Что можно сделать из транзистора

Индукционный нагреватель 12В на транзисторе IRF3205

что можно сделать из транзистора

В этой статье вы узнаете как сделать индукционный нагреватель своими руками на транзисторе IRF3205. Этот индукционный нагреватель питается от напряжения 12 вольт, имеет в своей конструкции минимум деталей, поэтому прост в изготовлении.

С помощью данного индукционного нагревателя вы легко сможете раскалить небольшой предмет с считанные секунды. Найти применение индукционному нагревателю не составит труда, с его помощью можно закалять металл (например кончик отвёртки) или наоборот накалить, что бы согнуть что-то, в общем область применения широка )).

Схема индукционного нагревателя проста и понятна, а главное что она реально работает!

Изготовление индукционного нагревателя

Ниже представлена схема индукционного нагревателя. На нашем сайте уже есть более профессиональная схема индукционного нагреватель, посмотреть её можно тут «читать статью«:

Изготавливаем катушку

Для изготовления индукционной катушки вам понадобится кусок трубки или другой подобный предмет. Берем провод сечением 1 мм и делаем 10 витков, после пяти витков сделайте отвод. Теперь зачистите концы провода и желательно их залудить, чтобы был хороший контакт. Зажмите выводы изготовленной катушки в колодке винтовых зажимов. 

Разбираемся с мосфетом

Если вы используете транзистор неизвестной маркировки или не знаете схемы подключения, вам понадобится мультиметр, чтобы определить нужные контакты. Стоком у IRF3205 является центральный контакт. Левый от него – затвор, а правый исток.

Перемычка

Начинаем собирать схему индукционного нагревателя. Чтобы вы не запутались, все детально разбито по шагам. Сперва необходимо установить транзисторы на радиатор, так как они могут сильно греться. Далее возьмите плоскогубцы и выгните центральные ножки вверх для удобства подключения. Берем кусок медного провода и припаиваем к правым ножкам на каждом транзисторе.

Резисторы 470 Ом

Берем два резистора на 470 Ом и соединяем два конца, их нужно хорошенько припаять, чтобы был хороший контакт.

Далее противоположные концы припаиваются к крайним левым ножкам транзисторов на обеих конструкциях. 

Резисторы 10 кОм

Теперь устанавливаем резисторы на 10 кОм, они устанавливаются в точно таком же порядке, как резисторы и на 470 Ом

Устанавливаем диоды

В схеме находится два диода, для этих целей подойдут 1N4007. Диоды припаиваются к двум крайним левым ножкам. Припаивать нужно «плюсовыми» контактами диодов. 

Далее, к диоду слева припаиваем провод, другой его конец припаивается к среднему контакту на транзисторе, расположенному справа.
А что касается правого диода, то его другой контакт нужно припаять к центральной ноге левого транзистора.

Оставшиеся концы резисторов 10 кОм

Противоположные концы резисторов на 10 кОм, нужно припаять к перемычке, установленной на первом шаге, то есть, к правому крайнему контакту транзистора, находящегося слева. 

Устанавливаем дроссель и конденсатор

Такой дроссель вы без труда сможете найти в старом блоке питания от компьютера. Один контакт подключаем к центральному контакту на катушке индуктивности. Другой контакт подключается к оставшимся концам резисторов на 470 Ом. 
Конденсатор на 400В нужно припаять к центральным ножкам транзисторов.

У катушки останется еще два свободных вывода. Берем куски проводов и припаиваем их к центральным ножкам транзисторов. Ну а другие концы провода подключаем через винтовой зажим к индуктивной катушке. 

Все, что вам останется, это подключить провода питания. Один припаиваем к дросселю, а другой к самой левой ножке транзистора, если смотреть на транзисторы задом наперед. 

Испытание индукционного нагревателя

Индукционный нагреватель готов, осталось лишь подать питание и проверить его в работе. Автор демонстрирует работу устройства, разогревая лезвие от канцелярского ножа. Сначала включите устройство на непродолжительное время и убедитесь в том, что транзисторы и другие элементы не нагреваются. Автор также рекомендует вместо одного конденсатора, использовать два, соединенных последовательно. 

Все детали можно купить на АлиЭкспресс:

 

Источник: https://kavmaster.ru/indukcionnyj-nagrevatel-12v-na-tranzistore-irf3205/

Как открыть полевой транзистор

что можно сделать из транзистора

В этой статье мы рассмотрим работу МОП-транзистора.

Виды МОП-транзисторов

Здесь работает правило два по два (2х2). В каждом семействе по два вида:

Из всех этих 4 разновидностей, наверное не ошибусь, если скажу, что самый употребимый транзистор считается именно N-канальный с индуцированным каналом:

Именно с него мы и начнем наш путь в мир современной электроники.

Режим отсечки

Давайте познакомимся с нашим героем. У нас в гостях N-канальный МОП-транзистор с индуцированным каналом:

Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.

Что будем делать с этим куском кремния? Раз уж он есть, то давайте заставим его пахать. Для начала соберем вот такую простенькую схемку ключа:

Напряжение на крокодилы идет с блока питания Bat, но лампочка не горит. Следовательно, в данный момент никакого движения электрического тока через канал Стока и Истока нет.

Это аналогично этому рисунку (только тут без лампочки):

Ток не бежит, потому что у нас там эквивалентный диод VD2, который препятствует протеканию тока.

Об этом я еще говорил в прошлой статье.

На амперметре блока питания также по нулям, что говорит о том, что тока вообще нет никакого.

Почему Затвор у нас висит без дела? Не порядок. Надо его тоже задействовать. Чем у нас занимается Затвор в полевых транзисторах? Управляет потоком основных носителей. А что такое поток заряженных частиц, которые движутся в одном направлении? Да, все верно – это электрический ток ;-).

