Как рассчитать предохранитель по току

Плавкие вставки. Как выбрать и расчет тока. Работа и применение

как рассчитать предохранитель по току

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции.

Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек.

Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции.

Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет.

Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t ~ 0˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Где:

  • I nom – номинальный ток защиты, A.
  • P max – максимальная мощность, W.
  • U – напряжение питания, V.

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:

  • Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
  • 50W – 0,25A.
  • 100W – 0,5A.
  • 150W – 1A.
  • 250W – 2A.
  • 500W – 3A.
  • 800W – 4A.
  • 1kW – 5A.
  • 1,2kW – 6A.
  • 1,6kW – 8A.
  • 2kW – 10A.
  • 2,5kW – 12A.
  • 3kW – 15A.
  • 4kW – 20A.
  • 6kW – 30A.
  • 8kW – 40A.
  • 10kW – 50A.

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W.

По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием.

Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой.

Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка.

Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм.

Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:

  • Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
  • 2A – 0,09 мм – 0,10 мм.
  • 3A – 0,11 мм – 0,14 мм.
  • 5A – 0,16 мм – 0,19 мм.
  • 7A – 0,20 мм – 0,25 мм.
  • 10A – 0,25 мм – 0,30 мм.
  • 15A – 0,33 мм – 0,40 мм.
  • 20A – 0,40 мм – 0,48 мм.
  • 25A – 0,46 мм – 0,56 мм.
  • 30A – 0,52 мм – 0,64 мм.
  • 35A – 0,58 мм – 0,70 мм.
  • 40A – 0.63 мм – 0,77 мм.
  • 45A – 0,68 мм – 0,83 мм.
  • 50A – 0,73 мм – 0,89 мм.

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:

  1. Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
  2. Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта.

    Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.

  3. Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/plavkie-vstavki/

Выбираем диаметр провода предохранителя – разбираем все тонкости вопроса

как рассчитать предохранитель по току
Выбираем диаметр провода, который необходим для замены плавкой вставки предохранителя

Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.

Причины перегорания предохранителей

Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.

Их может быть несколько:

Перегорание предохранителя от короткого замыкания Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая.
Перегруз так же ведет к перегоранию предохранителя Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки.
Зависимость силы тока от напряжения Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко.
Работа предохранителя на грани срабатывания Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока.
Наиболее частые причины перегорания предохранителей в процентном соотношении Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано.

Выбор диаметра проволоки и ремонт предохранителя

Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.

Выбор диаметра проводника

Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.

Диаметр провода в зависимости от номинального тока предохранителя

  • Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.

Измерение диаметра провода

  • Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.

Измерение диаметра проволоки при помощи линейки или штангенциркуля

  • Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.

Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.

  • Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
  • Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.

На фото формула расчета диаметра провода

  • Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.

Формула расчета диаметра провода

  • Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.

Поправочные коэффициенты для формул в зависимости от материала провода

Ремонт предохранителей

Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.

Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.

  • Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.
  • То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
  • С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.

Ремонт трубчатого предохранителя

  • Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
  • С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.

«Жучок» на ножевой предохранитель

Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.

Расплавленные брызги металла на корпусе предохранителя

  • Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.

Установка «жучка» поверх предохранителя

  • Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.

Вывод

Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.

ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.

Источник: https://elektrik-a.su/zashhita-i-avtomatika/plavkie-vstavki-i-predohraniteli/diametr-provoda-predohranitelya-1526

Расчет плавких предохранителей: Таблица и калькулятор

как рассчитать предохранитель по току

Каждый предохранитель выполняет функцию защиты электрических цепей и оборудования от перегревания при прохождении тока с показателями, значительно превышающими номинальные. Для того, чтобы правильно обеспечить надежную защиту необходимо заранее делать расчет плавких предохранителей. Данные элементы рассчитаны на эксплуатацию в самых различных условиях, поэтому требуется их индивидуальный подбор для каждого конкретного случая.

Группы предохранителей

Одним из средств защиты бытовой техники и оборудования, а также кабелей и проводов служат плавкие вставки или предохранители. Они обеспечивают надежную защиту от скачков напряжения в сети и коротких замыканий. Существуют различные конструкции и типы этих устройств, рассчитанные на любые токи.

До недавнего времени плавкие предохранители вставлялись в пробки и являлись единственной защитой квартиры или частного дома. В современных условиях их сменили более надежные защитные устройства многоразового использования – автоматические выключатели.

Тем не менее, предохранители не потеряли своей актуальности и в настоящее время. Они устанавливаются в различные приборы и в автомобили, защищая приборы и электрооборудование от любых негативных последствий.

Предохранители делятся на следующие основные группы:

  • Общего назначения
  • Быстродействующие
  • Защищающие полупроводниковые приборы
  • Для защиты трансформаторов
  • Низковольтные

Для того, чтобы произвести правильные расчеты, и определить, какие нужны плавкие вставки, рекомендуется учитывать все основные параметры, от которых зависит характеристика предохранителя.

Основным показателем является номинальный ток, значение которого связано с геометрическими и теплофизическими параметрами. При этом, учитывается потеря мощности и превышение на выводах температурного режима. Общая величина тока для предохранителя зависит от номинального тока плавкой вставки. Величина номинального тока для основания определяется таким же показателем плавкой вставки, установленной в предохранителе.

Принцип действия плавких предохранителей

Принцип действия одноразовых защитных устройств очень простой. Внутри каждого из них находится калиброванная проволока, соединяющая контакты. Если значение тока не превышает предельно допустимых норм, происходит ее нагрев примерно до 70 градусов.

Когда электрический ток превышает установленный номинал, нагрев проволоки существенно увеличивается. При определенной температуре она начинает плавиться, в результате чего происходит разрыв электрической цепи. Перегорание проводка происходит практически мгновенно.

