Как подключить тепловое реле к магнитному пускателю

Как подключить тепловое реле к магнитному пускателю?

как подключить тепловое реле к магнитному пускателю

Пускатель, схема “звезда-треугольник”

Сразу отсылаю читателя к статьям, которые предшествуют этой – Виды и отличия контакторов и пускателей, и Подключение асинхронного электродвигателя. Очень рекомендую ознакомиться, перед дальнейшим чтением.

Скажу также, что на языке электриков “контактор” и “пускатель” очень переплетены, и я в статье буду говорить и так, и эдак.

Повторюсь, чтобы освежить в памяти. Магнитный пускатель – устройство, которое обязательно содержит контактор (как главный коммутационный элемент), а также может содержать:

  • мотор-автомат либо защитный автомат (как устройство рабочего или аварийного отключения),
  • тепловое реле (как устройство аварийного отключения при перегрузке и обрыве фазы),
  • кнопки “Пуск”, “Стоп”, различные переключатели режимов схемы,
  • схема управления (может содержать те же кнопки, а может – контроллер),
  • индикация работы и аварии.

Различные схемы подключения магнитных пускателей и их отличия рассмотрим ниже.

Типовая схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских станках и другом простом оборудовании на 2-3 двигателя используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “Пуск” и “Стоп” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Часто в таких схемах пускатель не включается из-за того, что у этой кнопки “подгорают” контакты.

На схеме не показан защитный автомат цепи управления, он ставится последовательно с кнопкой “Стоп”, номинал – несколько ампер.

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Не путать с блокировкой в реверсивных схемах, см. ниже.

Контакты “Самоподхвата” физически расположены на одном креплении с силовыми контактами контактора, и работают одновременно.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Часто в таких схемах бывает, что пускатель не становится на “самоподхват”. Дело в том самом четвертом контакте.

Схема подключения пускателя с тепловым реле

В схеме выше я упустил из виду тепловую защиту ради простоты схемы. На практике обязательно применяют тепловое реле типа РТЛ (по крайней мере, это было принято до 2000 г. у нас и до 1990 г. у “них”)

6. Схема подключения пускателя с кнопками и тепловым реле

Как только ток двигателя возрастает выше установленного (из-за перегрузки, пропадания фазы) – контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя рвётся.

Таким образом, тепловое реле выполняет роль кнопки “Стоп”, и стоит в той же цепи, последовательно. Где его поставить – не особо важно, можно на участке схемы L1 – 1, если это удобно в монтаже.

Однако, тепловое реле не спасает от КЗ на корпус и между фазами. Поэтому в таких схемах обязательно ставят защитный автомат, как показано на схеме 7:

А что там свежего в группе вк самэлектрик.ру?

7. Схема подключения пускателя с кнопками автоматом и тепловым реле. ПРАКТИЧЕСКАЯ СХЕМА

Внимание! Цепь управления (цепь, через которую питается катушка пускателя КМ) должна обязательно быть защищена автоматом с током не более 10А. Данный защитный автомат на схеме не показан. Спасибо внимательным читателям!)

Ток защитного автомата двигателя QF не надо подбирать так тщательно, как в схеме 3, поскольку с тепловой перегрузкой справится РТЛ. Достаточно, чтобы он защищал подходящие провода от перегрева.

Пример. Двигатель 1,5кВт, ток по каждой фазе 3А, ток теплового реле – 3,5 А. Провода питания двигателя можно взять 1,5 мм2. Ток они держат до 16А. И автомат вроде можно поставить на 16А? Однако, не надо действовать топорно. Лучше поставить что-то среднее – 6 или 10А.

Схема подключения магнитного пускателя от контроллера

Последние 10 лет в новой промышленной автоматике широко применяются контроллеры. Катушки пускателей также включаются с выходов контроллера. И в данном случае для защиты от КЗ и теплового перегрева используется схема подключения двигателя номер 8:

8. Схема подключения пускателя с управлением от контроллера. ПРАКТИЧЕСКАЯ СХЕМА

На схеме QF – это мотор-автомат, или автомат защиты двигателя, как в схеме 4. Только изобразил я его по современному. В данном схема подключения пускателя “спрятана” в пунктире. Там находится контроллер, который всем управляет, и включает двигатель согласно программе, заложенной в нём.

При перегрузке двигателя мотор-автомат его отключает, и размыкает свой дополнительный (четвертый, сигнальный) контакт. Это необходимо только для того, чтобы “проинформировать” контроллер о аварии. Часто этот контакт просто-напросто входит в контрольную цепь, и останавливает весь станок.