В опыте выше на Затворе сейчас почти ноль. Почему почти? Да потому что он все равно пытается ловить какие-то наводки, но это все равно не сказывается на работе схемы. В реальных схемах Затвор никогда нельзя оставлять без дела болтаться в воздухе. Он всегда должен быть соединен с чем-нибудь.

Так, что нам теперь надо сделать, чтобы начать управлять шириной канала Сток-Исток, а следовательно и менять сопротивление этого канала? Как мы помним из прошлой статьи, достаточно подать положительное напряжение относительно Истока на Затвор;-) Для этого возьмем второй блок питания и будем с помощью него менять напряжение на Затворе нашего транзистора. Сделаем все по такой схеме:

Вот так выглядит мой блок питания, который в схеме называется Bat2. С помощью него мы будем регулировать напряжение вручную от нуля и больше.

Так выглядит вся схема в реале, которую я нарисовал выше. Так как вольтметр на блоке питания стрелочный и неточный, поэтому напряжение будем мерять с помощью мультиметра, который я цепанул параллельно щупам Bat2:

Хоть я и сделал крутилку на ноль на Bat2, все равно он выдает каких-то 22 миллиВольта. На этот опыт эти доли милливольта никак не повлияют.

Устанавливаю 1 Вольт на Bat2:

Лампочка не горит, сила тока в цепи ноль Ампер:

Так ладно. Добавляем еще 1 Вольт, итого получаем 2 Вольта:

Лампочка не горит, на амперметре опять по нулям:

Ну ладно. Раз такое дело добавляем еще 1 Вольт. Итого 3 Вольта:

Да опять лампочка не зажглась!

Активный режим работы транзистора

И вот уже при каких-то 3,5 Вольт

Через лампочку начинает течь ток силой около 10 мА, но лампочка, естественно, пока что не горит. Ток слабоват.

Во! Запомните этот момент! При этом напряжении транзистор начинает ОТКРЫВАТЬСЯ. Это значение у разных видов транзисторов разное. В основном от 0,5 и до 5 вольт. В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз.

пороговое напряжение на Затворе для включения транзистора. В даташите этот параметр указывается как VGS(th), а в некоторых даташитах как VGS(to) .

В даташите на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions):

Как вы видите, диапазон открытия этого транзистора может быть от 2 Вольт и до 4 Вольт. Но опять же, это при токе Стока от 250 мкА, как указано в даташите, а я замерял от 10 мА.

Здесь также в условиях говорится, что напряжение между Истоком и Затвором должно быть такое же, как и напряжение между Стоком и Истоком. Так как мы не пытались замерить точное напряжение 5-ым знаком после запятой, для нас эти условия не имеют значения.

Как вы помните, у биполярных транзисторов транзистор начинал открываться только при напряжении на базе-эмиттере более 0,6-0,7 Вольт для кремниевых видов.

Неужели мы сегодня так и не зажжем лампочку? Зажжем, да еще как! Для того, чтобы чуток накалить нить лампы, мы просто добавляем напряжение на Затвор, покрутив крутилку блока питания Bat2.

Вуа-ля! Нить лампы стала слабенько гореть.

На амперметре видим значение около 1 Ампера:

При этом стал очень сильно греться сам транзистор. Почему? Давайте разберемся

Почему греется транзистор

Итак, раз мы с помощью Затвора стали управлять сопротивлением канала Сток-Исток, то грубо говоря, это у нас получился резистор R. Это и есть сопротивление канала Сток-Исток. При напряжении на Затворе в 0 Вольт, сопротивление этого резистора достигает очень большого значения, а следовательно, сила тока, протекающего через него, будет вообще микроАмперы. Закон Ома.

Так как резистор R включен последовательно в цепь, то вспоминаем правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, а на меньшем сопротивлении падает меньшее напряжение. Также не забываем, что нить лампы тоже обладает сопротивлением, поэтому рисунок у нас примет вот такой вид:

В первом случае у нас на Затвор ничего не подавалось и транзистор был в закрытом состоянии. Как только мы стали подавать напругу на Затвор, то у нас сопротивление канала стало меняться, а следовательно и падение напряжение на резисторе R и проходящий через него ток.

Получился типичный делитель напряжения. В этом случае на резисторе R падает какое-то напряжение и через него течет приличная сила тока. В нашем случае почти 1 Ампер.

Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке помноженной на силу тока через Сток-Исток или просто на ток Стока или буквами:

где R – это сопротивление канала Сток-Исток

IC – ток, проходящий через канал (ток Стока)

А что такое мощность, рассеиваемая на радиоэлементе? Это и есть тепло. Поэтому в нашем случае транзистор нагрелся очень сильно. Опыт пришлось приостановить.

Значит, самые щадящие режимы для МОП-транзистора – это когда канал полностью открыт. В этом случае у нас сопротивление канала достигает сотые доли Ома. Либо когда канал полностью закрыт.

В этом случае сила тока, проходящая через канал, будет достигать тока утечки между Стоком и Истоком. А это микроАмперы. В этих двух случаях транзистор будет холодным, как айсберг в океане.

Поэтому такой транзистор предназначен в основном для работы в ключевом режиме, где как раз и используются эти два режима.

Режим насыщения МОП-транзистора

Для того, чтобы полностью открыть транзистор, достаточно будет просто подать чуть больше напряжения для полного открытия канала. В моем случае это составило 4,2 Вольта и выше:

Как вы видите, лампочка горит в полный накал. Сопротивление канала в этом случае минимальное.

