Каков принцип действия трансформатора

Принцип работы

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i 1 , образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные Э.Д.С. е 1 и е 2 .

Если к вторичной обмотке присоединен какой-либо приемник, то под действием Э.Д.С. е 2 по ее цепи проходит ток i 2 .
Э.Д.С.

[E, ( В )] , индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока [B, ( Тл )] , пронизывающего виток [W] , частоты [f, ( Гц) ] и площади сечения магнит о провода [S, (мм 2) ] .

E=4.44*W*f*B*S

Отношение Э.Д.С. Е 2 обмотки высшего напряжения к Э.Д.С. E 1 обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

n = Е 1 / E 1\2 = W 1 / W 2

Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U 1 и U 2 ), то можно считать, что отношение напряжения U 1 первичной обмотки к напряжению U 2 вторичной обмотки приблизительно равно отношению чисел их витков , т. е.

U 1 /U 2 = W 1 / W 2

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

Параметры трансформатора

Одним из наиболее важных параметров трансформатора является его мощность. Различают электромагнитную, полезную, расчётную и типовую мощности трансформатора.
Электромагнитной мощностью трансформатора называются мощность, передаваемая из первичной обмотки ко вторичную электромагнитным путём; она равна произведению действующей значению ЭДС этой обмотки на величину тока нагрузки, т. е.

Рэм=Е2I2, [ВА]

Полезной или отдаваемой мощностью трансформатора называется произведение действующего напряжения на зажимах вторичной обмотки на величину её нагрузочного тока, т.е.

Р2=U2I2, [ВА]

Расчётной мощностью трансформатора называется произведение действующего значения тока, протекающего по обмотке, на величину напряжения на её зажимах.

Р1=U1I1, [ВА]

Виды трансформаторов

С иловой трансформатор переменного тока — статическое электромагнитное устройство, использующееся для преобразования электрической энергии и её передачи из одних цепей в другие. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями.

Автотрансформатор — вид трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь и электрическую. Как правило автотрансформатор обладает высоким КПД, поскольку лишь часть мощности подвергается преобразованию.

Основным отличием от трансформатора является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью.

Трансформатор тока — называется трансформатор, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно его на угол, близкий к нулю.

Первичная обмотка трансформатора тока включена в цепь последовательно (в рассечку токопровода), а вторичная обмотка замыкается на некоторую нагрузку (измерительные приборы и реле), обеспечивая прохождение по ней тока, пропорционального току первичной обмотке.

Импульсный трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока, имеющего вид импульсов.

Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей электронных схем при минимальном искажении формы сигнала, обеспечивая создание гальванической развязки между участками схем.

Источник: http://www.tmnsk.ru/work-principle/

Принцип действия трехфазного трансформатора

Трансформаторы – статические электромагнитные аппараты, с помощью которых возможно преобразовать переменный ток из одного класса напряжения в другой, при этом с неизменной частотой.

В энергосистемах трансформатор, который преобразовывает электроэнергию трехфазного напряжения, называют трехфазным силовым. Для передачи электроэнергии от генераторов электростанций к линиям электропередач (ЛЭП) применяют повышающие трансформаторы (они увеличивают класс напряжения), от ЛЭП к распределительным подстанциям и далее к потребителям – понижающие (они уменьшают класс напряжения).

Конструктивная особенность

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней. На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда». Аналогичным способом соединения выполняются и вторичные обмотки.

На первичную обмотку подаётся электроэнергия из питающей сети, а на вторичную подключается нагрузка. Электроэнергия передаётся за счет электромагнитной индукции. функция магнитопровода – обеспечить между обмотками магнитную связь. Магнитопровод изготавливают из тонких стальных пластин (так называемая, электротехническая листовая сталь). Чтобы сократить потери, стальные листы между собой изолируют, используя оксидную пленку или специальный лак.

Обмотки с магнитопроводом погружаются в бак, в котором находится трансформаторное масло. Оно одновременно выполняет функцию изоляции и охлаждающей среды. Такие трансформаторы называются масляными. Трехфазный трансформатор, у которого в качестве охлаждения и изоляции используется воздух, называют сухим. Недостаток масляных трансформаторов заключается в повышенной пожароопасности.

Принцип работы

Электромагнитная индукция является базовым явлением в работе трансформатора.

Из электрической сети подается питание к первичной обмотке, в ней появляется переменный ток, в магнитопроводе при этом образуется магнитный переменный поток. Как известно из физики, если поместить второй проводник в магнитное поле, в нем также появляется переменный ток. В качестве второго проводника в трансформаторе выступает вторичная обмотка. Таким образом, в ней появляется напряжение.

Разница между первичным и вторичным напряжением зависит от коэффициента трансформации, который определяется числом витков в обмотках.

Источник: https://www.ruselt.ru/articles/printsip-deystviya-trekhfaznogo-transformatora/

Электрические трансформаторы

ВИДЫ И ТИПЫ
ХАРАКТЕРИСТИКИ
ПРИМЕНЕНИЕ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.

Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

Виды и типы трансформаторов

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.

Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.

Импульсные трансформаторы.

Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.

Разделительный трансформатор.

Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.

Пик—трансформатор.

Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

Характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

Область применения

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/transformatory.html

Трансформатор — устройство и принцип работы

Трансформатор – статический электромагнитный аппарат для преобразования переменного тока одного напряжения в переменный ток другого напряжения, той же частоты. Трансформаторы применяют в электрических цепях при передаче и распределении электрической энергии, а также в сварочных, нагревательных, выпрямительных электроустановках и многом другом.

Трансформаторы различают по числу фаз, числу обмоток, способу охлаждения. В основном используются силовые трансформаторы, предназначенные для повышения или понижения напряжения в электрических цепях.

Устройство и принцип работы

Схема однофазного двухобмоточного трансформатора представлена ниже.                                        

На схеме изображены основные части: ферромагнитный сердечник, две обмотки на сердечнике. Первая обмотка и все величины которые к ней относятся (i1-ток, u1-напряжение, n1-число витков,Ф1 – магнитный поток) называют первичными, вторую обмотку и соответствующие величины — вторичными.

Первичную обмотку включают в сеть с переменным напряжением, её намагничивающая сила i1n1 создает в магнитопроводе переменный магнитный поток Ф, который сцеплен с обеими обмотками и в них индуцирует ЭДС e1= -n1 dФ/dt, e2= -n2dФ/dt.

При синусоидальном изменении магнитного потока Ф = Фm sinωt , ЭДС равно e = Em sin (ωt-π/2). Для того чтобы посчитать действующее значение ЭДС нужно воспользоваться формулой E=4.44 f n Фm, где f- циклическая частота, n – количество витков, Фm – амплитуда магнитного потока.

Причем если вы хотите посчитать величину ЭДС в какой либо из обмоток, нужно вместо n подставить число витков в данной обмотке.

Из приведенных выше формул можно сделать вывод о том, что ЭДС отстает от магнитного потока на четверть периода и отношение ЭДС в обмотках трансформатора равно отношению чисел витков E1/E2=n1/n2.

Если вторая обмотка не находится под нагрузкой, значит трансформатор находится в режиме холостого хода.

В этом случае i2 = 0, а u2=E2, ток i1 мал и мало падение напряжения в первичной обмотке, поэтому u1≈E1 и отношение ЭДС можно заменить отношением напряжений u1/u2 = n1/n2 = E1/E2 = k.

  Из этого можно сделать вывод, что вторичное напряжение может быть меньше или больше первичного, в зависимости от отношения чисел витков обмоток. Отношение первичного напряжения ко вторичному при холостом ходе трансформатора называется коэффициентом трансформации k.

Как только вторичная обмотка подключается к нагрузке, в цепи возникает ток i2, то есть совершается передача энергии от трансформатора, который получает ее из сети, к нагрузке. Передача энергии в самом трансформаторе происходит благодаря магнитному потоку Ф.

Обычно мощность на выходе и мощность на входе приблизительно равны, так как трансформаторы являются электрическими машинами с довольно высоким КПД, но если требуется произвести более точный расчет, то КПД находиться как отношение активной мощности на выходе к активной мощности на входе η = P2/P1.

Магнитопровод трансформатора представляет собой закрытый сердечник собранный из листов электротехнической стали толщиной 0,5 или 0,35мм. Перед сборкой листы с обеих сторон изолируют лаком.

По типу конструкции различают стержневой (Г-образный) и броневой (Ш-образный) магнитопроводы. Рассмотрим их структуру.

Стержневой трансформатор состоит из двух стержней, на которых находятся обмотки и ярма, которое соединяет стержни, собственно, поэтому он и получил свое название. Трансформаторы этого типа применяются значительно чаще, чем броневые трансформаторы.

Броневой трансформатор представляет собой ярмо внутри которого заключается стержень с обмоткой. Ярмо как бы защищает стержень, поэтому трансформатор называется броневым. 

Обмотка

Конструкция обмоток, их изоляция и способы крепления на стержнях зависят от мощности трансформатора. Для их изготовления применяют медные провода круглого и прямоугольного сечения, изолированные хлопчатобумажной пряжей или кабельной бумагой. Обмотки должны быть прочными, эластичными, иметь малые потери энергии и быть простыми и недорогими в изготовлении.

Охлаждение

В обмотке и сердечнике трансформатора наблюдаются потери энергии, в результате которых выделяется тепло. В связи с этим трансформатору требуется охлаждение. Некоторые маломощные трансформаторы отдают свое тепло в окружающую среду, при этом температура установившегося режима не влияет на работу трансформатора. Такие трансформаторы называют “сухими”, т.е. с естественным воздушным охлаждением.

ЭТО ИНТЕРЕСНО:  Что такое частотный преобразователь

Но при средних и больших мощностях, воздушное охлаждение не справляется, вместо него применяют жидкостное, а точнее масляное. В таких трансформаторах обмотка и магнитопровод помещены в бак с трансформаторным маслом, которое усиливает электрическую изоляцию обмоток от магнитопровода и одновременно служит для их охлаждения. Масло принимает теплоту от обмоток и магнитопровода и отдает ее стенкам бака, с которых тепло рассеивается в окружающую среду.

При этом слои масла имеющие разницу в температуре циркулируют, что улучшает теплообмен. Трансформаторам с мощностью до 20-30 кВА хватает охлаждения бака с гладкими стенками, но при больших мощностях устанавливаются баки с гофрированными стенками.

Также нужно учитывать что при нагреве масло имеет свойство увеличиваться в объеме, поэтому в высокомощных трансформаторах устанавливают резервные баки и выхлопные трубы (в случае если масло закипит, появятся пары которым нужен выход). В трансформаторах меньшей мощности ограничиваются тем, что масло не заливают до самой крышки.         

