Какой ток можно подавать на обмотку трансформатора

Какой ток можно подавать на обмотку трансформатора? — Металлы, оборудование, инструкции

какой ток можно подавать на обмотку трансформатора

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Надеюсь все помнят фильм “Трансформеры”. Там автомобили легко преобразовывались в трансформеров и обратно.

Но трансформатор у нас не преобразовывается по внешнему виду.

Он обладает еще более удивительным свойством – преобразовывает переменное напряжение одного значения в переменное напряжение другого значения! Это свойство трансформатора очень широко используется в радиоэлектронике и электротехнике.

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Принцип работы трансформатора

Рассмотрим вот такую картинку:

1 – первичная обмотка трансформатора

2 – магнитопровод

3 – вторичная обмотка трансформатора

Ф – направление магнитного потока

U1 – напряжение на первичной обмотке

U2  – напряжение на вторичной обмотке

На картинке показан самый обычный однофазный трансформатор.

Магнитопровод состоит из пластинок специальной стали. По нему течет магнитный поток Ф (показано стрелками). Этот магнитный поток создается переменным напряжением первичной обмотки трансформатора. Снимается напряжение со вторичной обмотки трансформатора.

Но как такое возможно? У нас ведь нет никакой связи между первичной и вторичной обмотками? Как может ток течь через разомкнутую цепь? Все дело именно в магнитном потоке, который создает первичная обмотка трансформатора. Вторичная обмотка “ловит” этот магнитный поток и преобразовывает его в переменное напряжение с такой же частотой.

В настоящее время трансформаторы создают в другом конструктивном исполнении. Такое исполнение имеет свои плюсы, такие как удобство намотки первичной и вторичной обмоток, а также меньшие габариты.

Формула трансформатора

Так от чего же зависит напряжение, которое выдает нам трансформатор на вторичной обмотке? А зависит оно от витков, которые намотаны на первичной и вторичной обмотке !

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков  вторичной обмотки

I1 – сила тока первичной обмотки

I2 –  сила тока вторичной обмотки

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку заходит 220 В, а на вторичной у нас получается 12 В. То есть мы большее напряжение преобразовали в меньшее напряжение.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Тут тоже все до боли просто. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение в несколько раз.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Разделительный или развязывающий трансформатор (трансформатор 220-220)

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР.

Короткое замыкание обмоток

Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание, то трансформатор будет сильно греться или издавать сильный гул при работе. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Обрыв обмотки трансформатора

При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки.

На фото ниже я проверяю целостность первичной обмотки, которая состоит из 2650 витков. Сопротивление есть? Значит все ОК. Обмотка не в обрыве. Если бы  она была в обрыве, мультиметр показал бы на дисплее “1”.

Таким же способом проверяем и вторичную обмотку, которая состоит из 18 витков

Работа понижающего трансформатора

Итак, у нас в гостях трансформатор от выжигательного прибора по дереву:

Его первичная обмотка  – это цифры 1, 2.

Вторичная обмотка – цифры 3, 4.

N1  – 2650 витков,

N2 – 18 витков.

Его внутренности выглядят вот так:

Подключаем первичную обмотку трансформатора к 220 Вольтам

Ставим крутилку на мультиметре на измерения переменного тока и замеряем напряжение на первичной обмотке (напряжение сети).

Замеряем напряжение на вторичной обмотке.

Настало время проверить наши формулы

1.54/224=0.006875 (коэффициент отношения напряжения)

Источник: https://spb-metalloobrabotka.com/kakoy-tok-mozhno-podavat-na-obmotku-transformatora/

Как прозвонить трансформатор или как определить обмотки трансформатора

какой ток можно подавать на обмотку трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru.

На первых порах занятий радиоэлектроникой у начинающих радиолюбителей, да и не только у радиолюбителей, возникает очень много вопросов, связанных с прозвонкой или определением обмоток трансформатора. Это хорошо, если у трансформатора всего две обмотки.

А если их несколько, да и еще у каждой обмотки несколько выводов. Тут просто караул кричи. В этой статье я расскажу Вам, как можно определить обмотки трансформатора визуальным осмотром и с помощью мультиметра.