Лампа ест свои честные 1,69 Ампер:

Умножайте силу тока на напряжение и получаем потребляемую мощность лампочки. Итого P=IU=12 Вх1,69 А=20,28 Ватт

А на лампочке написано 21 Ватт:

Ладно, спишем на погрешность и на то, что лампа еще не раскочегарилась. Транзистор в этом случае остается холодным и ни капельки не греется.

Раз уж транзистор полностью открылся, то можно ли еще подавать напряжение на Затвор? Можно. Но при этом лампочка уже ярче светить не будет. Оно и понятно, так как лампочка итак горит уже на всю мощь, а сопротивление канала достигло уже почти нуля. Какое максимальное напряжение можно подать на Затвор? Смотрим даташит и находим что-то типа максимальных параметров (Absolute Maximum Ratings)

Находим параметр VGS , что обозначает напряжение между Затвором и Истоком. В нашем случае это напряжение на Bat2. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать – это +-20 Вольт. Напряжение более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, в нашем случае это оксид кремния, и транзистору придет жопа. Значит, мы можем спокойно подавать от 0 и до 20 Вольт на Затвор, не боясь что транзистор уйдет на тот свет.

Также для нас могут представлять интерес такие параметры, как максимальная сила тока, которая может течь через канал Сток-Исток. В даташите такой параметр обозначается как ID (ток Стока).

Как мы видим, транзистор в легкую может протащить через себя 49 Ампер.

Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуе кристалла 100 градусов, что чаще всего происходит на практике.

Так как транзистор с индуцированным каналом в основном используется в импульсном и ключевом режиме, поэтому нам важен такой параметр как сопротивление канала полностью открытого транзистора. В даташите он указывается как RDS(on)

Как мы видим всего 17,5 миллиОм. Или 0,017 Ом. Тысячные доли Ома! Давайте предположим, что мы пропускаем через открытый транзистор максимальный ток в 49 Ампер. Какая мощность будет рассеиваться на транзисторе в этом случае? Формула мощности через силу тока и сопротивление выглядит вот так: P=I 2 R= 49 2 x 0,017 = 41 Ватт.

А максимальная мощность, которую может рассеять транзистор – это 94 Ватта.

Основные параметры полевых МОП-транзисторов указываются в основном сразу на первой страничке даташита в отдельной рамке.

Также различные зависимости одних параметров от других можно увидеть в даташите. Очень информативно и наглядно.

Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:

Также есть интересная зависимость сопротивления канала полностью открытого транзистора от температуры кристалла:

Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.

Интересное свойство МОП-транзистора

А давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1:

Для наглядности вместо переключателя я использовал проводок от макетной платы.

В данном случае лампочка не горит. А с чего ей гореть то? На Затворе то у нас голимый ноль, поэтому канал закрыт.

На фото ниже показан этот случай.

Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь:

Даже не надо ни о чем заморачиваться! Тупо подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет копейки.

Лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал равен почти как и на Истоке, то есть нулю, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой стол.

Источник: https://hd01.ru/info/kak-otkryt-polevoj-tranzistor/

Электронные схемы, для самостоятельной сборки

что можно сделать из транзистора

Блок питания — это очень важная часть, любого электронного устройства. Для питания полупроводниковых схем необходимо преобразовать переменное напряжение питающей сети — понизить(в большенстве случаев), выпрямить и сгладить — сделав постоянным, с минимумом сетевых пульсаций. Стабилизировать — минимизирововав воздействия скачков напряжения питающей сети, и тока нагрузки.

Простейший нестабилизированный блок питания.

В некоторых случаях, когда ток нагрузки постоянен(или невелик) можно обойтись блоком питания, без стабилизации выходного напряжения.Подобное устройство состоит из понижающего сетевого трансформатора, диодного моста и сглаживающего фильтра. Вот так, может выглядеть его схема.

В качестве сетевого понижающего трансформатора можно использовать любой, подходящий по мощности и напряжению. Диодный мост в виде отдельной сборки, выбирается с заявленным рабочим током в два раза больше расчетного. Если диодный мост составлен из отдельных диодов — рабочий ток равен расчетному. Необходимо учесть, что напряжение после сглаживающего фильтра(электролит.

конденсатор С1) будет в 1,4 раз превышать напряжение на выходе диодного моста. Электролитический конденсатор подбирается с номинальным напряжением — в два раза выше выходного напряжения блока. Емкость конденсатора зависит от силы потребляемого тока и напряжения питания.

Ее можно подобрать экспериментальным путем — подставляя дополнительные конденсаторы, добиваясь снижения пульсации до приемлемых пределов.

ЭТО ИНТЕРЕСНО:  Что такое номинал резистора

Стабилизированный блок питания.

Схему блока питания можно усовершенствовать, добавив элементы стабилизации.Простая схема стабилизации может выглядеть вот так:

Выходное напряжение трансформатора, должно быть выше номинального напряжения стабилизации в 1,5 — 2 раза. Номинал сопротивления резистора подбирается таким образом, что бы ток протекающий через стабилитрон, не превышал номинально допустимый. Номинал тока резистора, так же, должен быть соответствующим.

Напряжение стабилизации стабилитрона — расчетное напряжение блока питания, минус падение напряжения на переходе транзистора. Номинальный ток стабилизации стабилитрона — расчетный максимальный ток блока питания, деленный на коэффициент усиления транзистора. Параллельно стабилитрону подключается емкость 100нФ, для шунтирования помех.

Транзистор — мощный, с радиатором, подходящий по току и напряжению.

Другой вариант подобного блока питания — с использованием интегрального стабилизатора(микросхемы) серии КРЕ(отечественная) или импортного аналога -IC4 78.