— Приведение обмоток трансформатора                                                                                                                      

1 1 1 1 1 1 1 1 1 1 4.17 (6 Голоса)

Источник: https://electroandi.ru/elektromagnitnye-ustrojstva/transformator-ustrojstvo-i-printsip-raboty.html

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле.

Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2.

И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2.

Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo.

Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению.

В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную.

Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2.1. Магнитопровод. Магнитные материалы

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением.

Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях.

Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.

5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Источник: https://sesaga.ru/ustrojstvo-i-princip-raboty-transformatora.html

������� �������� ������������� ���������������

������� / .. / 2016 / ������� �������� ������������� ���������������

������������� �������������� �������� ������������ ������� ������������������ �������.

� ����������� �� ����������� ���������� ������������� ��������������� ���� � ���������� �������� � ��� ����������� �������� ���������� ������������� ����� (���������� ��� ���), �������� �� �������� �� ��������� ��������.

������� ������ ����������� � ���������� ����������� ����������, ��� ������� ����� � ��������� �������� ����������-������������� ����������.

��� ������������� �������������� ������� �� ��� ������ ������ �� �������� ���������:

� ����������� �� �� �������������� � ����� �� ��������� ����������� ���������� ����������� � ������� ������ �������. ������� ����� �������� ���������� �������� �������������� ����������� � ���������� ������������� ��������������� ������ ������.

������� �������� ������������� ��������������� ���������� ������� �� ��������� ����������� ���������� � ������������ ������������ ����� ���� ������������� �������� �� ������� ����������� ���������� � ����� ����������� ����.

������������� ���������� ������� ������������ ��� ���������, ������� ����������� �������������� ���� � ������� ����������� ��������� � ��������. ������� ���������� ����� ������� �������� � �������� �������������� �������� ������ � � ��������� �����������������.

��������� ��������� � ���� ������� ����� �������������� ����� ������������ ����������� ����������-������������� ������� ��� ������ ������ ��������� � ������ � ������� ��������� ����������.

� ��������� ������ �������� �� ����������� ������ ����������� ������������� ���������� � ����������� �� � �������� �� ���� �������������� ������� �������������, �������� � ������ ���������.

������� �������� ������������� ��������������� ���� ����������� � �������� �� ������������ ������ ���� ���� �� ���������� ���������, � �������� ������� ������������� ������. ������� ���������� ����� ��������������� � �������� � ������ ������ ��������� � �������������� �����.

�������� ����������� ���������� ����������� � ������ �������� ���� ���� � ����������� ���������� ������ � ������������ ����������-������������� �����������, �� ������� ���������� ������ ���� �������� ��������.

�������� ����������

�� ������ ������� ����� ��������� ��������� ����������, ������� ������� ��������� ���������� ���������� ������ �� �������� ���������� �������� �������������. ���������� ������������� ��������������� ����������� � ����������� �� ���� ����������.

���, ��� ��������������� ���� ���������� ��������� ������� � �����������:

  • �һ (������ �����) � ������������� ����;
  • ������ ����� � ����������� �������� �� ��� �����������. ����� ���� ������ ��������: �λ, �ϻ, �Ի, �ػ, ��� �������� �������, ���������, ������, ������;
  • ������� ������ ����������� �������� �������� � ����� (�), �������� (�) ��� ������� (�).

����� ��������� ���������� ����������� �������� ��������, ������� ������������� ����� ��������, ������ � ����������� �������������. ��� �������: ���������� ���-3�2 100/3 �������� ��� �������������� ���� ������� � �������� ���������, 3��, ��� ���������� ������� ������� ������ � ������������� 100:3�.

� ��������������� ���������� ���������� ���������� ������� ����������� ����, ������� ���������� ���������� ���, ��� ��������, ����� ������� � ��� ����������, ��� �����������.

����� �������� ��� �������� ��������� �������:

  • ����� �������������� � � (����������);
  • �� ���������� ��� � ���� (�) ��� ��� (�);
  • �������������� � ������������� (�);
  • ����������� ����������� � ����������� ��������� ������� (�);
  • ������������� � ��������� (�), ��������������� (�), ����������� ������ �� �������� (�), ������� ���������� �������� (��), ���������� �������� (�);
  • ��� ���������� � �������� (�), ����� (�).

������ ���������� ����������� ��������� ����� ������������� ���������������.

����������� �������

������ ������������� ��������������� ������������ ������������������������ �������������, ������� ������� ����� ��������� ������� � ������������������ ������� �� ���� �������� ������. ����� ���������� ���������� �������� �������� �� ��������� ��������� ��������.

��� ��������������� ���� ������������� ���������� ��������� ��������:

  • ���������� ������ ������� �� ������� ������������ �����������;
  • �������� ������������ ������������� �� ������������ �������� ����������;
  • ��������� ��������� ������� (���������� �������);
  • ��������� �� �������������� ��� ������ ��� ����������� � ��������� ������� � ����������-������������� ����������;
  • ����������� ���������� �������� � ������������ �������.
ЭТО ИНТЕРЕСНО:  Как работает преобразователь напряжения

����� ����������� ������� ����� ���������� � �������� ��������� � ����������� �������� � ������������.

��� ��������������� ���������� ����� �������� ���������� ������ ����� ����������.