Как Вы знаете, трансформаторы предназначены для преобразования переменного напряжения одной величины в переменное напряжение другой величины. Самый обычный трансформатор имеет одну первичную и одну вторичную обмотки. Питающее напряжение подается на первичную обмотку, а ко вторичной обмотке подключается нагрузка. На практике же большинство трансформаторов может иметь несколько обмоток, что и вызывает затруднение в их определении.

1. Определение обмоток визуальным осмотром

При визуальном осмотре трансформатора обращают внимание на его внешний защитный слой изоляции, потому как у некоторых моделей на внешнем слое изображают электрическую схему с обозначением всех обмоток и выводов; у некоторых моделей выводы обмоток только маркируют цифрами. Также можно встретить старые отечественные трансформаторы, на внешнем слое которых указывают маркировку в виде цифрового кода, по которому в справочниках для радиолюбителей есть вся информация о конкретном трансформаторе.

Если трансформатор попался без опознавательных знаков, то обращают внимание на диаметр обмоточного провода, которым намотаны обмотки. Диаметр провода можно определить по выступающим выводам концов обмоток, выпущенных для закрепления на контактных лепестках, расположенных на элементах каркаса трансформатора. Как правило, первичную обмотку мотают проводом меньшего сечения, по отношению к вторичной. Диаметр провода вторичной обмотки всегда больше.

Исключением могут быть повышающие трансформаторы, работающие в схемах преобразователей напряжения и тока. Их первичная обмотка выполнена толстым проводом, так как генерирует высокое напряжение во вторичной обмотке. Но такие трансформаторы встречаются очень редко.

При изготовлении трансформаторов первичную обмотку, как правило, мотают первой. Ее легко определить по выступающим концам выводов обмотки, расположенных ближе к магнитопроводу. Вторичную обмотку наматывают поверх первичной, и поэтому концы ее выводов расположены ближе к внешнему слою изоляции.

В некоторых моделях сетевых трансформаторов, используемых в блоках питания бытовой радиоаппаратуры, обмотки располагают на пластмассовом каркасе, разделенном на две части: в одной части находится первичная обмотка, а в другой вторичная. К выводам первичной обмотки припаивают гибкий монтажный провод, а выводы вторичной обмотки оставляют в виде обмоточного провода.

2. Определение обмоток по сопротивлению

Когда предварительный анализ обмоток произведен, необходимо убедиться в правильности сделанных выводов, а заодно прозвонить обмотки на отсутствие обрыва. Для этого воспользуемся мультиметром. Если Вы не знаете как измерить сопротивление мультиметром, то прочитайте эту статью.

Вначале прозвоним обычный сетевой трансформатор, у которого всего две обмотки.
Мультиметр переводим в режим «Прозвонка» и производим измерение сопротивления предполагаемых первичной и вторичной обмоток. Здесь все просто: у какой из обмоток величина сопротивления больше, та обмотка и является первичной.

Это объясняется тем, что в маломощных трансформаторах и трансформаторах средней мощности первичная обмотка может содержать 10005000 витков, намотанных тонким медным проводом, и при этом может достичь сопротивления до 1,5 кОм. Тогда как вторичная обмотка содержит небольшое количество витков, намотанных толстым проводом, и ее сопротивление может составлять всего несколько десятков ом.

Теперь прозвоним трансформатор, у которого несколько обмоток. Для этого воспользуемся листком бумаги, ручкой и мультиметром. На бумаге будем зарисовывать и записывать величины сопротивлений обмоток.

Делается это так: одним щупом мультиметра садимся на любой крайний вывод, а вторым щупом по очереди касаемся остальных выводов трансформатора и записываем полученное значение сопротивлений. Выводы, между которыми мультиметр покажет сопротивление, и будут являться выводами одной обмотки. Если обмотка без средних отводов, то сопротивление будет только между двумя выводами. Если же обмотка имеет один или несколько отводов, то мультиметр покажет сопротивление между всеми этими отводами.

Например. Первичная обмотка может иметь несколько отводов, когда трансформатор рассчитан на работу в сети с напряжениями 110В, 127В и 220В. Вторичная обмотка также может иметь один или несколько отводов, когда хотят от одного трансформатора получить несколько напряжений.