 Схема подключения реверсивного магнитного пускателя

Фактически это два магнитных пускателя, объединенные электрически и механически, дальше подробнее.

Реверсивное управление электродвигателем

Реверсивный пускатель нужен тогда, когда необходимо, чтобы двигатель вращался поочередно в обоих направлениях.

Правое вращение (применяется чаще всего) – когда двигатель крутится по часовой стрелке, если смотреть ему “в зад”. Левое вращение – против часовой.

Смена направления вращения реализуется общеизвестным способом – меняются местами любые две фазы. Посмотрите на схему реверсивного включения двигателя ниже:

Когда включен пускатель КМ1, это будет “правое” вращение. Когда включается КМ2 – первая и третья фазы меняются местами, движок будет крутиться “влево”. Включение пускателей КМ1 и КМ2 реализуется разными кнопками “Пуск вперед” и “Пуск назад“, выключение – одной, общей кнопкой “Стоп” , как и в схемах без реверса.

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2. Он означает “защиту от дурака”. Может произойти так, что по какой-то причине включатся оба пускателя сразу. Произойдёт короткое замыкание между фазами L1 и L3. Можно сказать, “Ну и что, у нас ведь есть мотор-автомат QF, он нас спасёт!” А если не спасёт? А пока он будет спасать, выгорят контакты пускателей!

Поэтому реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними ставится специальный механический блокиратор.

Теперь посмотрите на контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Это – электрическая защита от того же дурака. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если наш дурак будет со всей своей дури жать на обе кнопки “Пуск” сразу, ничего не получится – двигатель будет слушаться той кнопки, которая нажата раньше.

Механическая и электрическая защиты в схеме подключения реверсивного пускателя должны быть всегда, они дополняют друг друга. Не ставить одну либо другую – моветон среди электриков.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но поскольку пятого контакта, как правило, в пускателях нет, приходится ставить доп. контакт. Например, для пускателя типа ПМЛ используют приставку ПКИ. А если, как в схеме 8, используется контроллер, самоподхват не нужен, и достаточно одного НЗ контакта на каждое направление вращения.

  Тепловая пленка на окна

Реверсивное управление гидравликой

А вот пример реверсивного управления клапанами, из статьи про гидравлический пресс:

Электрическая схема управления гидравликой

То, что применяются реле, не должно сбивать с толку. Фактически контактор и реле – суть одно устройство, отличие только в конструкции и параметрах.

Фактически, схема повторяет схему для двигателя, только вместо кнопки “Стоп” – два концевых выключателя, и кнопки SB1, SB2 – с дополнительными блокировочными НЗ контактами. Подробное описание работы схемы – здесь.

Работа реверсивного пускателя также подробно описана в статье про подключение генератора к сети дома.

Различие пускателей на 220В и 380В

Катушки магнитных пускателей для работы в сетях 380В могут быть на 220 и 380 Вольт без особых переделок схемы. Во всех схемах, приведённых в этой статье, электромагнитные пускатели имеют катушку на напряжение 220 В. Что же делать, если в руки попал пускатель не на 220В, а на 380В?

Всё очень просто – надо нижний (по схеме) вывод катушки пускателя на 380В подключить не к нулю (N), а к L2 или L3. Эта схема даже более предпочтительна, так как вся схема с пускателем на 380В может быть собрана вообще без нуля. Три фазы приходят, и три фазы уходят на двигатель, не считая управления.

Варианты нагрузок

К выходу магнитного пускателя можно подключить что душе угодно, не только двигателя, как в статье. Привожу примеры статей, в которых через пускатели включаются ТЭНы:

Ремонт и устройство конвектомата,

Схема промышленного калорифера.

На этом всё, жду комментариев и обмена опытом!

Статья понравилась?
Добавьте её в свою соц.сеть и дайте оценку!

(84,75 из 5)

Источник: https://gscomplect.com/kak-podklyuchit-teplovoe-rele-k-magnitnomu-puskatelyu/

Схема подключения теплового реле и его основные функции

как подключить тепловое реле к магнитному пускателю

Для защиты электродвигателя от недопустимых длительных токовых перегрузок, которые могут возникнуть при увеличении нагрузки на вал или потери одной из фаз применяется тепловое защитное реле. Также защитное реле защитит обмотки от дальнейшего разрушения при возникшем междувитковом замыкании.