Из-за этого предохранители и получили свое название – плавкая вставка.

В разных конструкциях плавкой вставки предохранителя подбирается таким образом, чтобы срабатывание происходило при установленном значении тока. В процессе эксплуатации плавкие предохранители периодически выходят из строя и подлежат замене. Как правило их не ремонтируют, однако многие домашние мастера вполне успешно проводят их реставрацию.

Поскольку перегорает лишь сама проволока, а корпус остается целым, необходимо заменить ее и устройство продолжит выполнять свои функции. Новые технические характеристики зачастую не только не уступают старому прибору, но и во многом превосходят его, поскольку качество ручной сборки всегда выше заводской. Основным условием является правильный выбор материала проводника и расчет его сечения.

Общие правила расчета

Для того, чтобы сделать правильный расчет плавких вставок предохранителей, необходимо учитывать номинальное напряжение. Это значение должно быть таким, при котором предохранитель отключает электрическую цепь. Основным показателем служит минимальное напряжение, предусмотренное для основания и плавкой вставки.

Еще один важный показатель, который должен учитываться при расчетах – напряжение отключения. Этот параметр заключается в мгновенном значении напряжения, появляющегося после срабатывания самого предохранителя или плавкой вставки. Как правило, в расчет принимается максимальное значение этого напряжения.

Ремонт предохранителей в высоковольтных сетях

Кроме того, в обязательном порядке учитывается ток плавления, от которого зависит диаметр проволоки, установленной внутри.

Когда выполняется расчет плавкой вставки предохранителя, для каждого металла этот показатель имеет собственное значение и выбирается с помощью таблицы или калькулятора. Материал и размер вставок должен обеспечить требуемые защитные характеристики.

Длина вставки не может быть слишком большой, поскольку это влияет на гашение дуги и общие температурные характеристики.

Расчетная мощность нагрузки обычно указывается в маркировке изделия. В соответствии с этим параметром выполняется расчет номинального тока предохранителя по формуле: Inom = Pmax/U, в которой Inom является номинальным током защиты, Pmax – максимальная мощность нагрузки, а U – напряжение питающей сети.

Онлайн расчет диаметра провода для плавких вставок предохранителей

Все расчеты можно выполнить гораздо быстрее, воспользовавшись онлайн-калькулятором. В соответствующие окна вводятся данные о материале вставки и токе, после чего в окне результата появятся данные о диаметре проволоки.

Плавкие вставки

Источник: https://electric-220.ru/news/raschet_plavkikh_predokhranitelej_tablica/2014-01-02-478

Как рассчитать ток плавкой вставки

g84jsm9tB4S

Каждый предохранитель выполняет функцию защиты электрических цепей и оборудования от перегревания при прохождении тока с показателями, значительно превышающими номинальные. Для того, чтобы правильно обеспечить надежную защиту необходимо заранее делать расчет плавких предохранителей. Данные элементы рассчитаны на эксплуатацию в самых различных условиях, поэтому требуется их индивидуальный подбор для каждого конкретного случая.

Как рассчитать предохранитель по току?

Каждый предохранитель выполняет функцию защиты электрических цепей и оборудования от перегревания при прохождении тока с показателями, значительно превышающими номинальные. Для того, чтобы правильно обеспечить надежную защиту необходимо заранее делать расчет плавких предохранителей. Данные элементы рассчитаны на эксплуатацию в самых различных условиях, поэтому требуется их индивидуальный подбор для каждого конкретного случая.

Предохранители автомобильные: виды, типы, номинал

Электрика и электроника остается той областью, в которой свободно себя чувствует наименьшее количество автомобилистов. В статье рассмотрим предохранители автомобильные, виды плавких вставок, как их правильно менять, а также основные правила подключения дополнительного оборудования.

Роль в электрической цепи

Многочисленные случаи перегорания электронной составляющей целых систем, возгорания автомобилей подтверждают тот факт, что к электричеству необходимо относиться если не с опаской, то с большой осторожностью.

Предохранитель предназначен для размыкания защищаемой цепи методом разрушения специально предусмотренной для этого токопроводящей части. Разрушение происходит при превышении номинального тока, на который рассчитан предохранитель. Номинальная сила тока плавкой вставки подбирается в соответствии с допустимой нагрузкой на защищаемую цепь, а также с учетом расчетного потребления тока электроприборами, включенными в цепь.

В случае нештатной ситуации первой обязана сгореть плавкая вставка, разомкнув при этом цепь и сохранив автомобиль от возгорания. К чрезмерному нагреву элементов цепи, что является потенциально опасной ситуацией, приводит:

  • короткое замыкание (не предусмотренное конструкцией соединение двух точек цепи, провоцирующее значительное превышение силы тока в цепи). КЗ может возникнуть вследствие нарушения изоляции токопроводящих элементов, неправильного подключения приборов. Скорее всего, вы и сами не раз сталкивались с перетиранием изоляции проводов в авто;
  • несоответствие мощности потребителя и номинальной силы тока, которая может пройти в цепи без разрушения ее составляющих. Такое сплошь и рядом встречается при неквалифицированной установке в автомобили дополнительного электрооборудования (к примеру, освещения). Мощные потребители запитываются от штатной электропроводки, которая рассчитана на куда меньшую величину тока. В итоге провода в цепи будут перегреваться, провоцируя оплавление изоляции, что приведет к КЗ и возгоранию автомобиля.

Порог срабатывания

Как вы уже могли догадаться из описания предназначения автомобильных предохранителей, суть правильного выбора предохранителя заключается в подборе уровня сопротивления плавкой части. Разрушение происходит вследствие теплового действия тока. Превышение номинального значения ведет к чрезмерному нагреву плавкой части, что провоцирует ее расплавление (перегорание) и разрыв цепи.