Идем дальше. Когда первая обмотка и ее выводы будут найдены, то переходим к поиску следующей обмотки. Щупом опять садимся на следующий свободный вывод, а другим поочередно касаемся оставшихся выводов и записываем результат. И таким образом производим измерение, пока не будут найдены все обмотки.

Например. Между выводами с номерами 1 и 2 величина сопротивления составила 21 Ом, тогда как между остальными выводами мультиметр показал бесконечность. Из этого следует, что мы нашли обмотку, у которой выводы обозначены номерами 1 и 2. Нарисуем ее так:

Теперь щупом садимся на вывод 3, а другим щупом поочередно касаемся выводов с номерами от 4 до 10. Мультиметр показал сопротивление только между выводами 3, 4 и 5.

Причем между выводами 3 и 4 величина сопротивления составила 6 Ом, а между парой выводов 3, 5 и 4, 5 получилось по 3 Ома. Отсюда делаем вывод, что эта обмотка с отводом посередине, т.е.

пары 3, 5 и 4, 5 намотаны равным количеством витков, и что с этой обмотки снимается два одинаковых напряжения относительно общего вывода 5. Рисуем так:

Производим измерение далее.
Между выводами 6 и 7 величина сопротивления составила 16 Ом. Рисуем так:

Ну и между выводами 9 и 10 сопротивление составило 270 Ом.
А так как среди всех обмоток эта оказалась с самой большой величиной сопротивления, то она и является первичной. Рисуем так:

Вывод 8, к которому припаяна желто-зеленая жилка, ни как не звонился, поэтому смело утверждаем, что это экранирующая обмотка (экран), которую наматывают поверх первичной, чтобы устранить влияние ее магнитного поля на другие обмотки. Как правило, экранирующую обмотку соединяют с корпусом радиоаппаратуры.

В итоге у нас получилось четыре обмотки, из которых одна сетевая и три понижающих. Экранирующая обмотка обозначается пунктирной линией и располагается параллельно с сердечником. И вот на основе полученных результатов нарисуем электрическую схему трансформатора.

Теперь остается подать напряжение на первичную обмотку и измерить выходящие напряжения. Однако тут есть один момент, который необходимо знать, если Вы сомневаетесь в правильности определения первичной (сетевой) обмотки.

Здесь все просто: чтобы не сжечь обмотку трансформатора и ограничить через нее нежелательный ток нужно последовательно с этой обмоткой включить лампу накаливания на напряжение 220В и мощностью 40 – 100 Вт. Если обмотка определена правильно, то нить накала лампы должна не гореть или еле тлеть. Если же лампа будет гореть достаточно ярко, то есть вероятность того, что сетевая обмотка трансформатора рассчитана на питающее напряжение 110 — 127В или Вы ее прозвонили неправильно.

Второй момент, по которому можно судить о правильности подключения трансформатора к сети — это сама работа трансформатора. При правильном включении работа трансформатора практически беззвучна и сопровождается слегка ощутимой вибрацией. Если же он будет громко гудеть и сильно вибрировать, и при этом будет нагреваться обмотка и из нее может пойти дым, то трансформатор однозначно включен неправильно. В этом случае тут же отключайте трансформатор от сети, чтобы не повредить обмотку.

Однако и тут есть пару нюансов, которые необходимо учитывать, потому как у некоторых трансформаторов каркас с обмотками может неплотно прилегать к сердечнику и от этого работа трансформатора может сопровождаться некоторым гудением и вибрацией, но при этом обмотка греться не будет. В этом случае в зазор между сердечником и каркасом можно вставить кусочек дерева, пластмассы или кусок провода в изоляции и, тем самым, плотно зафиксировать каркас.

Также характерный гул и вибрацию может вызвать плохая стяжка пластин, из которых собран сердечник магнитопровода. Как правило, стягивание сердечника производится металлической скобой, специальными планками, болтами или стяжками, которые обеспечивают необходимую механическую прочность и жесткое соединение деталей сердечника.