Конденсаторы С2 и С3 — номиналом 100нФ, для шунтирования помех.

Приемники.

Описание позволяющее собрать простейший детекторный приемник, способный принимать радиостанции средне и длинноволнового диапазонов с помощью наружней антенны и заземления.

Схема детекторного приемника с усилительным каскадом на составном транзисторе, дающего возможность громкоговорящего приема местных средне и длинноволновых радиостанций.

Схема позволяющая собрать сверхрегенеративный приемник позволяющий прослушивать местные радиостанции УКВ диапазона используя высокоомные телефоны(наушники).

Простая схема коротковолнового регенеративного приемника, из широкораспостраненных радиодеталей.

Простейшее зарядное устройство с плавной регулировкой тока, на германиевых транзисторах П217 — П210.

Три схемы устройств для поиска скрытых металлических предметов: Металлоискатель — приставка для поиска небольших металлических немагнитных предметов(монеты, кольца и др.

) Малогабаритный металлодетектор(на микросхемах) для обнаружения скрытых металлических предметов в стенах помещения(область применения — строительство и ремонт).

Металлоискатель для поиска металлов с слабо выраженными ферромагнитными свойствоми( медь, олово,серебро) — схема на транзисторах с применением кварцевого резонатора.

Схемы усилителей.

К сожалению, с 2014 года в России полностью было прекращено вещание на длинных волнах(а на средних с 2013). Можно было бы считать, что материалы изложенные ниже, потеряли актуальность — детекторные приемники и обычные приемники прямого усиления, по причиненевысокой селективности могут работать эффективно только в этих диапазонах. Но все же — выход из этого положения существует!

Простейший детекторный приемник.

Детекторный приемник — самое простое устройство, позволяющее произвести прием радиовещательных радиостанций, использующих амплитудную модуляцию. Классический детекторный приемник рассчитанный на прием в диапазоне длинных и средних волн состоит из колебательного контура, амплитудного детектора, собранного на одном диоде и высокоомных головных телефонов (наушников, говоря по-просту). Рисунок иллюстрирующий принцип работы амплитудного детектора

На рисунке диод «обрезает» отрицательную составляющую радиосигнала. Затем, фильтрующая емкость производит выделение огибающей выпрямленного сигнала высокой частоты — получается сигнал низкой частоты. Вот так, может выглядеть схема реального детектороного приемника.

В качестве колебательного контура можно использовать конденсатор переменной емкости(C1), от любого неисправного промышленного приемника и магнитную антенну от него же. Причем нужно использовать только одну секцию конденсатора(из двух имеющихся).

На ферритовый стержень магнитной антенны наматывается 255 витков(катушка L1), для приема в диапазоне длинных волн или 80 витков, для приема в диапазоне средних.Для этого используется тонкий лакированный провод толщиной от 0,1 до 0,25 мм.В качестве детектора используются диоды серии Д9.

Фильтрующая емкость С2 — 1000 пкФ. Наушники — старинные головные телефоны ТОН-2.

У такого приемника нет усилителя,поэтому радиосигнал на его входе должен быть достаточно силен. Отсюда — обязательно подключение протяженной(не менее 10 метров) внешней антенны и заземления.

Автор, в качестве внешней антены использовал нулевой провод от электрической розетки(через конденсатор емкостью 100 пикофарад), а заземлением служила батарея водяного отопления. Это конечно, очень опасно, хотя и весьма эффективно.

Если перепутать нулевой провод с фазным — приемник вполне может взорваться, в той или иной степени, не говоря об опасности поражения электрическим током.Внешняя антенна в этом отношении более безопасна, если предусмотреть воможность ее быстрого отключения в случае начала грозы.

Сигнал на выходе простейшего детекторного приемника очень слаб, для комфортного прослушивания радиопрограмм необходимо его усилить. Это можно сделать при помощи простого усилителя на двух транзисторах.

В схеме использованы два маломощных транзистора разной проводимости. Автор использовал в качестве VT1 транзистор МП41 а в качестве VT2 — КТ315. Динамическая головка — любая малогабаритная. При наличии заземления и хорошей антенны, громкость может быть достаточной, для прослушивания радиопрограмм в комнате.

Схема детекторного приемника с усилителем на трех транзисторах работает более эффективно, за счет большего усиления. В схеме использовано три германиевых транзистора. В качестве VT1 VT2 можно использовать транзисторы МП25, МП39, МП 40, МП41,МП42.

VT3 — транзисторы П213, П214, П217(лучше установить на небольшой радиатор). Ток покоя — около 20 — 30 мА устанавливается с помощью переменного резистора R1. Если не ограничить ток покоя, выходной транзистор может перегреваться, а динамическая головка — сгореть.

Динамическая головка любая, мощностью от 1 Вт.

Данные катушки L1 и конденсаторов С1, С2 те же, что и в предидущих схемах, для повышения избирательности введена катушка связи L2.
L2 содержит 10-20 витков провода того же типа, что и L1 и соответственно, намотана рядышком с ней на ферритовом стержне.

страницу

Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».

Источник: http://elektrikaetoprosto.ru/shem.html

Cхемы на КТ315 | Простые схемы на популярном транзисторе для начинающих

Транзистор КТ315 очень популярен у начинающих радиолюбителей старой закалки. Этот биполярный транзистор был разработан в 1967 году. Причина его популярности — массовое использование в бытовой радиоаппаратуре. Он использовался и в телевизорах, и в приемниках, генераторах звука. Его достаточно просто опознать среди тысячи других из-за своего необычного корпуса.

Мультивибратор на КТ315

Отличная схема для тех, кто только начинает пользоваться паяльником и уже хочет собрать свое первое устройство.

