое или фазорегулятор.
Например:
Трансформатор трехфазный, соединение обмоток звезда / звезда, с регулированием под нагрузкой.
Трансформатор трехфазный, соединение обмоток звезда / звезда, с ступенчатым регулированием.
Трансформатор трехфазный (фазорегулятор), соединение обмоток звезда / звезда.
Изменение условных обозначений трансформаторов трехфазных, видео:
Отдельные элементы условных обозначений трансформатора
Составить условное обозначение других вариантов трансформаторов, можно из фигур отдельных элементов: сердечника и набора обмоток.
Например:
Трансформатор однофазный четырехобмоточный.
Трансформатор с управляющей (подмагничивающей) обмоткой.
Пример построения условного обозначения трансформатора из отдельных элементов, видео:
Источник: https://td-visio.ru/biblioteki-visio/elektroavtomatika-pro/opisanie-i-rukovodstvo/trafarety-ugo/transformatory.html
Условные графические обозначения
Условные графические обозначения (УГО) элементов электрических схем проектов электроснабжения необходимы для упрощения понимания содержания документации. Символы и УГО на однолинейных схемах электроснабжения помогают проектировщикам и монтажникам без применения дополнительных манипуляций правильно читать графические чертежи.
Умение понимать обозначения на электрических схемах – одна из ключевых составляющих, без которой невозможно стать грамотным специалистом. На начальном этапе все проектировщики, монтажники, а также инженеры сектора ПТО и сметчики должны изучить техническую документацию, ознакомиться с действующими ГОСТами для составления и понимания содержания проектов. Главный документ ГОСТ 2.702-2011 – правила составления электросхем в единой системе конструкторской документации (ЕСКД).
Однолинейная схема электроснабжения
Условно-графические обозначения в электросхемах ГОСТ незаменимы при проектировании вводно-распределительных устройств, распределительных подстанций, шкафов управления и учета, этажных щитов, блок-схем и схем замещения.
Полные данные по условно-графическим и буквенным обозначениям можно скачать в файле.
Обозначения розеток и выключателей на чертежах
Проект внутреннего электроснабжения – совокупность схем и чертежей силовых розеточных сетей и сети освещения. В электропроводках используют однополюсные, двухполюсные и трехполюсные выключатели.
Бывают для открытой и скрытой проводки, с различными степенями защиты – для нормальных условий эксплуатации, влаго- пылезащищенные и т.д. Трех- и двухклавишные устройства также имеют визуальные различия на электросхемах. что важно при составлении ведомостей потребности материалов.
В противном случае из-за невнимательности инженера повышается риск закупки неподходящего либо более дорогостоящего оборудования.
Также узел может быть совмещенным – одна розетка и несколько бытовых выключателей, сдвоенные включатели или розетки. УГО переключателя схоже на обычный выключатель, имеет два направления действия, что отображено на схемах.
Обозначение выключателей на схемах
Распределительные коробки на схеме обозначаются аналогично.
Обозначения выключателей на схемах
Выключатели – самое распространенное устройство в электротехнике, т.к. выполняет главные функции – включения и выключения цепей.
На электросхемах подстанций всегда указываются, какие цепи в нормальном режиме должны быть разомкнуты (резервные), а какие запитаны – основные линии.
Магнитные контакторы имеет схожее с автоматическим выключателем изображение. Ввиду различий принципа действия и более широко функционала имеет соответствующее УГО.
Предохранители конструктивно и технически отличаются от автоматических выключателей. Имеют более широкий спектр применения – чаще используются для электроснабжения промышленных объектов ввиду более высокой надежности и меньшей рыночной стоимости. На однолинейных схемах выполнены в виде прямоугольника с продольной чертой посреди – изображение плавкой вставки.
Обозначение трехполюсного рубильника на однолинейной схеме имеет кардинальные отличия от однополюсных моделей.
На принципиальных электросхемах содержится другая информация и содержат другую элементную базу. Для правильного чтения технической документации необходимо помнит разницу между однолинейной и принципиальной электросхемами: последняя содержит информацию о наличии элементов, без указания их физического расположения.
Как обозначаются трансформаторы на схемах
Для каждого вида трансформатора есть отдельное УГО. Используются на первичных, однолинейных схемах, опросных листах, листах расчетов токов короткого замыкания и т.д.
Обозначение заземлений на схемах
Заземление на электросхемах выполняют в зависимости от типа. Заземляющие контуры используются абсолютно на всех электрических схемах, т.к. главным свойством нормальной работы электросети является ее безопасность.