ЭТО ИНТЕРЕСНО:  Как устроен счетчик электроэнергии

Ну вот в принципе и все, что хотел сказать о прозвонке и определению обмоток трансформатора. Если у Вас возникли вопросы по этой теме, то задавайте их в комментариях к статье. Также, в дополнение к статье, можете посмотреть видеоролик.

Удачи!

Источник: https://sesaga.ru/kak-prozvonit-transformator-ili-kak-opredelit-obmotki-transformatora.html

Какой ток можно подавать на обмотку трансформатора? — Станки, сварка, металлообработка

какой ток можно подавать на обмотку трансформатора

Первичная обмотка трансформатора — это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.

На самодельных трансформаторах нет обозначений первичной обмотки.

Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.

Типы трансформаторных обмоток

В зависимости от взаиморасположения проводящих ток элементов, направления их намотки и формы сечения провода выделяют несколько типов обмоток трансформаторов:

  1. Однослойная или двухслойная цилиндрическая обмотка из прямоугольного провода. Технология ее изготовления очень проста, благодаря чему такие катушки получили широкое распространение. Обмотка имеет небольшую толщину, что уменьшает нагрев устройства. Из недостатков следует выделить небольшую прочность конструкции.
  2. Многослойная цилиндрическая обмотка является аналогом предыдущего типа, но провод расположен в несколько слоев. Окна магнитной системы при этом заполняются лучше, но появляется проблема перегрева.
  3. Цилиндрическая многослойная обмотка из провода круглого сечения обладает свойствами, близкими к предыдущим разновидностям обмоток, но к недостаткам добавляется утрата прочности по мере роста мощности.
  4. Винтовая обмотка с одним, двумя и больше ходами имеет высокую прочность, отличную изоляцию и охлаждение. По сравнению с цилиндрическими обмотками, винтовая обходится дороже в производстве.
  5. Непрерывная обмотка из провода прямоугольного сечения не перегревается, она обладает значительным запасом прочности.
  6. Многослойная обмотка из фольги устойчива к повреждениям, хорошо заполняет окно магнитной системы, но технология производства таких катушек сложная и дорогостоящая.

У трансформаторов есть шесть основных типов обмотки.

На схемах трансформаторов начало обмоток высокого напряжения обозначается большими буквами латинского алфавита (A, B, C), а такая же часть проводов низкого напряжения — строчными буквами. Противоположный конец обмотки имеет общепринятое условное обозначение, состоящее из конечных трех букв латинского алфавита — X, Y, Z для входящего напряжения и x, y, z для выходящего.

Различают обмотки и по назначению:

  • основные — к ним относятся первичная и вторичная обмотки, по которым ток подается из сети и поступает к месту потребления;
  • регулирующие — являют собой отводы, главная функция которых — изменение коэффициента трансформации напряжения;
  • вспомогательные — используются для обеспечения нужд самого трансформатора.

Автоматизированный расчет намотки трансформатора

Правильно выбрать трансформатор важно не только при проведении ремонта электрической сети, систем освещения и цепей управления. Расчет важен и для радиолюбителей, которые хотят самостоятельно изготовить катушку для конструируемого прибора.

Для этого существуют удобные программы-калькуляторы, которые обладают широким функционалом и оперируют различными методами расчета.

Специальные программы облегчат расчет траснформатора.

Проще всего рассчитать параметры маломощного однофазного трансформатора. Для этого в специальной программе указываются следующие параметры:

  • напряжение, подающееся на первичную обмотку катушки , в большинстве случаев это для домашних нужд
  • напряжение составляет 220 вольт;
  • напряжение на вторичной обмотке;
  • сила тока вторичной обмотки.

Далее следует указать тип трансформатора (броневой или стержневой), вторичную мощность, значение магнитной индуктивности сердечника и плотности тока в обмотке.

Результат расчетов представлен в виде удобной таблицы, в которой указаны такие значения, как параметры сердечника и высота стержня, сечение провода, количество витков и мощность обмоток.

Автоматизированный расчет сильно упрощает теоретическую часть процесса конструирования трансформатора, позволяя сосредоточиться на важных деталях.

Отличия первичной обмотки от вторичной

Определить тип обмотки можно по ее сопротивлению.