Перейти

Транзисторный предохранитель

В паре с транзистором КТ815 поможет защитить другие собранные устройства от непредвиденной ситуации или короткого замыкания.

Перейти

Простой усилитель звука на транзисторах КТ315

Усилитель на два канала с печатной платой. Поможет разобраться в азах сборки усилителей.

Перейти

Генератор на КТ315

В паре со своим «братом» КТ361 можно собрать простенький генератор звука.

Перейти

Имитатор звука

Еще один генератор звука на легендарном КТ315.

Перейти

Цветомузыка на транзисторах

Цветомузыка на два светодиода в паре с транзисторами.

Перейти

Схема метронома

Интересная схема для начинающих.

Перейти

Датчик температуры

Используя полупроводниковые свойства, можно измерить температуру окружающей среды.

Перейти

Распиновка КТ315

Полный аналог транзистора — BFP719.

Правила сборки схем

Для начала, нужно выбрать схему. Выбирайте по сложности и своему опыту. Далее, нужно составить список деталей, прочитать схему. Покупать детали лучше в специализированных магазинах, чем на общих площадках. Перед сборкой схемы обязательно нужно проверить каждую деталь на исправность, дабы избежать лишних ошибок.

Самая простая проверка — с помощью мультиметра в режиме «прозвонка». Ни одна деталь из схем, представленных выше, не должна «звониться» накоротко.Схемы можно собрать как навесным монтажом, так и изготовить плату самостоятельно. А золотая середина — монтажная плата. Они универсальны, и позволяют собрать большинство DIP схем без особого труда.

Во время сборки схемы лучше всего начинать пайку с мелких компонентов. При пайке не допускать перегрева, максимум пару секунд у контактов, затем нужно оценить результат пайки и действовать по ситуации. Особенно к перегреву чувствительны полупроводники. Так как транзисторы КТ315 имеют пластмассовый корпус, то им некуда отдавать тепло, и нужно максимально аккуратно их паять.

Еще одна загвоздка — это их широкие и тонкие выводы, которые не терпят частых сгибаний и разгибаний.

После сборки необходимо почистить плату, внимательно посмотреть все контакты на предмет холодной пайки и нежелательных перемычек.

Почему не работает схема

Все схемы рабочие. Если устройство не работает, есть три основные причины:

  • Перегрев деталей;
  • Не правильная сборка схемы;
  • Плохая пайка.

Нужно проверить каждый шаг и каждый этап сборки.

Источник: https://tyt-sxemi.ru/skhemy-kt315/

Как проверить полевой МОП (Mosfet)

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

Источник: http://www.sxemotehnika.ru/zhurnal/kak-proverit-polevoi-mop-mosfet-tranzistor-tcifrovym-multimetrom.html

Транзистор

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

На этом занятии Школы начинающего радиолюбителя мы продолжим изучение полупроводников. На прошлом занятии мы рассматривали диоды, а на этом занятии рассмотрим  более сложный полупроводниковый элемент – транзисторы.

Транзистор является более сложной полупроводниковой структурой, чем диод. Он состоит из трех слоев кремния (бывают еще и германиевые транзисторы) с разной проводимостью. Это могут быть структуры типа n-p-n или p-n-p. Функционирование транзисторов, также как и диодов, основывается на свойствах p-n переходов

Центральный, или средний слой, называют базой (Б), а два других соответственно – эмиттер (Э) и коллектор (К).

 Следует отметить, что существенной разницы между двумя типами транзисторов нет, и многие схемы могут быть собраны с тем или другим типом, при соблюдении соответствующей полярности источника питания.

На рисунке ниже приведено схемное изображение транзисторов, транзистор p-n-p отличается от транзистора n-p-n направлением стрелки эмиттера:

Выделяют два основных типа транзисторов: биполярные и униполярные, которые различаются по конструктивным особенностям. В рамках каждого типа существует много разновидностей. Главное различие этих двух типов транзисторов заключается в том, что управление процессами, происходящими в ходе работы прибора, в биполярном транзисторе осуществляется входным током, а в униполярном транзисторе – входным напряжением.

Биполярные транзисторы, как уже говорилось выше, представляют собой слоенный пирог из трех слоев. В упрощенном виде транзистор можно представить как два встречно включенных диодов:

(при этом, следует отметить, что переход база – эмиттер представляет собой обычный стабилитрон, напряжение стабилизации которого 710 вольт). Исправность транзистора можно проверить также как и исправность диода, обычным омметром, измеряя сопротивление между его выводами. Переходы, аналогичные имеющимся в диоде, существуют в транзисторе между базой и коллектором, а также между базой и эмиттером.

На практике такой способ для проверки транзисторов используется очень часто. Если омметр подключить между коллекторным и эмиттерным выводами, прибор покажет разрыв цепи (при исправном транзисторе), что естественно так как диоды включены встречно. А это означает, что при любой полярности приложенного напряжения один из диодов включен в прямом направлении, а второй в обратном, поэтому ток проходить не будет.

Объединение двух пар переходов приводит к проявлению чрезвычайно интересного свойства, именуемого транзисторным эффектом. Если к транзистору между коллектором и эмиттером приложить напряжение, тока практически не будет (о чем и говорилось чуть выше).

Если же произвести подключение в соответствии со схемой (как на рисунке ниже), где на базу через ограничивающее сопротивление (чтобы не повредить транзистор) подается напряжение, то через коллектор будет проходить ток более сильный чем ток базы.

При повышении тока базы ток коллектора тоже будет увеличиваться.