Номинальный ток предохранителя рассчитывается по формуле: Inom=Pmax/U, где

  • Inom – номинальная величина тока, измеряется в Амперах (А)
  • Pmax – максимальная мощность нагрузки потребителя, которая должна быть указана на приборе; измеряется в Ваттах (Вт, W)
  • U – напряжение сети, измеряется в Вольтах (V). Напомним, что напряжение питающей сети легкового авто составляет 12 V

Гораздо удобней использовать готовые таблицы, в которых указаны допуски по мощности для каждого типа предохранителя.

Типы

Согласно классификации по типу срабатывания, в авто применяются плавкие предохранители. Существует 3 типоразмера:

Но главное разделение, разумеется, идет по величине номинальной силы тока. Для удобства пользователей за определенной величиной номинального тока закреплен цвет корпуса. Но ориентироваться только на цвет не стоит, так как производителю никто не запрещает изменить цветовую гамму своих изделий.

1А – черные 10А – красные 40А – оранжевые
2А – серые 15А – голубые 60А – голубые
3А – фиолетовые 20А – желтые 70А – коричневые
4А – розовые 25А – белые 80А – светло-желтые
5А – желто-оранжевые 30А – зеленые 100А – сиреневые
7,5А – коричневые 35А – светло-фиолетовые

Замена, защита цепей при установке доп. оборудования

Менять штатные предохранители необходимо на изделия точно такого же номинала. Вся необходимая информация представлена в руководстве по ремонту и эксплуатации вашего авто. Если предохранитель перегорел 2-3 раза подряд, ищите неисправность в цепи. Ни в коем случае не устанавливайте плавкую вставку большего номинала.

Также не следует менять электропредохранитель на «жука». Починить плавкую вставку в дороге с помощью проволоки можно, но длину и сечение проводника следует подобрать таким образом, чтобы проволока имела такой же номинальный ток, как и штатный предохранитель.

Для этого в сети имеются все необходимые формулы и таблицы с готовыми переменными.

Для того чтобы понять, какой именно элемент следует менять, вам нужно просто проверить работоспособность определенной системы питания авто. Включите, например, дворники и проверьте контролькой наличие напряжения на ножках между перемычкой предохранителя, защищающего эту цепь. Также для этих целей подойдет мультиметр.

При установке дополнительных потребителей сначала рассчитайте, выдержит ли штатная проводка автомобиля возросшую нагрузку, и только потом рассчитывайте ток для установки предохранителя большего номинала.

Для мощных потребителей следует прокладывать проводку отдельно, номинальный ток предохранителя должен быть в 1.5 раза больше, чем номинальный ток в цепи.

Для расчета нагрузки на автомобильные провода используйте закон Ома, можете воспользоваться специальными таблицами, в которых для основных видов проводников указаны площадь поперечного сечения и допустимый ток.

Как выбрать

Предохранители для своего авто следует покупать только от проверенных производителей. Нередки случаи, когда предохранители плохого качества расплавляли изоляцию проводов цепи, посадочное место в монтажном блоке, но сами не перегорали. Скорее всего, расплавится вставка уже в процессе горения авто. Если говорить о фирмах, хорошо зарекомендовавших себя на практике, то можно выделить предохранители AVAR и TESLA.

Если вы не уверены в качестве купленных изделий, проверьте 1-2 плавкие вставки, специально пустив через них ток, при котором они должны перегореть. Для теста вам необходимо собрать цепь с электроприбором, потребление которого больше номинальной силы тока предохранителя. Величину тока в цепи можно рассчитать по формуле: I=P/U, где

  • P – мощность потребителя;
  • U – напряжение сети.

В качестве простейшей альтернативы можете сымитировать КЗ.

Источник: https://autolirika.ru/teoriya/predohranitel-avtomobilnyj-vidy.html

Ремонт трубчатого предохранителя, выбор диаметра проволоки

В современных электроприборах повсюду встречаются предохранители, или если говорить «по научному» — плавкие вставки. Они обеспечивают защиту сети и собственно самого прибора от коротких замыканий или перегрузки. Конструкция плавких вставок самая разнообразная, как и размеры.

Номинальные токи и напряжения на которые выпускаются предохранители соответствуют стандартным значениям. От величины номинального напряжения предохранителя зависят его габаритные размеры, а именно длина, чем выше номинальное напряжение предохранителя тем больше расстояние между контактами.

Номинальный ток определяется сечением проволоки внутри предохранителя.

Хотя в более дорогих устройствах уже можно встретить и самовосстанавливающиеся электрические предохранители, большинство приборов по-прежнему оснащены обычными предохранителями.

Общие понятия, знакомство с предохранителями трубчатой конструкции

Наиболее распространенные предохранители это так называемые, трубчатые. Они представляют из себя керамическую или стеклянную трубку с металлическими контактами-чашками с торцов. Эти чашки соединены между собой проволокой, сечение которой, как уже говорилось, определяет номинальный ток предохранителя. Этот ток указывается на трубке или одной из контактных частей предохранителя. Например: F0,5A – это значит, что данный предохранитель рассчитан на ток 0,5 ампера.

На электрических принципиальных схемах предохранитель обозначается прямоугольником с проходящей через него прямой линией. Рядом с условным графическим обозначением указывается его позиционное обозначение, например F1 (F – fuse, предохранитель по-английски); и если это не загромождает схему — номинальный ток, например 100 mA.

Принцип работы предохранителя предельно прост. При протекании по проволоке, соединяющей контакты предохранителя, номинального тока, эта проволока разогревается до температуры около 70 ˚С.

А вот при превышении тока, проволока разогревается сильнее, и при превышении температуры плавления – расплавляется, т.е. перегорает. Именно по этой причине предохранители еще называют – плавкими или плавкой вставкой.