Определение типа обмотки может быть важным в тех случаях, когда на трансформаторе не сохранилось никаких обозначений. Как узнать, где первичная, а где вторичная обмотка? Они рассчитаны на разное напряжение. Если к сети в 220 В подключить вторичную обмотку, то устройство просто сгорит.

Главный визуальный критерий, при помощи которого можно определить тип обмотки, — толщина провода, припаянного к его выводам. Трансформатор имеет 4 выхода: два для подключения к сети, а еще два для вывода напряжения. Провода, которыми первичная обмотка соединяется с сетью, имеют небольшую толщину. Вторичная обмотка подключена проводами довольно большого поперечного сечения.

Еще один верный признак, позволяющий узнать тип обмотки, — измерение сопротивления провода. Сопротивление первичной обмотки имеет довольно высокое значение тогда, когда у вторичной оно может составлять до 1 Ома.

Вне зависимости от модели, первичная обмотка трансформатора всегда будет одна. На принципиальных схемах она обозначается римской цифрой I. Вторичных обмоток может быть несколько, их обозначение — II, III, IV, и т.д. Не стоит допускать распространенной ошибки, называя такие обмотки третичными, четвертичными и так далее. Все они имеют один ранг и называются вторичными.

Какие функции выполняет трансформатор?

Трансформаторы широко используются в зарядных устройствах.

функция трансформаторов состоит в понижении или повышении напряжения подаваемого на них тока. Эти устройства находят широкое применение в высоковольтных сетях, которые доставляют электричество от места его выработки до конечного потребителя.

В современном домашнем хозяйстве трудно обойтись без трансформатора тока. Данные устройства используются во всех типах техники, начиная от холодильника и заканчивая компьютером.

Еще недавно размеры и вес бытовой техники часто определялись именно параметрами трансформатора, ведь основное правило заключалось в том, что чем выше мощность преобразователя тока, тем он больше и тяжелее. Чтобы увидеть это, достаточно просто сравнить между собой два типа зарядных устройств. Трансформаторы от старого мобильного телефона и современного смартфона или планшета.

В первом случае перед нами будет небольшое, но увесистое приспособление для зарядки, которое заметно греется и часто выходит из строя. Импульсные трансформаторы отличаются бесшумной работой, компактностью и высокой надежностью.

Принцип их действия заключается в том, что переменное напряжение сначала поступает на выпрямитель и преобразовывается в высокочастотные импульсы, которые подаются на небольшой трансформатор.

В условиях проведения ремонта техники дома часто возникает потребность самостоятельной намотки катушки трансформатора. Для этого используют сборные сердечники, которые состоят из отдельных пластин. Детали соединяются между собой посредством замка, образовывая жесткую конструкцию. Обмотка проводом производится при помощи самодельного устройства, которое работает по принципу коловорота.

Создавая такой трансформатор, следует помнить: чем плотнее и аккуратнее намотана проволока, тем меньше проблем будет возникать с эксплуатацией такого устройства.

Витки отделяются друг от друга одинарным слоем бумаги, промазанной клеем, а первичная обмотка отделяется от вторичной промежутком из 4-5 слоев бумаги. Такая изоляция обеспечит защиту от пробоев и короткого замыкания. Правильно собранный трансформатор гарантирует стабильность работы техники, отсутствие назойливого гула и перегревов.

Заключение по теме

Трансформаторы используются в большинстве окружающей нас техники. Знание об их внутреннем строении дает возможность при необходимости произвести их ремонт, обслуживание или замену.

Отличить первичную обмотку от вторичной бывает важно для правильного подключения устройства в сеть. Подобная проблема может возникнуть и при использовании самодельных устройств или трансформаторов без маркировки.

Непрерывная катушечная обмотка применяется только при напряжении 110 кВ и выше. При использовании в обмотке нескольких параллельных проводов транспозиция делается, как в винтовых параллельных обмотках.

Источник: https://stanki-info.com/kakoy-tok-mozhno-podavat-na-obmotku-transformatora/

Какой ток можно подавать на обмотку трансформатора?