Общее заземление |
Чистое (бесшумное) заземление |
Защитное заземление |
Буквенные обозначения на электрических схемах
На электросхемах применяется буквенная аббревиатура на латинице, где виды элементов указывают одной буквой. Многобуквенная кодировка используется для уточнения кода конкретного элемента. Первая буква в таких обозначениях всегда указывает на тип устройства.
Устройства общего назначения имеют код A. К ним относят мазеры усилители различного рода и т.д.
Буквой B на электросхемах выполняют преобразователи неэлектрической величины в электрическую (микрофоны, фотоэлементы, тепловые датчики, пьезоэлементы, датчики давления, датчики скорости, звукосниматели, детекторы).
С – конденсаторы.
Схемы интегральные, микросборки обозначают символом D. К ним относят логические элементы, интегральные схемы аналоговые и цифровые, устройства задержки и хранения информации.
Элементы различного назначения (электрические лампочки, пиропатроны, элементы нагрева) идентифицируют символом E.
Предохранители, разрядники, дискретные элементы защиты по току мгновенного и инерционного действия, по напряжению и др. кодируются буквой F.
G – батареи и другие источники питания.
H – индикаторы и сигнальные элементы (приборы световой, символьной и звуковой сигнализации).
Буквой K обозначают реле на схеме (токовые, электротепловые, указательные) времени и напряжения, магнитные пускатели.
Дроссели и катушки индуктивности имеют обозначение L.
M – буквенное обозначение двигателей постоянного и переменного тока.
Измерительные приборы (измерители импульсов, амперметры, счетчики активной и реактивной электроэнергии, вольтметры, фиксаторы времени, омметры, ваттметры) идентифицируют буквой P, за исключением аббревиатуры PE.
Q – обозначения в электротехнике короткозамыкателей, разъединителей и автоматов в силовых цепях.
На однолинейных схемах резисторы обозначают символом R (шунты, варисторы, терморезисторы, потенциометры).
Источник: https://domashnysvet.ru/elektroprovodka/uslovnye-graficheskie-oboznacheniya
Условные графические обозначения элементов электрических и электронных схем
Почти все УОС, все изделия радиоэлектроники и электротехники, изготавливаемые промышленными организациями и предприятиями, домашними мастерами, юными техниками и радиолюбителями, содержат в своем составе определенное количество разнообразных покупных ЭРИ и элементов, выпускаемых в основном отечественной промышленностью. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. К ним можно отнести в первую очередь ППП, конденсаторы, резисторы, трансформаторы, дроссели, электрические соединители, аккумуляторы, ХИТ, переключатели, установочные изделия и некоторые другие виды ЭРЭ.
Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД.
Особое внимание уделяется принципиальным электрическим схемам, которые определяют не только основные электрические параметры, но и все входящие в устройства элементы и электрические связи между ними.
Для понимания и чтения принципиальных электрических схем необходимо тщательно ознакомиться с входящими в них элементами и комплектующими изделиями, точно знать область применения и принцип действия рассматриваемого устройства.
Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов.
Связь перечня комплектующих ЭРЭ с их условными графическими обозначениями осуществляется через позиционные обозначения.
Для построения условных графических обозначений ЭРЭ используются стандартизованные геометрические символы, каждый из которых применяют отдельно или в сочетании с другими. При этом смысл каждого геометрического образа в условном обозначении во многих случаях зависит от того, в сочетании с каким другим геометрическим символом он применяется.
Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис.1. Эти обозначения касаются всех комплектующих элементов схем, включая ЭРЭ, проводники и соединения между ними. И здесь важнейшее значение приобретает условие правильного обозначения однотипных комплектующих ЭРЭ и изделий.
Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Основные виды буквенных обозначений элементов схем приведены в табл.
1.
Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения, вид соединения, способы регулирования, форму импульса, вид модуляции, электрические связи, направление передачи тока, сигнала, потока энергии и др.
В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. В магазинах можно приобрести различные типы ЭРИ и ЭРЭ с иностранными обозначениями. В табл. 1. 2 приведены сведения о наиболее часто встречающихся ЭРЭ зарубежных стран с соответствующими обозначениями и их аналоги отечественного производства.
Эти сведения впервые публикуются в таком объеме.
Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации
1— транзистор структуры р- n-р в корпусе, общее обозначение;
2— транзистор структуры п-р-п в корпусе, общее обозначение,
3 — транзистор полевой с p-n-переходом и п каналом,
4 — транзистор полевой с p-n-переходом и р каналом,
5 — транзистор однопереходный с базой п типа, б1, б2 — выводы базы, э — вывод эмиттера,
6 — фотодиод,
7 — диод выпрямительный,
8 — стабилитрон (диод лавинный выпрямительный) односторонний,
9 — диод тепло-электрический,
10 — тиристор диодный, стираемый в обратном направлении;
11 — стабилитрон (диодолавинный выпрямительный) с двусторонней
проводимостью,
12 — тиристор триодный.
13 — фоторезистор,
14 — переменный резистор, реостат, общее обозначение,
15 — переменный резистор,
16 — переменный резистор с отводами,
17 — построечный резистор-потенциометр;
18 — терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева),
19 — варистор,
20 — конденсатор постоянной емкости, общее обозначение,
21 — конденсатор постоянной емкости поляризованный;
22 — конденсатор оксидный поляризованный электролитический, общее обозначение;
23 — резистор постоянный, общее обозначение;
24 — резистор постоянный с номинальной мощностью 0, 05 Вт;
25 — резистор постоянный с номинальной мощностью 0, 125 Вт,
26 — резистор постоянный с номинальной мощностью 0, 25 Вт,
27 — резистор постоянный с номинальной мощностью 0, 5 Вт,
28 — резистор постоянный с номинальной мощностью 1 Вт,
29 — резистор постоянный с номинальной мощностью рассеяния 2 Вт,
30 — резистор постоянный с номинальной мощностью рассеяния 5 Вт;
31 — резистор постоянный с одним симметричным дополнительным отводом;
32 — резистор постоянный с одним несимметричным дополнительным отводом;
Стандартные условные графические и буквенные обозначения элементов электрических схем
Е |
Источник: http://www.electricdom.ru/article5.htm
ТРАНСФОРМАТОРЫ
Трансформатор однофазный
Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:
Принципиальная схема трансформатора
Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки.
Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны.
Также трансформаторы могут использоваться для гальванической развязки цепей.
Принцип работы трансформатора
Принцип действия трансформатора
При подаче напряжения на первичную обмотку в ней наводится ЭДС самоиндукции. Силовые линии магнитного поля пронизывают не только ту катушку, которая наводит ток, но и расположенную на том же сердечнике вторую катушку (вторичную обмотку) и наводит также в ней ЭДС самоиндукции.
Отношение числа витков первичной обмотки к вторичной называется Коэффициентом трансформации. Записывается это так:
- U1 =напряжение первичной обмотки.
- U2 = напряжение вторичной обмотки.
- w1 = количество витков первичной обмотки.
- w2 = количество витков вторичной обмотки.
- кт = коэффициент трансформации.
Коэффициент трансформации — формула
Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15.
Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1\кт = 220\15 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.
66 вольт.
Трансформаторы на схемах
Обозначается на принципиальных схемах трансформатор так:
Обозначение трансформатора на схемах
На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:
Трансформатор с двумя вторичными обмотками
Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).
Сварочные трансформаторы
Существуют специальные сварочные трансформаторы.
Сварочный трансформатор
Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.
Силовые трансформаторы
Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше.
Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность.
В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:
Фото высоковольтный трансформатор
Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание.
Трансформатор 6 киловольт
У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:
Пример соединения обмоток силового трансформатора
Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:
Изображение на схемах трансформатор тока
На фото далее изображены именно такие трансформаторы тока:
Трансформатор тока
Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):
Лабораторный автотрансформатор — изображение на схеме
Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:
Фото ЛАТР
В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:
Безопасный ЛАТР изображение на схеме
Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.
Тороидальные трансформаторы
Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото:
Фотография — тороидальный трансформатор
Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.
Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:
Сердечники трансформаторов — рисунок
Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.
Форум по трансформаторам
Обсудить статью ТРАНСФОРМАТОРЫ
Источник: https://radioskot.ru/publ/nachinajushhim/transformatory/5-1-0-761
Трансформаторы на электросхемах
Лента » Немного электричества » Трансформаторы на электросхемах.
На мой взгляд, по количеству металла раритетные ламповые радиоприёмники или телевизоры превзойдут любую современную электро-радио технику. Грешно судить ‘предков’, но кто-то ещё помнит цветной ламповые телевизоры ‘Рубин’, ‘Рекорд’, ‘Берёзка’, ‘Горизонт’, которые угрожающе смотрели на хозяев, предупреждая о своём весе в 61-63 кг, большую часть которой занимали трансформаторы.