�������� �������� �� ��������� �������:

  • ����������� �������;
  • ���������� ���� �����;
  • ��������������� ��������� ������������� ��������������� (���������� ���������� � ������� ��� ������� � ������� ����������, �������� ����������� �������������, ��������� �������� ������������� �������);
  • �������� ������ �����. � ������� ����������� ���������� ����� ���������� �� ������������ ����������, � � ���������� �������� ��� ����������� �� �������� ����� �������� �� 2-3 ���������� �� ������. �������������� ��������� ������ � ����� ������ ���� �����������.

��� ��������� � �������� ������ ���������� � ������������ � ���������� ������������ � � ����������� ������ ������������.

������������

������������ ������������� ��������������� ������ ����������� ������ � ������������ � �������������� � ������������� �����-������������. � �������� ������������� ��������� ������������� ���������� ���������������� ������ � ����� ��������� ��������� �������������� � �������� �� ����������.

���������� ������������ ��� ��������������� ���� ��������������� ��������� �����������:

  • �������� �������� ������� ���� � ����� ����������� ���������� (����������� ��������������� ����� �� ����� ���� ������ 20%);
  • ������� ������ ��������� ���������� ���������;
  • �������� ����������� ���������� ����������;
  • ������ ������� ��������, �������� ����������� � �����.

��� ��������������� ���������� ������������� ��������� ���������� ���������������� �������:

  • ��������� �������� ������ �� ������� ������� ����������� � �������� �����;
  • �������� ������ �����;
  • ���������� �������� �������� �� ������� ������������� ������� � ����������� ����� ������ �������;
  • �������� ����������� ���������� ���������� � ������� ����.

��� ����������� ������ ���� ��������� ���������� �������������� � ��������� �� ������������.

������ ������������� ��������������� �������� ������������������ ����������� (������ ��� ����������������� ���������� �� ���� �������������� ������������).

����� ������ ������ � �������� � ���� ��������������, ������� ����������� ������������ � ������ � ��������� ����������� � ���������� ��������, ���������� �������� �������� ��������.

������� ������������� ���������� ����� ��������� ����������� �� ���������� ��� �����������.

�� �������� ����� ������ ������ ������ � ����������, �������� �������� ������������� ���������������, � ����� ������������ ������� � ������� ���������.

������� ������ ���� ������:

��������������, ������, ������������, ������������ ������ ����������������

�������������������
�������� ������ �����

Источник: https://www.elektro-expo.ru/ru/articles/2016/princip-dejstviya-izmeritelnyh-transformatorov/

Принцип действия трансформатора, хх и кз | Неисправности электрооборудования и способы их устранения

Подробности Категория: Оборудование

Пусть первичная обмотка 1 трансформатора (рис. 28) содержит W1 витков и подключена к источнику переменного тока при разомкнутом ключе К. Под действием напряжения источника тока в обмотке 1 появляется ток холостого хода. Ампер-витки создают основной переменный магнитный поток Ф, который замыкается по магнитопроводу трансформатора. Магнитный поток Ф, пересекая витки обмоток 1 и 2, наводит в обеих обмотках переменные э. д. с.

Действующие значения э. д с. могут быть определены по формулам, В:

(34) где Е1 и Е2—соответственно действующие значения э. д. с. обмоток 1 и 2, В. 1—частота источника переменного тока, Гц; \1 и W2— соответственно числа витков обмоток 1 и 2; Ф — основной магнитный поток, 3-с. Если замкнуть ключ К, под действием э. д. с. Е2 по обмотке 2 потечет ток h, направленный противоположно току обмотки 1.

Ампер-витки действуют встречно ампер-виткам обмотки 1. При нормальных режимах работы трансформатора поток Ф практически остается по стоянным, это обеспечивается за счет того, что с увеличением тока h увеличивается ток обмотки. С достаточной для практики точностью можно считать справедливым следующее равенство: hWx = hW2.

                                  (35)

При разомкнутом ключе К напряжение на обмотке 2 равно э. д. с. этой обмотки; по мере нагрузки трансформатора напряжение обмотки U2 несколько уменьшается.

Холостой ход и короткое замыкание трансформатора

Холостой ход и короткое замыкание трансформатора являются весьма важными режимами его работы, определяющими эксплуатационные качества трансформатора.    I Холостой ход — это такой режим работы трансформатора, когда к одной из обмоток подводится номинальное напряжение, а вторая обмотка разомкнута. Рассмотрим холостой ход трехфазного трансформатора с магнитопроводом стержневого типа, обмотки которого соединены по схеме (рис. 29).

Опыт проводится в такой последовательности. Включим рубильник Р и при помощи индукционного регулятора 1 установим номинальное линейное напряжение U1л на первичной обмотке трансформатора, наблюдая за показаниями вольтметра V1. Условимся считать первичной ту обмотку трансформатора, к которой подводится напряжение.

Установив номинальное напряжение на первичной обмотке, зафиксируем показания приборов: амперметров— А1, А2, А3; ваттметров W1 и W2, вольтметра— V2.

Рис. 29. Схема опыта холостого хода трансформатора: Амперметры А 1, А2, А3 покажут нам линейные токи холостого хода соответствующих фаз —

1—индукционный регулятор; 2 — трехфазный трансформатор.