Чем выше ток, тем быстрее нагрев, тем быстрее происходит расплавление, а соответственно и перегорание предохранителя.

Таким образом все плавкие вставки работают на одном и том же принципе – превышение тока в цепи вызывает перегрев и расплавление проволоки внутри предохранителя и как следствие отключение этой цепи от источника питающей сети.

Существует две основных причины перегорания плавких вставок: броски напряжения питающей сети и возникшая неисправность внутри самого электроприбора.

Проверка предохранителя, индикатор неисправности предохранителя

Проверить плавкую вставку можно любой «прозвонкой» или тестером. Задача состоит в том, чтобы убедиться, что цепь предохранителя цела и способна проводить электрический ток.

Проверять предохранитель, во избежание поражения электрическим током, допускается только при отключенном электроприборе!

Кроме этого можно купить или самостоятельно изготовить индикатор перегорания предохранителя, который уведомит вас о том, что предохранитель перегорел.

Схема такого устройства чрезвычайно проста и представлена на следующем рисунке.

В параллель к контактам предохранителя, через токоограничивающий резистор R1 и диод VD1, для защиты от обратного напряжения, подключается светодиод HL1. Диод VD1 должен быть подобран из расчета обратного напряжения, превышающего сетевое. Для сети 220 В обратное напряжение для диода VD1 должно быть не менее 300 В, таким требованиям отвечает например диод 1N4004 или отечественный КД109Б.

Индикатор не светится, если предохранитель исправен, и светится в случае его перегорания.

Индикатор не светится если нагрузка отключена.

Такой схемой очень удобно дополнять блоки питания собственного изготовления.

Немного изменив  (упростив) схему можно получить индикатор перегорания предохранителя на неоновой лампе, хотя она и не так эффективно смотрится как светодиод.

Подбор предохранителя по номинальной мощности электроприбора

После проверки предохранителя и определения, что он вышел из строя, необходимо его заменить. А для этого надо узнать его номинал, чтобы выполнить правильную замену.

Если вам известна мощность потребляемая электроприбором, обычно она указывается на шильде прибора, вы можете самостоятельно рассчитать номинальный ток предохранителя по следующей формуле:

Iном = Рмакс / Uном

Номинальный ток (Ампер) равен частному от максимальной мощности (Ватт) электроприбора деленной на номинальное напряжение сети (Вольт).

Например, сгорел предохранитель в телевизоре, разобрать, что указано на корпусе предохранителя, его номинал, не представляется возможным, но на шильде телевизора указана мощность потребления 150 ВА.

150 / 220 = 0,68, округляем до ближайшего большего стандартного значения – 1 А.

Обратите внимание, что при расчете номинального тока предохранителя вы получаете точное значение тока, которое может не соответствовать ряду номинальных токов предохранителей. Поэтому расчетное значение с учетом запаса 5% округляется до ближайшего стандартного значения.

Для простоты можно воспользоваться готовой таблицей, в которой приведены номиналы стандартных предохранителей для различных потребителей из расчета их подключения к бытовой сети 220 В.

Мощность электроприбора, Вт (BA) 10 50 100 150 250 500 800 1000 1200
Номинал предохранителя, А 0,1 0,25 0,5 1,0 2,0 3,0 4,0 5,0 6,0
Мощность электроприбора, Вт (BA) 1600 2000 2500 3000 4000 6000 8000 10000
Номинал предохранителя, А 8,0 10,0 12,0 15,0 20,0 30,0 40,0 50,0

Замена предохранителя

При замене предохранителя, во избежание поражения электрическим током, обязательно отключите электроприбор от сети!

Есть такое негласное правило, если после второй замены предохранитель опять перегорел, ищи неисправность в самом электроприборе. Значит надо ремонтировать электроприбор.

Ни в коем случае не устанавливайте предохранитель на больший ток, такие попытки однозначно приведут к еще большему повреждению устройства вплоть до его не ремонтопригодности!

Источник: http://imolodec.com/appelectronics/remont-trubchatogo-predokhranitelya-vybor-diametra-provoloki

Выбор предохранителей и плавких вставок по току

Плавкий предохранитель – это классика электротехники в сфере защиты сетей от перегрузок и кз. Хотя в наше время его с успехом заменяют защитные автоматы, есть огромное множество примеров, где плавкая вставка является незаменимым предохранительным звеном в электрической цепи: электронная аппаратура, автомобильная электросеть, промышленные электроустановки, системы энергоснабжения.

предохранители пробкового типа

Пробковые предохранители до сих пор работают во множестве распределительных щитов жилого фонда на пост советском пространстве. Благодаря своей миниатюрности, безотказности, дешевизне, возможности быстрой замены, неизменности характеристик в процессе работы, плавкие предохранители не утратили актуальности, и предлагаемая статья будет полезной, чтобы осуществить выбор предохранителей, которым свойственны такие основные параметры:

  • Un – номинальное рабочее напряжение;
  • Iвс – номинальный ток плавкой вставки, при превышении которого она перегорает;
  • Iп – номинальный ток предохранителя.

Терминология

В электротехнике предохранителем называют устройство защиты от перегрузок по току, имеющее одноразовый компонент, называемый плавкой вставкой, размыкающей электрическую цепь при достижении обусловленных параметров, за счёт расплавления проводника.

Другими словами, электрический предохранитель являет собой многоразовый держатель, в который вставляется одноразовая вставка, плавящаяся при превышении Iвс. В быту эти два термина принято считать идентичными, но в технических описаниях Iп равняется максимально возможному Iвс, так как определённые типы предохранителей предусматривает использование вставных элементов с различнымIвс.

Например, в предохранитель НПН2-60 можно вставлять плавкие вставки с Iвс от 6 до 60А, соответственно его Iп равняется 60А.