С помощью измерительного прибора можно определить соотношение токов базы, коллектора и эмиттера. Это можно проверить простым способом. Если сохранить напряжение питания, к примеру на уровне 4,5 В, изменив значение сопротивления в цепи базы с R до R/2, ток базы удвоится, пропорционально увеличится и ток коллектора, к примеру:

U=4,5 В; сопротивление =R U=4,5 В; сопротивление =R/2
Iб=1 мА Iб=2 мА
Iэ=100 мА Iэ=200 мА
Iк=99 мА Iк=198 мА

Следовательно, при любом напряжение на сопротивление R, ток коллектора будет в 99 раз больше тока базы, то есть транзистор имеет коэффициент усиления по току равный 99. Другими словами, транзистор усиливает ток базы в 99 раз. Этот коэффициент обозначают буквой ?. Коэффициент усиления равен отношению тока коллектора к току базы:

ЭТО ИНТЕРЕСНО:  Как измерить емкость конденсатора мультиметром

? = Iк/Iб

На базу транзистора можно подать и переменное напряжение. Но, необходимо, чтобы транзистор работал в линейном режиме. Для нормального функционирования в линейном режиме транзистору следует подать на базу постоянное напряжение смещения и подвести переменное напряжение, которое он будет усиливать. Таким образом транзисторы усиливают слабые напряжения, поступающие к примеру с микрофона, до уровня, который способен привести в действие громкоговоритель.

Если коэффициент усиления не достаточен, можно использовать несколько транзисторов или их последовательных каскадов. Чтобы при соединении каскадов не нарушать режимов работы каждого из них по постоянному току ( при которых обеспечивается линейность), используют разделительные конденсаторы. Биполярные транзисторы обладают электрическими характеристиками, обеспечивающими им определенные преимущества по сравнению с другими усилительными компонентами.

Как мы уже знаем, существуют еще (кроме биполярных) и униполярные транзисторы. Коротко рассмотрим два их них – полевые и однопереходные транзисторы. Как и биполярные они бывают двух типов и имеют по три вывода:

Электродами полевых транзисторов являются: затвор – З, сток – С, соответствующий коллектору и исток – И, отождествляемый с эмиттером. Полевые транзисторы с n- и p- каналом различаются по направлению стрелки затвора. Однопереходные транзисторы, которые иногда называют двухбазовыми диодами, в основном используются в схемах генераторов импульсных периодических сигналов.

Имеется три фундаментальных схемы включения транзисторов в усилительном каскаде:

? с общей базой (в)

Биполярный транзистор, включенный по схеме с общим эмиттером, в зависимости от выходного сопротивления источника питания R1 и сопротивления нагрузки Rн усиливает входной сигнал и по напряжению, и по току. Коэффициент усиления биполярного транзистора обозначается как h21э (читается: аш-два-один-э, где э – схема с общим эмиттером), и у каждого транзистора он разный.

Величина коэффициента h21э (его полное название – статический коэффициент передачи тока базы h21э) зависит только от толщины базы транзистора (ее изменить нельзя) и от напряжения между коллектором и эмиттером, поэтому при небольшом напряжении (менее 20 В) его коэффициент передачи тока при любом токе коллектора практически неизменен и незначительно увеличивается при увеличении напряжения на коллекторе.

Коэффициент усиления по току – Кус.i и коэффициент усиления по напряжению – Кус.u биполярного транзистора, включенного по схеме с общим эмиттером, зависит от отношения сопротивления нагрузки (на схеме обозначено как Rн) и источника сигнала (на схеме обозначено как R1).

Если сопротивление источника сигнала в h21э раза меньше сопротивления нагрузки, то коэффициент усиления по напряжению чуть меньше единицы (0,950,99), а коэффициент усиления по току равен h21э.

Когда сопротивление источника сигнала более чем в h21э раза меньше сопротивления нагрузки, то коэффициент усиления по току остается неизменным (равным h21э), а коэффициент усиления по напряжению уменьшается.

Если же, наоборот, входное сопротивление уменьшить, то коэффициент усиления по напряжению становится больше единицы, а коэффициент усиления по току, при ограничении протекающего через переход база-эмиттер транзистора тока, не изменяется. Схема с общим эмиттером – единственная схема включения биполярного транзистора, которая требует ограничения входного (управляющего) тока.

Можно сделать несколько выводов: – базовый ток транзистора нужно ограничивать, иначе сгорит или транзистор, или управляющая им схема; – с помощью транзистора, включенного по схеме ОЭ, очень легко управлять высоковольтной нагрузкой низковольтным источником сигнала. Через базовый, а следовательно и коллекторный переходы протекает значительный ток при напряжении база-эмиттер всего 0,81,5 В. Если амплитуда (напряжение) больше этого значения – нужно поставить между базой транзистора и выходом управляющей схемы токоограничивающий резистор (R1). Рассчитать его сопротивление можно по формулам:

Ir1=Irн/h21э            R1=Uупр/Ir1    где:

Irн – ток через нагрузку, А; Uупр – напряжение источника сигнала, В; R1 – сопротивление резистора, Ом.

Еще одна особенность схемы с ОЭ – падение напряжения на переходе коллектор-эмиттер транзистора можно практически уменьшить до нуля. Но для этого надо значительно увеличивать базовый ток, что не очень выгодно. Поэтому такой режим работы транзисторов используют только в импульсных, цифровых схемах.

Транзистор, работающий в схеме усилителя аналогового сигнала, должен обеспечивать примерно одинаковое усиление сигналов с разной амплитудой относительно некоторого “среднего” напряжения. Для этого его нужно немножко “приоткрыть”, постаравшись не “переборщить”. Как видно из рисунка ниже (левый):

ток коллектора и падение напряжения на транзисторе при плавном увеличении тока базы вначале изменяются почти линейно, и лишь потом, с наступлением насыщения транзистора, прижимаются к осям графика. Нас интересуют только прямые части линий (до насыщения) – очевидно, что они символизируют линейное усиление сигнала, то есть, при изменении управляющего тока в несколько раз во столько же раз изменится и ток коллектора (напряжение в нагрузке).