Тепловым данное реле (сокращенно ТР) называют из-за принципа действия, который схож с работой автоматического выключателя, в котором изгибающиеся при нагреве электрическим током биметаллические пластины разрывают электрическую цепь, надавливая на спусковой механизм.

Особенности теплового реле

Но, в отличие от автоматического защитного выключателя, ТР не размыкает силовые цепи питания, а разрывает цепь самоподхвата магнитного пускателя. Нормально замкнутый контакт защитного устройства действует аналогично кнопке «Стоп», и подключается последовательно с ней.

Тандем контактора и теплового реле

Поскольку тепловое реле подключается сразу же после магнитного пускателя, то нет нужды дублировать функции контактора при аварийном размыкании цепей. При таком выборе реализации защиты достигается ощутимая экономия материала для контактных силовых групп – значительно проще коммутировать небольшой ток в одной цепи управления, чем разрывать три контакта под большой токовой нагрузкой.

Тепловое реле не разрывает силовые цепи напрямую, а лишь выдает сигнал управления в случае превышения нагрузки – данную особенность следует помнить при подключении устройства.

Как правило, в тепловом реле присутствует два контакта – нормально замкнутый и нормально разомкнутый. При срабатывании устройства данные контакты одновременно меняют свое состояние.

Нормально разомкнутые и нормально замкнутые контакты

Характеристики теплового реле

Выбор ТР следует производить, сопоставляя типичные характеристики данного защитного устройства соответственно имеющейся нагрузке и условиям эксплуатации электродвигателя:

  • Номинальный ток защиты;
  • Предел регулировки уставки тока срабатывания;
  • Напряжение силовой цепи;
  • Количество и тип вспомогательных контактов управления;
  • Мощность коммутации контактов управления;
  • Порог срабатывания (коэффициент отношения к номинальному току)
  • Чувствительность к асимметричности фаз;
  • Класс отключения;

Схема подключения

В большинстве схем при подключениях теплового реле к магнитному пускателю используется нормально замкнутый контакт, который подключается последовательно с кнопкой «Стоп» пульта управления. Обозначением данного контакта является сочетание букв NC (normal connected) или НЗ (нормально замкнутый).

Схема подключения ТР к контактору в магнитном пускателе

Нормально разомкнутый контакт (NO) при данной схеме подключения может использоваться для сигнализации о срабатывании тепловой защиты электродвигателя. В более сложных автоматических схемах управления он может использоваться для инициализации аварийного алгоритма останова конвейерной цепи оборудования.

Для самостоятельного подключения теплового реле для защиты электродвигателя, не имея опыта работы с подобным оборудованием, будет правильно сначала ознакомиться с принципом работы и подключением магнитного пускателя на данном сайте.

В независимости от типа подключения электродвигателя и количества контакторов магнитного пускателя (прямой и реверсивный запуск), внедрение теплового реле в схему является достаточно простым. Оно устанавливается после контакторов перед электродвигателем, а размыкающийся (нормально замкнутый) контакт подключается последовательно с кнопкой «Стоп».

Тепловое реле в схеме реверсивного подключения контакторов

Элементы подключения, управления и настройки ТР

По ГОСТ клеммы контактов управления имеют обозначение 95-96 (нормально замкнутый) и 97-98 (нормально разомкнутый).

На данном рисунке показана схема теплового реле с обозначением выводов и элементов управления. Кнопка «Тестирование служит для проверки работоспособности механизма.

Кнопка «Стоп» служит для ручного выключения устройства защиты.

Функция «Повторный взвод» позволяет заново запустить электродвигатель после срабатывания защиты. Многие ТР поддерживают два варианта – автоматический (возвращение в исходное состояние происходит после остывания биметаллических пластин) и ручной взвод, требующий непосредственного действия оператора для нажатия соответствующей кнопки.

Управление повторным взводом

Уставка тока срабатывания позволяет сделать выбор значения перегрузки, при котором реле отключит катушку контактора, который обесточит электродвигатель.

Регулировка уставки срабатывания относительно метки

При выборе устройства защиты нужно помнить, что по аналогии с автоматическим выключателем у тепловых реле также имеется времятоковая характеристика. То есть, при превышении уставленного тока на некоторое значение, отключение произойдет не сразу, а по истечению некоего времени. Быстрота срабатывания будет зависеть от кратности превышения тока уставки.

Графики времятоковой характеристики

Разные графики соответствуют характеру нагрузки, количеству фаз и температурному режиму.