предохранители серии НПН разных токов

Принцип работы

Конструктивно одноразовый элемент исполняется в виде проводника малого сечения, заключённого в защитную стеклянную, фарфоровую или пластмассовую оболочку. При значениях, близких к Iвс, происходит тепловыделение, недостаточное для того, чтобы разогреть проводник до температуры плавления из-за рассеивания тепла. При превышении Iвс, происходит расплавление токопроводящего материала и электрическая цепь обрывается.

Существует большая разновидность данных компонентов – от тонких проволок, используемых для защиты электронных приборов, до массивных пластин, предназначенных для работы в цепях с током, превышающим тысячи ампер.

Срабатывание плавкого предохранителя происходит в несколько этапов: разогрев, расплавление и испарение металла, электрическая дуга, гашение дуги. Последний этап означает полное отключение, и чтобы дуга погасла, номинальное напряжение предохранителя не должно быть меньше напряжения сети.

Условия эксплуатации

Температура нагрева плавкой вставки не должна превышать допустимых значений во время длительной эксплуатации предохранителя. Поэтому, Iвс и Iп должны выбираться величиной равной или на одно значение большей номинального тока нагрузки защищаемой сети. Но также следует учитывать, что цепь не должна разрываться при пусковых стартовых перегрузках подключаемых электроприборов.

Например, для старта асинхронного электродвигателя с короткозамкнутым ротором требуется ток, превышающий семикратное значение номинального, который падает по мере разгона ротора до рабочих оборотов. Время запуска зависит от характеристик каждого конкретного электроприбора.

Время токовая характеристика

Применение предохранителей в цепях с кратковременными перегрузками возможно благодаря тому, что при превышении IBC отключение происходит не сразу, а спустя некоторое время, необходимое на нагрев расплавляемого провода.

Период срабатывания зависит от температуры окружающей среды и предназначения предохранителя, который можно узнать по графикам время токовой зависимости.

За короткое время перегрузки материал плавящегося элемента не успевает перегреться до момента возврата нагрузки в нормальное значение.

Время токовая характеристика для предохранителей серии ППН, где в зависимости от величины тока указано время их перегорания

Время токовые характеристики предохранителей

Различное время отключения

Разветвление графиков означает работу в горячих (влево) и холодных (вправо) средах. Для ППН с Iвс=25А, при I=100А отключение произойдёт за одну секунду (красные линии). При I=50А понадобится приблизительно 40с. на срабатывание (зелёный цвет на графике).

При I=30А (синие отрезки) предохранитель будет держать нагрузку около получаса (2000с/60м) при высоких температурах. Из графика видно, что в холодных условиях при I=30А он фактически не перегорит никогда. Поэтому, выбор плавких предохранителей стоит осуществлять, сверяясь с его времятоковой характеристикой, узнавая время отключения при определённых условиях.

Расчёт Iвс согласно ПУЭ 5.3.56

Отношение пускового тока Iп.эд. к Iвс не должно превышать 2,5, иначе предохранитель не выдержит стартовых перегрузок. Этот коэффициент принимается для двигателей с лёгким запуском, а для тяжёлых условий (частые запуски, большое время разгона) применяется отношение 2,0-1,6.
То есть,

Ток запуска электродвигателя указывается в его паспорте, а также на самом корпусе. Допустим, Iп.эд = 60А. Для того чтобы предохранитель выдержал этот ток и исправно защищал от короткого замыкания и длительных перегрузок, по вышеприведённой формуле нужно рассчитать Iвс=60/2,5=24А. Выбираем ближайшее значение из серии ППН – 25А.

Таблица выбора некоторых типов предохранителей

Смотрим на время токовую характеристику, где видно, что время отключения при 60А находится в пределах 10-20с., чего вполне хватает для набора оборотов двигателем.

Допустим у Вас несколько электродвигателей и вам необходимо защитить линию , для этого необходимо :

где —  —  сумма всех токов одновременно работающих электродвигателей, равна расчетному току в линии;

—  пусковой ток эл. двигателя самой большой мощности ;

—  ток расчетный  самой большой мощности из числа работающих эл. двигателей.

После расчета необходимо соблюдать это условие :

Временный предохранитель («жучок»)

Ещё одно замечательное средство плавких предохранителей – возможность его ремонта с помощью подручных средств, но только для временной замены, произведя расчет по сложным формулам, или выбрав диаметр проводника из таблицы:

Таблица для выбора временных плавких вставок

Измерять толщину проволоки нужно микрометром или штангенциркулем. При отсутствии таковых, можно намотать проволоку на карандаш, измерить длину намотки, поделив её на количество витков получить приблизительный её диаметр.

Источник: http://infoelectrik.ru/vybor-kommutacionnoj-apparatury-dlya-montazha/vybor-predoxranitelya-po-toku.html

Со 34.20.807 методические указания по расчету защит в системе постоянного тока тепловых электростанций и подстанций

Постоянная нагрузка Временим нагрузка Кратковременная нагрузка
Устройства управления, блокировки, сигнализации и релейной защиты. Постоянно включенная часть аварийного освещения Аварийное освещение. Электродвигатели аварийных маслонасосов систем смазки, уплотнения и регулирования. Преобразовательный агрегат связи Пуск электродвигателей, включение и отключение приводов выключателей

1.4. В соответствии с Нормами технологического проектирования (НТП) для тепловых электростанций, входящих в энергосистему, длительность исчезновения переменного тока допускается не более 30 мин, а для изолированных ТЭС — 1 ч.

В течение этого времени — в установившемся аварийном режиме — нагрузка равна сумме постоянной и временной нагрузок.