Токи равны. Это явление объясняется тем, что длина средней магнитной силовой линии фазы В меньше, чем длины средних магнитных силовых линий фаз А и С (рис. 30), а потому провести магнитный поток по длине1 легче, чем по длинам 1А, 1С.

За ток холостого хода трехфазного трансформатора принимают среднее арифметическое трех токов отдельных фаз А; В\ С:
(36) ок холостого хода трансформаторов обычно не превышает 4-12% от номинального тока, причем меньшие Цифры относятся к трансформаторам большей мощности.

Малая величина тока холостого хода трансформаторов объясняется отсутствием воздушных зазоров в магнитопроводе (в асинхронных двигателях ток холостого хода равен 20-f-60% от номинального). Иногда необходимо знать фазное значение тока холостого хода Фазный ток холостого хода определяется по следующим формулам: при соединении обмоток звездой и зигзагом

(37)

где /оф и /0л—соответственно фазный и линейны токи холостого хода, А; при соединении обмоток треугольником

(38

При холостом ходе трансформатор не совершает полез ной работы, его к. п. д. равен нулю. Активная мощность которую при этом показывают ваттметры W1 и W2 цели ком рассеивается в виде тепла, идущего на нагрев магнитопровода и первичной обмотки трансформатора. Сле дует отметить, что для определения активной мощности при холостом ходе трансформатора необходимо один и ваттметров переключить и взять разницу показаний двух ваттметров. Как указывалось ранее, ток холосто го хода трансформатора мал, а потери в обмотке за висят от квадрата тока и составляют менее 2% от потери холостого хода. При холостом ходе трансформатора потерями в первичной обмотке пренебрегают и считают что потерями холостого хода являются потери в стали.
Рис. 30. Длины средних магнитных силовых линий трехстержневого трехфазного трансформатора.

При холостом ходе с большой степенью точности можно считать, что U= E. Отношение э. д. с. первичной обмотки к э. д. с. вторичной об мотки называют коэффициентом трансформации. В трех фазных трансформаторах различают два коэффициент трансформации: коэффициент трансформации линейны э. д. с. и коэффициент транс формации фазных э. д. с. Из опыта холостого хода (рис. 29) можно определить коэффициента трансформации по показаниям вольтметров. Коэффициент трансформации линейных э.д. с.

(39)

где Е1л и Е2л — соответственно первичная и вторичная линейные э. д. с., В.

Коэффициент трансформации фазных э. д. с.
(40) где Е1ф, Еф2 — соответственно фазные э. д. с. и напряжения первичной и вторичной обмоток, В. Если обе обмотки трансформатора соединены одинаково, то коэффициенты трансформации фазных и линейных э.д.с. равны. При холостом ходе трансформатора коэффициент мощности cos ф0 меньше 0,2. Коэффициент мощности при холостом ходе можно определить по опытным данным с помощью формулы:

(41)

где Р0—мощность холостого хода, определенная с помощью ваттметров. Однофазный трансформатор работает при холостом ходе, как одна фаза трехфазного. Короткое замыкание — это такой режим работы трансформатора, когда вторичная обмотка замкнута, а к первичной обмотке подведено напряжение, обеспечивающее протекание номинальных токов по обеим обмоткам (испытательное короткое замыкание). При испытательном коротком замыкании к первичной обмотке подводится напряжение, равное 3,5-17% номинального. В процессе эксплуатации трансформатора возможно короткое замыкание вторичной обмотки при номинальном напряжении на первичной. Такой режим работы является аварийным, а короткое замыкание называется внезапным. При внезапном коротком замыкании токи в обмотках трансформатора в 10 и более раз больше номинальный. Если трансформатор при такое коротком замыкании не будет своевременно отключен от сети, то он выйдет из строя. Рис. 31. Схема опыта короткого замыкания трансформатора: 1 — индукционный регулятор; 2 — трехфазный трансформатор. В дальнейшем мы будем рассматривать только испытательное короткое замыкание. Рассмотрим короткое замыкание трансформатора, обмотки которого соединены по схеме (рис. 31). Опыт нужно проводит в такой последовательности. Индукционный регулятор 1 поста вить в положение минимальной напряжения, включить рубильник Р и при помощи индукционной регулятора по показанию амперметра А1 или А2 установить номинальный ток трансформатора. При симметричном напряжении сети и исправном трансформаторе показания амперметров должны быть одинаковыми. При опыте короткого замыкания приборы показывают:  перметры А1, А2, А3— линейны токи фаз с первичной стороне трансформатора;       амперметр Ац — линейный ток вторичной стороны; вольтметр V — напряжение короткого замыкания; ваттметры и W2 — активную мощность коротко го замыкания. При коротком замыкании трансформатор не совершает полезной работы, его к. п. д. равен нулю. Активная мощность короткого замыкания рассеивается в виде тепла, которое нагревает обмотки трансформатора. Потери в стали можно считать пропорциональными квадрату напряжения. Так как напряжение мало, то, следовательно, и потери в стали очень малы, и ими можно пренебречь. При коротком замыкании считают, что активная мощность короткого замыкания является потерями в обмотках трансформатора. При соединении обмотки в треугольник фазные и линейные напряжения одинаковы. Обычно напряжение короткого замыкания выражают в процентах от номинального: Ul и— номинальное линейное напряжение первичной обмотки, В.

V — показание вольтметра, В.