Первичная обмотка трансформатора — это часть устройства, к которой подводится преобразуемый переменный ток. Определить, где первичная, а где вторичная обмотка трансформатора, важно при использовании устройств без заводской маркировки и самодельных катушек.

На самодельных трансформаторах нет обозначений первичной обмотки.

Знания о внутреннем строении и принципе действия трансформаторов имеют практическое значение для начинающих радиолюбителей и домашних мастеров. Имея информацию о типах обмоток, методах их расчета и главных отличиях, можно с большей уверенностью начинать создание систем освещения и прочих устройств.

Трансформатор тока: принцип работы, схема подключения, типы

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном.

Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра.

 Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточныйтороидальный и стержневой.

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы.

Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач.

Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5. Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер. Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

ЭТО ИНТЕРЕСНО:  Как подключить трехфазный счетчик

Увеличивая количество вторичных обмоток Ns, ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

из которого мы получаем:

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим.

 Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1.

 Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5. Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов. Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

Напряжение через амперметр:

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np), развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором. Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения. Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый трехфазным трансформатором, который используется для питания трехфазных источников питания.

Источник: https://meanders.ru/chto-takoe-transformator-toka-princip-raboty-tipy-shemy.shtml

Трансформаторы тока и напряжения

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими, выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими, выполняющие противоположное преобразование;
  • разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.

Трансформатор напряжения НОЛ

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В.

Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более.

Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.

Трехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Три однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации.

Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением.

Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку.

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.

Варианты конструктивного исполнения трансформаторов тока до 1000 В

Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего.

И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.

Установка трансформаторов тока в ячейке выше 1000 В

Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой.

Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика.

А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения.

ЭТО ИНТЕРЕСНО:  Как сделать трансформатор тесла

Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Источник: http://electric-tolk.ru/transformatory-toka-i-napryazheniya/

Что такое трансформатор и как его проверить

Сварочный аппарат, микроволновка, компьютер, блок питания, телевизор — такие разные электроприборы но в каждом из них есть трансформатор. Как прозвонить обмотки и замерить напряжение выдаваемое трансформатором, как посчитать допустимую мощность и что такое ток холостого хода — вопросы на которые Вы получите исчерпывающие ответы и несколько практических советов по работе с трансформаторами. В конце расскажу о трансформаторе тока и где он используется.

Для чего нужен трансформатор?

Основное свойство трансформатора преобразование напряжения или тока до требуемого значения и гальванической развязки — это очень полезное свойство трансформаторов о котором расскажем ниже.

И так, например, в домашней электро-розетке напряжение 220 вольт 50 герц (AC — так на схемах и блоках питания обозначают переменное напряжение — AC 220v 50hz), т.е.

, переменное напряжение, а для питания ноутбука нам нужно 18 вольт постоянного тока (DC — так обозначается постоянное напряжение DC 18v). С помощью трансформатора мы можем преобразовать напряжение до требуемой величины, а затем выпрямить его.

После чего, это напряжение будет пригодно для питания Вашего ноутбука. Не совсем понятно? Не хватает термина — Коэффициент трансформации.

Как рассчитать обмотки трансформатора

В нашем примере, 220/18=12,22 это соотношение количества витков обмоток и это значение коэффициента трансформации.
Зная, коэффициент трансформации , этим числом можно посчитать количество витков трансформатора. Если поменять обмотки, т.е.

, подать напряжение 220 вольт на вторичную обмотку, с первичной мы получим 2688 вольт — но делать так я не рекомендую, транс сгорит сразу или выбьет автомат в щитке.

Допустим, вы знаете что в первичной обмотке транса 2200 витков, а сколько витков должно быть во вторичной обмотке для получения 18 вольт? Все просто, 18 (напряжение в вольтах)*12,22 (коэффициент трансформации) = 220 витков.

Как устроен трансформатор?

Простейший трансформатор, это две независимых обмотки связанных магнитопроводом. В первой обмотке создается магнитное поле, затем через магнитопровод передается на вторую обмотку, в которой в зависимости от коэффициента трансформации повышается или понижается. На самом деле, все значительно сложнее, много факторов влияющих на выходное напряжение, но для данного контекста этого достаточно.