1.5. Постоянная нагрузка может быть определена по схемам питания потребителей постоянного тока или непосредственным измерением. Ее значение, как правило, невелико — 20 — 40 А, она не оказывает большого влияния на работу системы постоянного тока в аварийном режиме.

1.6. Наибольшая нагрузка переходного аварийного режима (толчковая) может иметь место в начальный период переходного процесса или через некоторое время в зависимости от моментов включения приводов масляных выключателей и пусков маслонасосов.

1.7. Пусковые токи электродвигателей резервных маслонасосов и токи, потребляемые приводами выключателей, могут быть определены на основании данных заводов-изготовителей или непосредственным измерением.

1.8. Наиболее удобной формой анализа работы потребителей системы постоянного тока электростанции является построение графика нагрузок Iнагр = f(t) для аварийного получасового или часового режимов. Примеры построения таких графиков приведены на рис. 1, 2.

1. Постоянная нагрузка

2. Аварийное освещение

3. Приводы выключателей

4. Преобразовательный агрегат связи

5. Электродвигатели аварийных маслонасосов уплотнения

6. Электродвигатели аварийных маслонасосов смазки

Суммарный график нагрузок

Рис. 1. График нагрузок аварийного получасового режима для ТЭС с поперечным связями

Примечания: 1. Расчетные графики нагрузок постоянного тока приведены для ТЭС с поперечными связями. 2. Разброс моментов включения аварийных насосов разных турбоагрегатов отражен на графиках 5 и 6. На суммарном графике условно принято включение сначала маслонасосов уплотнения, а затем насосов смазки.

Принимаемый порядок их включения не влияет на значение расчетных токов. 3. В конце аварийного режима (t = 30 мин) показан толчковый ток любого выключателя главной схемы, так как в этом случае принимается включение выключателей по одному. Условно принято включение выключателя У-220 с наибольшим током потребления привода (ШПЭ-44). 4.

Рассмотрен случай питания аварийных нагрузок трех агрегатов (3×60 мВт или 2×60 + 1×100 мВт).

1. Постоянная нагрузка

2. Аварийное освещение

3. Приводы выключателей

4. Преобразовательный агрегат связи

5. Электродвигатели аварийных маслонасосов уплотнения генераторов

6. Электродвигатели аварийных маслонасосов смазки

Суммарный график нагрузок

Рис. 2. График нагрузок аварийного получасового режима для ТЭС с блоками мощностью 150 — 200 МВт

Примечание. Время включения насосов уплотнения (30 с) и смазки (1 мин) принято условно. В общем случае моменты включения указанных насосов для 1-го и 2-го блоков не совпадают, что учтено в суммарном графике нагрузок.

2. НАГРУЗКИ ПЕРЕХОДНОГО АВАРИЙНОГО РЕЖИМА

2.1. Время возникновения наибольшей толчковой нагрузки зависит от распределения моментов включения приводов масляных выключателей и пуска маслонасосов.

2.2. Суммарный ток, потребляемый приводами выключателей, достигает максимального значения при переключениях на резервный источник питания СН (АВР).

2.3. Возможны следующие режимы работы АВР:

— мгновенное переключение питания с рабочего на резервное по импульсу от отключающихся выключателей рабочего питания;

— переключение на резервное питание с выдержкой времени 2 — 2,5 с по импульсу от пускового органа минимального напряжения.

2.4. Учет пусковых токов отдельных потребителей постоянного тока выполняется по-разному в зависимости от типа электростанции и мощности устанавливаемых основных агрегатов.

2.5. Для ТЭС с поперечными связями в тепловой части и агрегатами 60 и 100 МВт в начальный момент аварийного процесса и толчковом токе участвуют: постоянная нагрузка, нагрузка от аварийного освещения, нагрузка от приводов выключателей и пусковой ток преобразовательного агрегата оперативной связи, включающегося мгновенно.

Электродвигатели аварийных маслонасосов уплотнения генераторов и смазки пускаются позже за счет работы в начале выбега агрегата главного маслонасоса на валу (пуск первого насоса принимается через 30 с, второго — через 1 — 2 мин после начала аварийного режима).

2.6. При расчетах следует исключить возможность совпадения пусковых режимов всех маслонасосов. Максимальную толчковую нагрузку следует принимать в переходном режиме как сумму установившихся токов, аварийных маслонасосов и пускового тока одного наиболее крупного насоса (см. рис. 1).

2.7. На ТЭЦ с поперечными связями в тепловой части мощностью до 200 МВт устанавливается одна аккумуляторная батарея, а при мощности более 200 МВт — две одинаковой емкости, которые вместе должны обеспечить питание маслонасосов смазки турбин и водородного уплотнения генераторов всех агрегатов электростанции, а также преобразовательного агрегата связи и всех нагрузок аварийного освещения.

На ТЭС с блочными тепловыми схемами для каждых двух блоков, обслуживаемых с одного блочного щита, предусматривается, как правило, одна аккумуляторная батарея.

Для блоков мощностью 300 МВт и выше в тех случаях, когда установка одной батареи на два блока невозможна по условиям выбора коммутационной аппаратуры постоянного тока, допускается установка отдельной батареи для каждого блока. В зависимости от типа и мощности блоков последовательность включения отдельных нагрузок постоянного тока в аварийном переходном режиме различна.

2.8. Для ТЭС с блоками 200 МВт и менее в нормальном режиме в системах смазки и уплотнений давление создается за счет работы главного маслонасоса на валу турбины, включение аварийных маслонасосов происходит аналогично указанному выше для ТЭЦ: можно считать, что маслонасос смазки включается через 1 — 2 мин, маслонасос уплотнения — через 30 с после начала выбега агрегата.