Как видно из графиков, при двукратном превышении нагрузки может пройти больше минуты времени, прежде, чем защита сработает. Если же выбрать ТР недостаточно мощным, то двигатель может не успеть разогнаться при многократном стартовом превышении уставки тока перегрузки.

Также у некоторых тепловых реле имеется флажок срабатывания защиты.

Защитное закрывающееся стекло служит одновременно для нанесения маркировки и защиты настроек при помощи пломбирования,

Защита настроек и маркировка

Подключение и установка ТР

Как правило, современные тепловые реле имеют защиту по всем трем фазам, в отличие от распространенных в советское время тепловых реле, имеющих обозначения ТРН, где контроль тока производился только в двух проводах, идущих к электродвигателю.

Тепловое реле ТРН с контролем тока только в двух фазах

По типу подключения тепловые реле можно разделить на две разновидности:

  • Устанавливаемые рядом с магнитным пускателем, и подключаемые при помощи перемычек (ТРН, РТТ).Реле РТТ, подключенное при помощи жестких пластинчатых перемычек
  • Монтируемые непосредственно на контактор магнитного пускателя (современные модели).Реле устанавливается непосредственно на контакторе

Входные токопроводящие выводы в современных моделях одновременно служат частью крепежа теплового реле к контактору магнитного пускателя. Они вставляются в выходные клеммы контактора.

Подключение теплового реле к контактору

Как видно из фото внизу, в некоторых пределах можно изменять расстояние между выводами, чтобы подстраиваться под различные виды контакторов.

Подстройка выводов под клеммы контактора

Для дополнительной фиксации ТР предусмотрены соответствующие выступы на самом устройстве и на контакторе.

Элемент крепежа на корпусе теплового релеСпециальный паз крепления на контакторе

Механика теплового реле

Существует много разновидностей ТР, но принцип действия у них одинаков – при протекании увеличенного тока через биметаллические пластины они искривляются и воздействуют через систему рычагов на спусковой механизм контактных групп.

ЭТО ИНТЕРЕСНО:  Какой штраф за самовольное подключение электроэнергии

Рассмотрим для примера устройство теплового реле LR2 D1314 фирмы «Schneider Electric».

ТР в разобранном виде

Условно данное устройство можно разделить на две части: блок биметаллических пластин и система рычагов с контактными группами. Биметаллические пластины состоят из двух полос различных сплавов, соединенных в одну конструкцию, имеющих разный тепловой коэффициент расширения.

Изгибающаяся биметаллическая пластина

Благодаря неравномерному расширению при больших значениях тока данная конструкция расширяется неравномерно, что заставляет ее изгибаться. При этом один конец пластины зафиксирован неподвижно, а подвижная часть воздействует на систему рычагов.

Система рычагов

Если убрать рычаги, то будут видны контактные группы теплового реле.

Коммутационный узел ТР

Не рекомендуется сразу же включать тепловое реле после срабатывания и заново запускать электродвигатель – пластинам нужно время, чтобы остыть и вернуться в первоначальное состояние. К тому же, будет благоразумней сначала найти причину срабатывания защиты.

Источник: http://infoelectrik.ru/elektrotexnicheskie-ustrojstva/podklyuchenie-teplovogo-rele.html

Как самостоятельно подключить тепловое реле — обзор схем

как подключить тепловое реле к магнитному пускателю
У каждого мастера на все руки имеется пара задумок соорудить какой-либо станок, точильный, токарный или подъемник. Сегодня поговорим о важном элементе электропривода — тепловом реле, которое еще называют токовым или теплушкой.

Данное устройство реагирует на величину тока через него проходящее и в случае превышения установленного значения производит переключение контактов, отключая привод или сигнализируя о внештатной ситуации. В одной из наших статей мы уже рассматривали типы теплушек и принцип их работы, а также по каким параметрам происходит выбор теплового реле.

В этой статье мы рассмотрим, как производится установка и подключение теплового реле своими руками. Инструкция будет предоставлена со схемами, фото и видео примерами, чтобы вам были понятны все нюансы монтажа.

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:

Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98.

 На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы.

 Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети.

 При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения.

 Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления.

 Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса.

Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств.

 При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А.

Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

Источник: https://samelectrik.ru/kak-podklyuchit-teplovoe-rele.html

Как подключить магнитный пускатель и тепловое реле

Июнь 21, 2014

45522 просмотров

Магнитный пускатель— это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя. Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно, как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

  1. Обесточить участок работы и проверить отсутствие напряжения индикаторной отверткой.
  2. Определить величину рабочего напряжения катушки, которая указывается всегда не на корпусе пускателя, а на самой катушке. Тут 2 варианта- 220 или 380 Вольт. Если 220 В, тогда на контакты катушки подается фаза и ноль. Если 380- 2 разноименные фазы. Это важно, а иначе при неправильном подключении катушка может перегореть или будет не включать силовые контакты до конца.
  3. Вам понадобится одна кнопка «Стоп» красного цвета с постоянно замкнутыми контактами и одна кнопка «Пуск» черного или зеленного цвета с постоянно разомкнутыми контактами.
  4. Запомните, что силовые контакты включают или выключают только фазы, а приходящие и отходящие нули и заземляющие проводники всегда соединяются между собой на клеммнике в обход пускателя. Они не коммутируются, для подключения катушки на 220 Вольт дополнительно с клеммника берется ноль в схему управления пускателем.

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов, которые подают электропитание на электрооборудование.
  2. Схемы управления, которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт, если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых. Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят  три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки.

Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск».

С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем  контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель,  ток в нем проходит последовательно через нагреватели термореле, и далее-  к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть  регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

Источник: http://jelektro.ru/vse-o-elektromontazhe/podkljuchenie-puskatelja.html

Подключение теплового реле (схема)

Реле тепловое устанавливается для недопущения воздействия на электродвигатели от значительных и продолжительных токовых перегрузок, образующихся при обрыве одной из фаз либо перегрузки вала. Также при помощи ТР осуществляется защита обмотки от последующего повреждения после междувиткового замыкания. статью ⇒ Реле напряжения.

Что такое тепловое реле?

Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска.

Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой.

Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок.

Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:

  • нормально замкнутого;
  • разомкнутого в нормальном положении.

После сработки реле оба этих контакта одновременно изменяют сове положение.

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

  • РТЛ;
  • РТТ;
  • РТИ;
  • ТРН;
  • твердотельные;
  • РТК;
  • РТЭ.

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Реле перезагрузки тепловое РТЛ с уровнем защиты IP20 на номинальный ток 100А

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Термореле типа РТЭ состоит из проводника, изготовленного из специального сплава. При достижении температуры порового значения проводник плавится, тем самым разрывая цепь. Встраивается в конструкцию электромотора.  статью ⇒Как работает реле контроля напряжения?

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.
ЭТО ИНТЕРЕСНО:  Как правильно подключить трехфазный счетчик

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.

Магнитный пускатель с тепловым реле ТРН с двумя входящими подключениями

Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.

Структурная схема подключения теплового реле согласно требований ГОСТ с обозначениями

Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.

Включение реле в 3-х фазную сеть, управление выполняется через кнопки Стоп и Старт

Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.

Помимо этого, не менее интересна схема подсоединения теплового реле посредством токовых трансформаторов, предназначенная для применения при подключении мощных двигателей, например, поливочных систем крупных фермерских хозяйств.

При добавлении в питающую цепь трансформатор следует иметь в виду параметр трансформации, равный, например, 60/5. Этот параметр означает, что при поступлении через первичную обмотку тока в 60 А, на вторичной обмотке его величина будет равна 5 А.

Использование такой схемы позволит сократить расходы на приобретение комплектующих без снижения эксплуатационных характеристик.  статью ⇒ Подключение указательное реле.

Схема, при помощи которой осуществляется контроль работы посредством трансформаторов тока

Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Обзор моделей

В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.

Наименование модели Характеристики Примернаястоимость,руб.
РТЛ 10А Переменный ток до 660В и частотой 50Гц или 60ГцПостоянный ток до 440В 320
РТЭ-1304 Номинальный ток 0,4-0,63 АЧастота тока 50 ГцНапряжение 660 В 340
РТТ5-10-1 Реле перегрузкиРод тока переменныйДиапазон установок 5,00 А 490
ТРН10 Отключаемый ток: переменный — 3 А при 380 В;1 А при 660В 270
РТК Напряжение: 220 Вток — 1,3 А 440

Тепловое реле перегрузки РТЛ-1010М с уровнем пыле- и влагозащиты IP20

Ошибки при установке

  • Главной ошибкой неопытных мастеров является приобретение и установка реле с параметрами, не подходящими к параметрам электродвигателя. Необходимо внимательно ознакомиться с описанием товара и его характеристиками, приведенными в паспорте устройства.
  • Также при подборе и установке реле часто не учитывается температура внешнего воздуха при эксплуатации устройства. Слишком высокая температура может являться причиной частых срабатываний.
  • Еще одна серьезная ошибка — слишком плотное затягивание контактов устройства при помощи отвертки. При выполнении этой работы следует проявить осторожность, чтобы не вывести реле из строя.