Схемы соединения обмоток и группы трансформаторов

Источник: https://leg.co.ua/knigi/oborudovanie/neispravnosti-elektrooborudovaniya-i-sposoby-ih-ustraneniya-3.html

Принцип действия трансформатора для повышения напряжения — Станок

В быту и на производстве широко используются электрические и электронные приборы различного назначения. Необходимое условие их функционирования — подключение к электрической сети или иному источнику электрической энергии.

Из соображений упрощения создания и последующей эксплуатации сети или источника целесообразно, чтобы выходное напряжение имело определенное значение.

Например 220 В бытовой сети переменного тока и 12 В автомобильной сети постоянного тока.

На практике применяются сети как постоянного, так и переменного тока. Например, бытовая 220-вольтовая сеть функционирует на переменном токе, а бортовая автомобильная сеть использует постоянный ток. В зависимости от разновидности сети повышение напряжения до нужного значения решается в них по-разному.

При обращении к современной микроэлектронной элементной базе реализующие эти функции устройства при солидной выходной мощности обладают очень хорошими массогабаритными показателями. Для иллюстрации этого положения на рисунке 1 показан пример платы со снятым корпусом повышающего преобразователя постоянного тока.

Рис. 1. Повышающий преобразователь постоянного тока бестрансформаторного типа

В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и как это делать правильно.

Разновидности трансформаторов

Наиболее простой способ увеличения переменного напряжения – установка между выходом сети и питаемой нагрузкой повышающего трансформатора. Применяемые на практике устройства делятся на две основные разновидности. Первая — классические трансформаторы, вторая — автотрансформаторы. Схемы этих устройств приведены на рисунке 2.

Рис. 2. Схемы трансформатора и автотрансформатора

Классический трансформатор содержит две обмотки: первичную или входную с числом витков W1, а также вторичную или выходную с числом витков W2. Для трансформатора действует правило Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации. Таким образом, в повышающем трансформаторе количество витков вторичной обмотки превышает таковое у первичной.

Повышающий авторансформатор содержит единственную обмотку с W2 витками. Сеть подключается на часть W1 ее витков. Повышение U происходит за счет того, что магнитное поле, создаваемое при протекании тока через входную часть общей обмотки, наводит ток уже во всей обмотке W2. Расчетная формула автотрансформатора аналогична обычному: Uвыхода = K×Uвхода, где K = W2/W1 – коэффициент трансформации.

Особенности трансформаторов

Эффективность функционирования трансформаторов наращивают применением сердечника из электротехнической стали. Этот компонент

  • увеличивает КПД устройства за счет уменьшения рассеяния магнитного поля в окружающем пространстве;
  • выполняет функцию несущей силовой основы для обмоток.

Неизбежные потери на вихревые тока уменьшают тем, что сердечник представляет собой наборный пакет из тонких профилированных изолированных пластин.

При прочих равных условиях целесообразно использовать трансформатор. Это связано с тем, что не пропускает постоянный ток, т.е. обеспечивает гальваническую развязку сети от приемника, позволяя добиться большей электробезопасности.

Особенность трансформатора — его обратимый характер, т.е. в зависимости от ситуации он может одинаково успешно выполнять функции повышающего и понижающего устройства. Единственное серьезное ограничение — необходимость соблюдения штатных режимов работы первичной и вторичной обмоток.

В отличие от компьютерных розеток, называемых RJ45, в различных странах при устройстве бытовых сетей электроснабжения устанавливают различные типа розеток.

Известны, например, розетки, немецкого, французского, английского и иных стандартов или стилей.

Поэтому на трансформатор малой мощности целесообразно возложить функции адаптера, который за счет разных типов вилок и гнезд обеспечивает механическое согласование сети и нагрузки. Пример такого устройства изображен на рисунке 3.

Рис. 3. Пример обратимого маломощного трансформатора с возможностью согласования типов розеток

Лабораторные автотрансформаторы ЛАТР

Сильная сторона автотрансформатора – простота регулирования выходного напряжения простым перемещением токосъемного контакта по обмотке. Устройства, допускающие выполнение этой опции, известны как лабораторные автотрансформаторы ЛАТР. Отличаются характерным внешним видом за счет наличия регулятора напряжения и вольтметра для его контроля, рисунок 4.

ЛАТР востребованы не только в лабораториях. Они массово применяются в гаражах, на садовых участках и других местах, где из-за перегрузки и износа линии напряжение в розетке оказывается ниже минимально допустимого.

При колебаниях сетевого напряжения вместо обычного ЛАТР целесообразно использовать стабилизатор, куда он входит в виде одного из блоков.

Рис. 4. Внешний вид одного из вариантов ЛАТР

Общий принцип увеличения постоянного напряжения в произвольное число раз

Трансформаторный способ увеличения напряжения не может применяться в сетях постоянного тока.

Поэтому при необходимости решения этой задачи используют более сложные устройства, в основу функционирования которых положена следующая схема: постоянный входной ток используется для питания генератора, с выхода которого снимают переменный сигнал. Переменное напряжение увеличивают тем или иным образом, после чего выпрямляют и сглаживают для получения более высокого постоянного.

Структурная схема такого преобразователя показана на рисунке 5.

Рисунок 5. Обобщенная структурная схема повышающего преобразователя

Отдельные разновидности схем отличаются между собой:

  • формой сигнала, снимаемого с выхода генератора (синусоидальное или близкое к нему, пилообразное, импульсное и т.д.);
  • принципом увеличения генерируемого напряжения (трансформатор, умножитель);
  • типом выпрямления и сглаживания напряжения перед подачей его на выход устройства.