Значение и момент появления максимальных расчетных толчковых токов зависят от типа применяемых выключателей. При использовании воздушного выключателя в цепи резервного трансформатора СН расчетный ток для двух блоков будет максимальным в тот момент, когда аккумуляторная батарея уже несет нагрузку установившегося режима одного блока и принимает толчковую нагрузку переходного режима второго блока при пуске наиболее мощного маслонасоса.

При использовании в схеме резервного трансформатора СН на стороне высокого напряжения масляного выключателя наибольшая расчетная толчковая нагрузка возникнет при АВР первого блока. В этом случае определяющим может также явиться время окончания аварийного разряда аккумуляторной батареи, когда значительные толчковые токи воспринимаются разряженной батареей.

Этот режим должен проверяться с учетом включения в конце аварийного режима выключателей по одному.

2.9. Для электростанций с блоками 300 МВт и выше в аварийных режимах характерны значительные суммарные толчковые нагрузки, так как при исчезновении переменного тока на АБ почти одновременно накладываются нагрузки приводов при включении выключателей, электродвигателей маслонасосов смазки и регулирования (для турбин ЛМЗ), маслонасосов уплотнения вала генераторов, агрегата связи и аварийного освещения.

График нагрузок аварийного режима для ТЭС с блоками мощностью 150 — 200 МВт приведен на рис. 2.

3. ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ СОПРОТИВЛЕНИЙ ЭЛЕМЕНТОВ СЕТИ ПОСТОЯННОГО ТОКА

3.1. Сопротивление проводов, кабелей и шин может быть рассчитано, если известны их длина и сечение по формуле

                                                            (3.1)

где R — сопротивление, Ом;

ρ — удельное сопротивление, Ом · мм2/м;

l — длина, м;

Источник: http://www.gostrf.com/normadata/1/4293852/4293852625.htm

Предохранители ПКТ

Предохранители типа ПКТ (с кварцевым песком) изготовляют на напряжения 6 35 кВ и номинальные токи 40 400 А. Наиболее широкое распространение получили предохранители ПКТ-10 на 10 кВ, устанавливаемые на стороне высшего напряжения сельских трансформаторных подстанций 10/0.38 кВ.

Патрон предохранителя состоит из фарфоровой трубки 3, заполненной кварцевым песком, которая армирована латунными колпачками 2 с крышками 1. Плавкие вставки изготовляют из посеребренной медной проволоки. При номинальном токе до 7.5 А используют несколько параллельных вставок 5, намотанных на ребристый керамический сердечник (рис. а). При больших токах устанавливают несколько спиральных вставок (рис. 1 б).

Структура условного обозначения предохранителей серий ПКТ

Пример: ПКТ 101-10-16-20 У1

  • П — предохранитель;
  • К — с кварцевым наполнителем;
  • Т — для силовых трансформаторов;
  • 1 — однополюсный;
  • 01 — конструктивное исполнение контакта;
  • 10 — номинальное напряжение в киловольтах;
  • 16 — номинальный ток предохранителя в амперах;
  • 20 — номинальный ток отключения в килоамперах;
  • У- климатическое исполнение;
  • 1 — категория размещения.

Комплектация предохранителя ПКТ

Предохранитель ПКТ 101, ПКТ 102, ПКТ 103, ПКТ 104 состоит из следующих элементов и поставляется в разобранном виде:

  • патрон (заменяемый элемент) ПТ 1.1, ПТ 1.2, ПТ 1.3, ПТ 1.4 – 1 шт;
  • контакт (др. названия: губка, пинцет, держатель) К01, К02, К03, К04 – 2 шт;
  • опорный изолятор ИОРП-10-06 (исполнение У3) или С4-80 (исполнение У1) – 2 шт (изоляторы устанавливаются на специальном цоколе или непосредственно на элементах конструкции распределительного устройства);
  • комплект крепежных деталей;

Патроны ПТ предохранителей типа ПКТ:

  1. — крышка;
  2. — латунный колпачок;
  3. — фарфоровая трубка;
  4. — кварцевый песок;
  5. — плавкие вставки;
  6. — указатель срабатывания;
  7. — пружина;

На рисунке показан предохранитель типа ПКТ в собранном виде. На цоколе (металлической раме) 1 укреплены два опорных изолятора 2. Патрон 4 предохранителя вставляется латунными колпачками в пружинные держатели (контактное устройство) 3 и зажат замком.

Последний предусматривается для того, чтобы удержать патрон в держателях при возникновении электродинамических усилий во время протекания больших токов короткого замыкания.

Изготовляют предохранители как для внутренней, так и для наружной установки, а также специальные усиленные предохранители с повышенной предельной мощностью отключения.

Предохранитель типа ПКТ:

  1. — цоколь;
  2. — опорный изолятор;
  3. — контакт;
  4. — патрон;
  5. — замок;

Такая конструкция обеспечивает хорошее гашение дуги, так как вставки имеют значительную длину и малое сечение. Для уменьшения температуры плавления вставки использован металлургический эффект.

Для снижения перенапряжений, которые могут возникать при быстром гашении дуги в узких каналах (щелях) между зернами кварца, применяются плавкие вставки разного сечения по длине. Это обеспечивает искусственное затягивание гашения дуги.

Патрон предохранителя герметизирован — после заполнения трубки кварцевым песком крышки 1, закрывающие отверстия, тщательно запаивают. Поэтому предохранитель ПКТ работает бесшумно.

Срабатывание предохранителя определяется по указателю 6, который нормально удерживается специальной стальной вставкой во втянутом внутрь положении. При этом в сжатом состоянии удерживается также пружина 7. Когда предохранитель срабатывает, вслед за рабочим перегорает стальная вставка, так как по ней начинает проходить весь ток. В результате указатель 6 выбрасывается из трубки освободившейся пружиной 7.