Источник: http://electric-tolk.ru/podklyuchenie-teplovogo-rele/

Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Источник: https://pue8.ru/elektricheskie-seti/950-magnitnyj-puskatel-s-teplovym-rele-i-knopkami-upravleniya-skhema-printsip-dejstviya.html

Схемы подключения магнитного пускателя на 220 В и 380 В + как подключить контактор своими руками

Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.

Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.

В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.

Отличие магнитного пускателя от контактора

Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.

В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.

Предельное напряжение, с которым работает магнитный пускатель, зависит от электромагнитной катушки индуктивности. Бывают МП небольших номиналов — 12, 24, 110 В, но наиболее часто применяют на 220 и 380 В

Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.

Устройство и назначение прибора

Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.

Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.

Назначение магнитного пускателя

Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.

Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.

ЭТО ИНТЕРЕСНО:  Как подключить контактор на 220в

Стартовые кнопки, которыми оснащают схему, обеспечивают удобную эксплуатацию. Если нужно отключить нагрузку, достаточно задействовать клавишу «Стоп». При этом поступление напряжения на катушку пускателя закончится и цепь разорвется

МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.

После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».

Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.

Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.

Конструкция и функционирование прибора

Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.

Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.

Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.

Вариантов исполнения четыре:

  • открытый;
  • защищенный;
  • пылеводозащищенный;
  • пылебрызгонепроницаемый.

Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.

Буквы обозначают тип устройства, следующие за ними цифры — от 1 до 6 —величину. Вторая цифра — исполнение. Единица указывает на нереверсивный МП без тепловой защиты, двойка — то же, но с тепловой защитой, три — реверсивный, не имеющий тепловой защиты, четыре — с тепловой защитой, реверсивный

При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.

Состоит МП из следующих основных узлов:

  • сердечника;
  • электромагнитной катушки;
  • якоря;
  • каркаса;
  • механических датчиков работы;
  • групп контакторов — центральной и дополнительной.

Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.

МП включает в свою конструкцию основание (1), контакты неподвижные (2), пружину (3), сердечник (4), дроссель (5), якорь (6), пружину (7), контактный мостик (8), пружину (9), дугогасительную камеру (10), нагревательный элемент (11)

По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.

Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.

Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.

Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.

Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.

В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.

Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.

Можно вручную проконтролировать работу системы путем нажатия на якорь с целью почувствовать силу сокращения пружины. Как раз усилие сокращения справляется с магнитным полем. При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются

Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.

Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.

Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.

Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.

На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Различают два вида контактов блокировки: нормально закрытые, нормально разомкнутые. Первого вида контакт имеет кнопка «Стоп», а нормально открытый — «Пуск»

Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.

Особенности монтажа пускателя

Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.

Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.

Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.

Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.

Провода из меди до подключения нужно залудить. Если они многожильные, их концы перед лужением скручивают. У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином

Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.

Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.

Популярные схемы подключения МП

Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.

Это предельно простая схема. Она собирается, когда замыкается выключатель автоматический QF. От КЗ (короткого замыкания) схему управления защищает предохранитель PU

В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.

При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.

Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.

Тонкости подключения устройства на 220 В

Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.

Особенности силовой цепи

Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.

Источник: https://sovet-ingenera.com/elektrika/rele/sxema-podklyucheniya-magnitnogo-puskatelya.html

Схема подключения теплового реле для электродвигателя

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор.

В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле.

Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться.

Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения.

При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин.

Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор.

В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test. Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно.

Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop.

Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Обратите внимание! Описание приводится для теплового реле LR2 D1314. Другие варианты имеют схожее строение и схему подключения.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset. Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом.

Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset.

Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки.

В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя.

При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Обратите внимание! Тепловое реле не предназначено для защиты двигателя от короткого замыкания. Это связано с высокой скоростью пробоя. Пластины просто не успевают отреагировать. Для этих целей необходимо предусматривать специальные автоматические выключатели, которые также включаются в цепь питания.

Характеристики реле

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться.

Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания.

Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1.

При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2.

Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя.

При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу.

Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1.

Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель.

Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор.

При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. о подключении ТР можно посмотреть ниже.

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя.

С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты.

Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Источник: https://2proraba.com/elektrika/teplovoe-rele-dlya-elektrodvigatelya-sxema-podklyucheniya.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как закрепить розетку в стене

Закрыть