В продаже доступны микроэлектронная элементная база, которая позволяет собирать преобразователи данной разновидности при наличии даже начальных навыков радиомонтажника.

Умножители

Умножители применяют в тех случаях, когда из переменного входного напряжения нужно получить постоянное, которое в кратное количество раз превышает входное.

Существует большое количество схем умножителей. Одна из них показана на рисунке 6.

Рис. 6. Принципиальная схема умножителя

Коэффициент умножения можно нарастить увеличением количества каскадов.

Рис. 7. Еще пример: умножитель в 6 и 8 раз
Рис. 8. Учетверитель напряжения

Общее для таких схем:

  • мостовой принцип реализации для увеличения общего КПД устройства;
  • использование конденсаторов для накапливания заряда;
  • применение диодов как элемента выпрямления.

Техника безопасности

При сборке и использовании повышающих устройств вне зависимости от  их разновидности необходимо соблюдать базовые положения правил техники безопасности. Главные из них:

  • ни при каких условиях нельзя касаться незащищенными частями тела токоведущих элементов схем;
  • запрещается даже кратковременное превышение максимальной нагрузки;
  • устройства в обычном офисном исполнении нельзя эксплуатировать во влажных помещениях;
  • оборудование следует защищать от попадания брызг воды.
ЭТО ИНТЕРЕСНО:  Как выбрать генератор бензиновый

Заключение

  • Приведем несколько областей использования устройств для увеличения напряжения.
  • Для переменного тока наиболее распространено использование повышающих трансформаторов для подключения различной европейской электронной и электротехнической техники к бытовой 110-вольтовой сети в США.
  • Примеры из области постоянного напряжения:
  • мощность широко распространенных USB-зарядников достаточна для питания СД-ленты, но последние требуют для работы напряжения 12 В; для такой выгодно ситуации применение повышающего преобразователя;
  • на 3,3-вольтовых литиевых аккумуляторах можно собрать power bank для мобильных телефонов;
  • регулируемые устройства хорошо востребованы при выполнении настроек автомобильных генераторов.
  1. Автомобильный аккумулятор с подключенным к нему повышающим преобразователем может эффективно питать за городом такие 220-вольтовые устройства как телевизор, магнитофон, дрель.
  2. Устройства для увеличения постоянного и переменного напряжения имеют обширную область применения, серьезно отличаясь друг от друга схемотехнически.
  3. Выбор конкретной реализации зависит от ряда факторов, основные среди которых:
  • соотношение входного и выходного напряжения;
  • мощность питаемой нагрузки
  • уровень жесткости требований электробезопасности.

На практике можно воспользоваться как покупными, так и самодельными устройствами. Большинство самодельных схем доступны для воспроизведения при наличии даже среднего уровня подготовки в области электротехники и схемотехники.

Источник: https://regionvtormet.ru/prochee/printsip-dejstviya-transformatora-dlya-povysheniya-napryazheniya.html

Трансформаторы — определение

Трансформаторы — это устройства для преобразования переменного тока и напряжения. Трансформаторы — это преобразовательные устройства не имеющее подвижных частей.  Трансформаторы не имеет значительных потерь мощности. Современные трансформаторы имеют высокий КПД   свыше 99 %. Трансформатор состоит из нескольких проволочных обмоток, находящихся на магнитопроводе (сердечнике) из ферромагнитного сплава.

Трансформаторы — принцип действия

Принцип действия трансформатора основан на явлении электромагнитной индукции. На первичную обмотку трансформатора, подаётся напряжение от внешнего источника переменного тока.

Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в сердечнике трансформатора.

В результате электромагнитной индукции, переменный магнитный поток в сердечнике трансформатора создаёт в обмотках ЭДС индукции, в том числе и в первичной обмотке. НДС индукции пропорциональна первой производной магнитного потока.

Трансформаторы — передача электроэнергии — использование в электросетях

Потери на нагревание электрических проводов пропорциональны квадрату тока через провод. При передаче электроэнергии на большое расстояние целесообразно использовать высокие напряжения и небольшие силы токов.

Для наиболее выгодной транспортировки электроэнергии и применяют трансформаторы: сначала для повышения напряжения с клемм генераторов электростанций (повышающие трансформаторы), перед транспортировкой электроэнергии, а затем для понижения напряжения в линии электропередач (понижающие трансформаторы) до приемлемого для энергопотребителей уровня.

https://www.youtube.com/watch?v=vBE6csEFePE

По технике безопасности в бытовых электроприборах используются небольшие напряжения (380/220В). В электрической сети три фазы,  поэтому для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трех однофазных трансформаторов соединенные в схему звезды или треугольника.  Трёхфазный трансформатор имеет общий сердечник для трех фаз.

Трансформаторы — охлаждение

В крупных трансформаторах, применяемых в электроэнергетике, выделяется большая тепловая мощность. 1000 МВт электрической мощности дают несколько мегаватт тепла. Поэтому в трансформаторах применяют систему охлаждения: трансформатор помещается в емкость, наполненную трансформаторным маслом. Масло циркулирует под действием конвекции или при помощи насосов между емкостью для масла и радиатором. В некоторых случаях трансформаторное масло дополнительно охлаждают водой.