Какие бывают трансформаторы?

  1. Повышающий трансформатор (высоковольтный) — повышает напряжение до требуемой величины, но снижает ток пропорционально. При повышении напряжения более чем 20-30 раз большое значение имеет КПД трансформатора, как правило для частоты 50 герц это предел, дальше начинаются значительные потери.

    Для повышения КПД трансформаторов увеличивают частоту, так высоковольтный трансформатор в электро-шокере повышает напряжение до 20-100 тысяч вольт и работает на частотах от 800гц до 2,4кгц. При этом, ток пропорционально снижается.

  2. Понижающий трансформатор (силовой) — понижает напряжение до требуемой величины, пропорционально увеличивает допустимый ток.

    Например сварочный аппарат, снижает напряжение до 50 вольт (в 4,4 раза), увеличивает ток в 4,4 раза. Но для соблюдения этого условия сечение провода во вторичной обмотке тоже, должно быть больше в 4,4 раза.

  3. Автотрансформатор (ЛАТР) — понижающий трансформатор с одной обмоткой, с которой с помощью ручки реостата, получают напряжение от 1 до 180 вольт.

    Такие трансы используются в лабораторных условиях для проверки различных устройств. В быту используется в некоторых регуляторах напряжения.

  4. Масляный трансформатор — трансформатор монстр! с обмотками трубами, заполненными минеральным маслом. Такие устанавливают в силовых подстанциях для снижения напряжения с 10000 вольт до 220. Если передавать на большое расстояние напряжение в 220 вольт по обычным проводам, потери будут значительны. Как известно, чем выше напряжение, тем меньше влияет сопротивление провода. С ТЭЦ и ГРЭС по Линиям Электро Передач передается вообще 100000 вольт!

  5. Импульсный трансформатор — без него не обходится не один современный электроприбор, будь то ТВ, ноутбук, компьютер или зарядник для телефона. Как правило работает на частотах свыше 800гц в паре с контроллером ШИМ который увеличивает частоту импульсов в возрастанием нагрузки. Гениальное изобретение, позволяющее получать большие токи при скромных размерах. Сравните размеры традиционного сварочного аппарата и сварочного инвертора работающего на этом принципе.

Как отличить первичную обмотку от вторичной в трансформаторе

Существует три основных признака первичной обмотки трансформатора:

1) В понижающем трансформаторе сопротивление первичной обмотки значительно выше, чем вторичной.

2) Как правило, первичная обмотка наматывается более тонким проводом.

3) Первичная обмотка транса наматывается ближе к магнитопроводу для увеличения КПД трансформатора.

4) Если трансформатор запаян в схему, можно посмотреть по выводам. Во вторичной обмотке, как правило включается диодный мостик и за ним электролитический конденсатор большой емкости (от 1000мкф). В первичной, обычно ставят предохранитель. Подробно, как определить где первичная обмотка смотрите видео ниже.

Источник: https://100uslug.com/chto-takoe-transformator-i-kak-ego-proverit/

Что будет, если подать в электросеть постоянный ток

Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.

Подавляющее большинство энергосетей работают на переменном токе. Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.

Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.

Автоматы

И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь.

Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.

рф

Дополнения от Bronx и AndrewN:

Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше. Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.

УЗО

Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него. Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь.

Чувствительный элемент УЗО — дифференциальный трансформатор. У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет. Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО.

На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.

Счетчик

Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки. Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение.

Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск. Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен. Электронный счетчик устроен по-другому.

Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы. В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет.

Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте. Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.

Нагревательные приборы

Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.

Лампы накаливания

Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период. При питании постоянным током этого неприятного явления не будет.

Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса. Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль.

Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке. Именно так и работает диммер. При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора.

Тогда лампа не загорится совсем. В любом случае, диммер будет бесполезен.

Люминесцентные лампы

Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.

Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой: Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой.

Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно.

Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление. Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток.

Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.

Лампы с электронным ПРА

Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА). Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип.

Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу. В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.

com Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон. Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.

Светодиодные лампы

Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток. Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц. На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com

Источник: https://habr.com/ru/post/372749/

Понравилась статья? Поделиться с друзьями:
220 вольт