Форма аналогового сигнала показана на рисунке выше (справа). Как видно из графика, амплитуда сигнала постоянно пульсирует относительно некоего среднего напряжения Uср, причем она может как увеличиваться, так и уменьшаться. Но биполярный транзистор реагирует только на увеличение входного напряжения (вернее тока).

Вывод: нужно сделать так, чтобы транзистор даже при минимальной амплитуде входного сигнала был немножко приоткрыт. При средней амплитуде Uср он откроется чуть сильнее, а при максимальной Umax откроется максимально. Но при этом он не должен входить в режим насыщения (см.рис.

выше) – в этом режиме выходной ток перестает линейно зависеть от входного, в следствии чего происходит сильное искажение сигнала.

Обратимся снова к форме аналогового сигнала.

Так как и максимальная и минимальная амплитуды входного сигнала относительно средней примерно одинаковы по величине (и противоположны по знаку), то нам нужно подать на базу транзистора такой постоянный ток (ток смещения – Iсм), чтобы при “среднем” напряжении на входе транзистор был открыт ровно наполовину. Тогда при уменьшении входного тока транзистор будет закрываться и ток коллектора будет уменьшатся, а при увеличении входного тока он будет открываться еще сильнее.

Источник: http://radio-stv.ru/nachinayushhim-radiolyubitelyam/tranzistor

Простейшие усилители низкой частоты на транзисторах

Усилители низкой частоты (УНЧ) используют для преобразования слабых сигналов преимущественно звукового диапазона в более мощные сигналы, приемлемые для непосредственного восприятия через электродинамические или иные излучатели звука.

Заметим, что высокочастотные усилители до частот 10 100 МГц строят по аналогичным схемам, все отличие чаще всего сводится к тому, что значения емкостей конденсаторов таких усилителей уменьшаются во столько раз, во сколько частота высокочастотного сигнала превосходит частоту низкочастотного.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 312 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки.

Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 2030 кОм и переменный сопротивлением 100 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Улучшениые варианты однотранзисторного усилителя

Усложненные и улучшенные по сравнению со схемой на рис. 1 схемы усилителей приведены на рис. 2 и 3. В схеме на рис. 2 каскад усиления дополнительно содержит цепочку частотнозависимой отрицательной обратной связи (резистор R2 и конденсатор С2), улучшающей качество сигнала.

Рис. 2. Схема однотранзисторного УНЧ с цепочкой частотнозависимой отрицательной обратной связи.

Рис. 3. Однотранзисторный усилитель с делителем для подачи напряжения смещения на базу транзистора.

Рис. 4. Однотранзисторный усилитель с автоматической установкой смещения для базы транзистора.

В схеме на рис. 3 смещение на базу транзистора задано более «жестко» с помощью делителя, что улучшает качество работы усилителя при изменении условий его эксплуатации. «Автоматическая» установка смещения на базе усилительного транзистора применена в схеме на рис. 4.

Двухкаскадный усилитель на транзисторах

Соединив последовательно два простейших каскада усиления (рис. 1), можно получить двухкаскадный УНЧ (рис. 5). Усиление такого усилителя равно произведению коэффициентов усиления отдельно взятых каскадов. Однако получить большое устойчивое усиление при последующем наращивании числа каскадов нелегко: усилитель скорее всего самовозбудится.

Рис. 5. Схема простого двухкаскадного усилителя НЧ.

Новые разработки усилителей НЧ, схемы которых часто приводят на страницах журналов последних лет, преследуют цель достижения минимального коэффициента нелинейных искажений, повышения выходной мощности, расширения полосы усиливаемых частот и т.д.

В то же время, при наладке различных устройств и проведении экспериментов зачастую необходим несложный УНЧ, собрать который можно за несколько минут. Такой усилитель должен содержать минимальное число дефицитных элементов и работать в широком интервале изменения напряжения питания и сопротивления нагрузки.

Схема УНЧ на полевом и кремниевом транзисторах

Схема простого усилителя мощности НЧ с непосредственной связью между каскадами приведена на рис. 6 [Рл 3/00-14]. Входное сопротивление усилителя определяется номиналом потенциометра R1 и может изменяться от сотен Ом до десятков МОм. На выход усилителя можно подключать нагрузку сопротивлением от 24 до 64 Ом и выше.

При высокоомной нагрузке в качестве VT2 можно использовать транзистор КТ315. Усилитель работоспособен в диапазоне питающих напряжений от 3 до 15 В, хотя приемлемая работоспособность его сохраняется и при снижении напряжения питания вплоть до 0,6 В.

Емкость конденсатора С1 может быть выбрана в пределах от 1 до 100 мкФ. В последнем случае (С1 =100 мкФ) УНЧ может работать в полосе частот от 50 Гц до 200 кГц и выше.

Рис. 6. Схема простого усилителя низкой частоты на двух транзисторах.

Амплитуда входного сигнала УНЧ не должна превышать 0,50,7 В. Выходная мощность усилителя может изменяться от десятков мВт до единиц Вт в зависимости от сопротивления нагрузки и величины питающего напряжения.

Настройка усилителя заключается в подборе резисторов R2 и R3. С их помощью устанавливают напряжение на стоке транзистора VT1, равное 5060% от напряжения источника питания. Транзистор VT2 должен быть установлен на теплоотводя-щей пластине (радиаторе).