Применение трансформаторов

Трансформаторы используются в электросетях, при передаче электроэнергии. Трансформаторы используются в блоках питания самых различных электроприборов. 

Трансформатор  был  изобретен   английским физиком Майклом Фарадеем в 1831 г. Трансформатор является одним из главных компонентов современных электроэнергетических систем.

Газотурбинные установки — газопоршневые электростанции — микротурбины

Источник: https://manbw.ru/analitycs/transformers.html

Назначение и принцип действия измерительных трансформаторов

Назначение и принцип действия измерительных трансформаторов

На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.

Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле. 

Для чего нужны измерительные трансформаторы тока и напряжения 

Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения. 

Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:

  • снижают габариты и вес приборов измерения;
  • повышают уровень безопасного обслуживания оборудования;
  • предупреждают последствия от ошибочных действий электротехнического персонала;
  • расширяют пределы измерения переменного тока.

Назначение трансформаторов напряжения

Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.

Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А. 

Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ

Рассмотрим какие бывают трансформаторы напряжения.

Классификация трансформаторов напряжения

Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:

  • однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
  • незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
  • каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
  • емкостный ТН с делителем;
  • двухобмоточный ТН с одной обмоткой вторичного напряжения;
  • трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.

Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО

Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью

Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.  

Устройство трансформаторов напряжения

Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов. 

Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой. 

Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.

Выводы первичной обмотки размещаются вверху корпуса трансформатора.

С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.

Измерительные трансформаторы напряжения, условия безопасной эксплуатации

Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.

Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.

Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.

Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.

Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети. 

Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения

Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители

Назначение и принцип действия трансформаторов тока

Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением. 

Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.  

Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую. 

С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.

О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит»  Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.

Классификация трансформаторов тока

Типы измерительных трансформаторов тока подразделяют на следующие классы:

  • по функциональности: на измерительные и защитные;
  • по току: постоянного и переменного тока;
  • по коэффициенту трансформации: одно и многодиапазонные;
  • по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;
  • по напряжению: низкого и среднего;
  • по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.

Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20 

Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид

Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник. 

Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника. 

При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.

Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.

Трансформатор постоянного тока

Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока. 

Устройство трансформаторов тока

Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками. 

Эксплуатационные условия для трансформаторов тока

Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора. 

Для безопасной эксплуатации

  1. Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить. 

  2. Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.

  3. Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.

Обслуживание измерительных трансформаторов 

Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс. 

Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии. 

После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции.  Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.

Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.

Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.

Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144. 

Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.

При обслуживании трансформатора измерения проверяют надежность контактного соединения.

Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.

Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.

Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.

Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.

При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А. 

Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ. 

Важные примечания 

В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться.

Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.

Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.  

Источник: https://www.kesch.ru/info/articles/naznachenie-i-printsip-deystviya-izmeritelnykh-transformatorov/

IT News

Дата Категория: Физика

Используемая человеком электрическая энергия в основном вырабатывается на крупных электростанциях. Эти предприятия передают электричество на районные подстанции, которые затем распределяют его по потребителям.

Так как линии электропередач обладают электрическим сопротивлением, часть энергии электрического тока теряется, превращаясь в теплоту. Постоянный ток (DC) течет в одном направлении; переменный ток (АС) периодически изменяет свое направление.

Первоначально для электроснабжения применялся только постоянный ток. По ряду причин передача и преобразование постоянного тока связаны со значительными трудностями, поэтому по соображениям безопасности электростанции передавали его под низким напряжением.

Однако к тому времени, когда постоянный ток достигал потребителей, сопротивление съедало 45 процентов его энергии.

Выход был найден в передаче переменного тока высокого напряжения, которое может быть легко изменено при помощи трансформатора (рисунок внизу).

Так как высоковольтным линиям требуется меньший ток для передачи одного и того же количества энергии, ее потери на преодоление сопротивления стали намного меньшими.

Когда переменный ток покидает электростанцию, повышающие трансформаторы увеличивают его напряжение с 22 000 до 765 000 вольт, а перед поступлением в дома другие трансформаторы, понижающие, уменьшают его до ПО или 220 вольт.

Принцип действия трансформатора

Трансформаторы увеличивают или уменьшают напряжение переменного тока. Преобразуемый переменный ток проходит по первичной обмотке, охватывающей стальной сердечник (рисунок сверху). Периодически изменяющийся ток создает в сердечнике переменное магнитное поле. При перемещении во вторичную обмотку это магнитное поле генерирует в ней переменный ток. Если вторичная обмотка имеет больше витков, чем первичная, выходное напряжение будет выше, чем входное.

Потери энергии при протекании постоянного тока

Электрическая мощность (Р) вычисляется путем умножения силы тока (I) на напряжение (V), т.е. Р = I х V. Если напряжение возрастает, сила тока, необходимая для обеспечения заданной мощности, уменьшается. Низковольтная мощность постоянного тока требует большей силы тока, чем высоковольтная мощность переменного, чтобы передать одно и то же количество электроэнергии.

Переменный ток легко трансформируется

В отличие от постоянного, переменный ток периодически изменяет свое направление. Если переменный ток проходит по первичной обмотке трансформатора (рисунок слева), образующееся переменное магнитное поле индуцирует ток во вторичной обмотке. При протекании по первичной обмотке постоянного тока (рисунок справа), во вторичной обмотке ток не возникает.

Источник: http://information-technology.ru/sci-pop-articles/23-physics/235-kak-rabotaet-transformator

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]