Когда включаем нами любимые электроприборы в домашнюю электросеть, мы даже не догадываемся, что присутствующее напряжение в сети 220 вольт преобразовано(трансформировано) силовым электрическим трансформатором из более высокого напряжения, поступающего от другого распределительного трансформатора, который, в свою очередь, получает электричество через линии электропередачи(ЛЭП) от самой электростанции. Если включим домашний сварочный трансформатор или зарядное автомобильное устройство в сеть, то напряжение из 220 вольт будет трансформироваться в низкое, безопасное для нас.
А как работает трансформатор?
Что бы электрическая цепь, состоящая из набора элементов, потребителей и источника питания была действующей, она должна быть замкнутой, то есть электрический ток от одного полюса источника питания должен пройти через потребитель и вернуться на на другой полюс источника.
У трансформатора входная сторона имеет два подключаемых конца-ввода. У нашей питающей электросети тоже два провода, которые мы и подключаем к вводным концам.
Таким образом, мы запитываем электрический трансформатор, рабочее напряжение которого должно быть рассчитано на напряжение сети.
Получается рабочая электрическая цепь электросеть-трансформатор, точнее — выходная обмотка понижающего потребительского трансформатора сети с выходным напряжением 220 вольт на первичную обмотку нашего, бытового трансформатора на 220 вольт.
А так как в сети ток переменный, с частотой 50Гц, то колебания тока посредством связи через обмотки трансформаторов вызывают некую вибрацию металлического сердечника — магнитопровода электрического трансформатора, образовывая вокруг себя переменное электромагнитное поле.
Когда поверх первичной обмотки, запитанной от сети в 220 вольт и размещённой на металлическом сердечнике, установить другую, вторичную обмотку, то можно получить переменное напряжение желаемой величины(к примеру: 12вольт), но той же частоты, что и в сети.
Таким образом, переменное напряжение электрической сети трансформируется в необходимое для нас по величине вторичное напряжение. Ко вторичной обмотке можно подключить автомобильную лампу на 12 вольт, с которой ничего плохого не случится.
Тем более, первичная электрическая цепь(сеть 220 вольт + первичная катушка трансформатора) никак не соединена с другой(вторичная катушка 12 вольт + электролампа). В данном случае говорится о гальванической развязке, которая обезопасит нас и питаемое электрооборудование от опасного высокого напряжения сети.
Есть трансформаторы и без гальванической развязки(автотрансформаторы), катушки у которого связаны между собой электрически(соединены).
А вот и ответ: трансформатор через расположенные на магнитопроводе обмотки трансформирует, преобразует переменное напряжение посредством электромагнитной индукции или осуществляет гальваническую развязку между входной и питающей стороной.
Как изображается трансформатор на схеме
В электротехнике и радиоэлектронике существует много разных видов и типов трансформаторов. Одни применяются строго в высокочастотных цепях, другие только в измерительной технике, а описываемые нами — большинство в быту и в бытовой аппаратуре.
Изображение обмотки трансформатора напоминает волнообразную линию, у которой одна сторона волны остроконечная. В последнее время обмотку изображают в виде прямоугольника с отводами по краям. Начало обмотки обозначается толстой жирной точкой. Если трансформатор магнитоэлектрический — с сердечником, то между параллельно указанными катушками рисуется сердечник, в виде чёрного закрашенного прямоугольника.
На однолинейных схемах изображение трансформатора выполняется в виде смещения относительно друг-друга с наложением двух окружностей.
Существуют трансформаторы регулируемые и не регулируемые, с дополнительными отводами и секциями, с сердечниками и без таковых, трансформаторы тока и напряжения. Но при всех типах трансформатора всегда на схеме присутствует изображение обмотки — волнообразная линия или прямоугольник с отводами.
Обозначение на схеме используется латинской буквой T, хотя, она аналогична и кирилице. Рядом с литерой Т ставится буквенный символ, указывающий на тип электрического трансформатора.
К примеру: А — TA(трансформатор тока), V — TV(трансформатор напряжения), UV — TUV(трансформатор регулировочный).
Следует запомнить, что нарисованные параллельно или по одной оси обозначения катушек с указанием сердечника или без него и есть общее схематичное изображение трансформатора.
Ваша оценка!
[Всего: 0 В среднем: 0]
Источник: https://vesyolyikarandashik.ru/transformatory-na-jelektroshemah/