Контакт предохранителей ПКТ 101:

  1. — контактные губки;
  2. — стальная скоба;
  3. — стальная планка;
  4. — медная накладка;
  5. — ограничитель;

Контакт предохранителей ПКТ 101 состоит из контактных губок 1, охватываемых стальной скобой 2, обеспечивающей необходимое контактное давление; контактного вывода, состоящей из стольной планки 3, с медной накладной планкой 4, и ограничителей 5, обеспечивающих установку патрона в правильном положении и препятствующих выскальзыванию его из контактов при единичных сотрясениях.

Контакт (К 02-10) предохранителей ПКТ 102 отличается от контакта К 01-10, изображенного на рисунке, шириной.

Контакт (К 03-10) предохранителей ПКТ 103, в сравнении с К 02-10, имеет одну (более массивную) контактную губку и снабжен дополнительно замком в виде откидывающейся пружинной скобы, препятствующей выпаданию патрона при действии электродинамических сил или единичных сотрясениях.

Контакт (К 04-10) предохранителя серии ПКТ 104 выполнен из двух контактов от предохранителя серии ПКТ 103, собранных без стальной или медной планок и установленных на контактном выводе, представляющем собой массивную пластину.

Предохранители ПКТ 101 категории размещения 1 отличаются от предохранителей этой же категории размещения 3 формой опорных изоляторов и наличием в патроне дополнительных деталей, герметизирующих внутреннюю полость патрона.

  • Наименование товара

    Дополнительная информация

    Цена

  • ПКТ 101-10-20-20

    Высоковольтный предохранитель 10 кВ, 20А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-5-31.5

    Высоковольтный предохранитель 10 кВ, 5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-10-12.5

    Высоковольтный предохранитель 10 кВ, 10А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-10-20

    Высоковольтный предохранитель 10 кВ, 10А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-5-20

    Высоковольтный предохранитель 10 кВ, 5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-10-31.5

    Высоковольтный предохранитель 10 кВ, 10А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-20-31.5

    Высоковольтный предохранитель 10 кВ, 20А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-16-20

    Высоковольтный предохранитель 10 кВ, 16А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-2-12.5

    Высоковольтный предохранитель 10 кВ, 2А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-16-31.5

    Высоковольтный предохранитель 10 кВ, 16А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-20-12.5

    Высоковольтный предохранитель 10 кВ, 20А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-16-12.5

    Высоковольтный предохранитель 10 кВ, 16А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-2-20

    Высоковольтный предохранитель 10 кВ, 2А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-5-12.5

    Высоковольтный предохранитель 10 кВ, 5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-8-20

    Высоковольтный предохранитель 10 кВ, 8А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-10-40-31.5

    Высоковольтный предохранитель 10 кВ, 40А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-20-20

    Высоковольтный предохранитель 6 кВ, 20А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-5-20

    Высоковольтный предохранитель 6 кВ, 5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-16-20

    Высоковольтный предохранитель 6 кВ, 16А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-31.5-20

    Высоковольтный предохранитель 6 кВ, 31,5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-10-20

    Высоковольтный предохранитель 6 кВ, 10А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-8-20

    Высоковольтный предохранитель 6 кВ, 8А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-2-20

    Высоковольтный предохранитель 6 кВ, 2А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-16-40

    Высоковольтный предохранитель 6 кВ, 16А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 101-6-10-40

    Высоковольтный предохранитель 6 кВ, 10А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-10-31.5-31.5

    Высоковольтный предохранитель 10 кВ, 31,5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-10-50-12.5

    Высоковольтный предохранитель 10 кВ, 50А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-10-50-31.5

    Высоковольтный предохранитель 10 кВ, 50А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-10-40-31.5

    Высоковольтный предохранитель 10 кВ, 40А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-6-31.5-31.5

    Высоковольтный предохранитель 6 кВ, 31,5А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-6-80-20

    Высоковольтный предохранитель 6 кВ, 80А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-6-50-31.5

    Высоковольтный предохранитель 6 кВ, 50А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-6-80-31.5

    Высоковольтный предохранитель 6 кВ, 80А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 102-6-40-31.5

    Высоковольтный предохранитель 6 кВ, 40А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 103-10-80-20

    Высоковольтный предохранитель 10 кВ, 80А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 103-10-100-12.5

    Высоковольтный предохранитель 10 кВ, 100А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 103-10-80-31.5

    Высоковольтный предохранитель 10 кВ, 80А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 103-10-50-31.5

    Высоковольтный предохранитель 10 кВ, 50А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 103-6-160-20

    Высоковольтный предохранитель 6 кВ, 160А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 103-6-100-31.5

    Высоковольтный предохранитель 6 кВ, 100А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 104-10-160-20

    Высоковольтный предохранитель 10 кВ, 160А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 104-10-200-31.5

    Высоковольтный предохранитель 10 кВ, 200А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 104-10-100-12.5

    Высоковольтный предохранитель 10 кВ, 100А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 104-6-200-31.5

    Высоковольтный предохранитель 6 кВ, 200А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 104-6-315-31.5

    Высоковольтный предохранитель 6 кВ, 315А, в сборе с держателями 2шт и изоляторами 2шт.

  • ПКТ 104-6-160-20

    Высоковольтный предохранитель 6 кВ, 160А, в сборе с держателями 2шт и изоляторами 2шт.

В рабочее время наши специалисты готовы оказать компетентную помощь в подборе интересующей вас продукции. Для этого вы можете позвонить по любому из указанных телефонов. Также вы можете написать на нашу электронную почту или воспользоваться формой обратной связи ниже по ссылке.

Источник: https://www.kontaktor.su/predohraniteli-pkt.html

ЭТО ИНТЕРЕСНО:  Какой ток вырабатывает генератор
Понравилась статья? Поделиться с друзьями:
220 вольт
На сколько вольт бывают светодиоды

Закрыть