Трекаскадный УНЧ с непосредственной связью

На рис. 7 показана схема другого внешне простого УНЧ с непосредственными связями между каскадами. Такого рода связь улучшает частотные характеристики усилителя в области нижних частот, схема в целом упрощается.

Рис. 7. Принципиальная схема трехкаскадного УНЧ с непосредственной связью между каскадами.

В то же время настройка усилителя осложняется тем, что каждое сопротивление усилителя приходится подбирать в индивидуальном порядке. Ориентировочно соотношение резисторов R2 и R3, R3 и R4, R4 и R BF должно быть в пределах (3050) к 1. Резистор R1 должен быть 0,12 кОм. Расчет усилителя, приведенного на рис. 7, можно найти в литературе, например, [Р 9/70-60].

Схемы каскадных УНЧ на биполярных транзисторах

Источник: http://radiostorage.net/1141-prostejshie-usiliteli-nizkoj-chastoty-na-tranzistorah.html

Как работает транзистор: простым языком для чайников, схемы

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторыРис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

ЭТО ИНТЕРЕСНО:  Какой вольтаж должен быть на аккумуляторе

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • биполярные транзисторы с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Источник: https://www.asutpp.ru/kak-rabotaet-tranzistor.html

Как сделать контроллер мотора на основе МОП-транзистора

Перевел SaorY для mozgochiny.ru

Приветствую, мозгоизобретатели! Сегодня собираем своими руками полезную вещь — контроллер мотора, который может пригодиться при создании множества самоделок, использующих двигатель под управлением микроконтроллера.

Данная поделка проста по конструкции, может быть использована в качестве электронного контроллера скорости (ESC), и имеет прямое и обратное управление. Спектр ее применения от робототехники, устройств дистанционного управления, портативного транспорта, до других разнообразных проектов, использующих моторы.

Поделка-контроллер состоит из минимума деталей и миниатюрна по размерам, что дает ей возможность легко помещаться в ваши мозгопроекты.

Схема контроллера основана на схеме «управления большими нагрузками» из моих предыдущих проектов и содержит только один МОП-транзистор и диод. Это позволяет микроконтроллеру управлять скоростью мотора.

А для возможности обратного управления я добавил DPDT реле, еще один МОП-транзистор и диодную пару для контроля смены полярности.

Думаю, что это мозгоруководство будет вам интересно!

Шаг 1: Инструменты и материалы

Как говорилось, эта поделка проста и использует минимум деталей:

  • макетная плата — используйте любую вам доступную
  • тонкий провод — я взял одиночный 24 калибра
  • МОП-ранзистор — 2шт.- я использовал IRF510, но сгодится и любой эквивалентный, например, NTE2382
  • DPDT реле 30В — на фото показана не та реле
  • выпрямляющий диод — 2шт.
  • штырьковые разъемы — лучше взять те, которые можно «отломать» на нужное количество штырьков.

А еще понадобятся некоторые инструменты:

  • паяльник и припой
  • клеевой пистолет
  • изоляционные кусачки
  • дремель или что-то подобное для обрезки макетной платы

Шаг 2: Компоновка деталей

На макетную плату помещаем все мозгодетали, причем таким образом, чтобы можно было легко их спаять согласно схеме при наименьших габаритах.

От штырьковой полосы отделяем кусочек с 2-мя контактами и кусок с 4-мя контактами (если вы планируете припаять контакты двигателя непосредственно к плате, то 2-х штырьковый разъем не понадобится).

На 2-х контактном отрезке укорачиваем штырьки с обоих сторон, а на 4-х контактном загибаем под углом 90 градусов штырьки одной стороны с помощью изоляционных кусачек, либо другого подходящего инструмента.

Шаг 3: Пайка

После того, как детали размещены на плате, проводим пайку согласно схеме представленной выше, и используем для этого любые удобные вам паяльник и припой.

В качестве дорожек используйте кусочки провода, для близко стоящих контактов — не изолированные отрезки провода, а для далеко стоящих — изолированные перемычки, зачищенные с обоих концов.

Омедненая макетная мозгоплата конечно лучше подойдет для наших целей, но обычная плата дешевле. Так же на этом этапе можно припаять провода мотора или как я, 2-х штырьковый разъем.

Шаг 4:Обрезка платы

Собранную поделку нужно вырезать из листа макетной платы, это позволит использовать ее в небольших устройствах, таких как контроллеры или роботы. Свою я обрезал по минимуму, но вы можете сделать это до необходимых вам размеров и использовать согласно вашим мозгозадумкам.

Просто не повредите работоспособность контроллера-самоделки, не нарушайте контактов и дорожек. Используйте для обрезки дремель или небольшую пилку, для меня бормашинка была наиболее удобным вариантом, но вы действуйте по своему усмотрению.

И в заключение этого этапа убедитесь в совместимости контактов поделки с другими платами или разъемами.

Шаг 5: Доработка

Осталось добавить несколько штрихов и «защитить» мозгоподелку. Изоляционными кусачками обрезаем торчащие концы проводков, при этом не повреждая целостность схемы. Можно использовать для этих целей и плоскогубцы, раскачивая в стороны проводки пока они не обломятся. Затем зигзагообразными покрываем плату горячим клеем, тем самым защищаем ее от возможного замыкания и повреждений, получится должно примерно как на фото.

Шаг 6: Контроллер готов, используем его!

Самоделка собрана, можно интегрировать ее в другие проекты, но перед этим не мешает разобраться с контактами. Если вы следовали моим мозгоинструкциям, то назначение контактов как на фото, если компоновка ваших деталей отличается, то смотрите схему и выявляйте вашу распиновку.

Подключение к микроконтроллеру:

  • Подключаем мотор к контроллеру мотора через соответствующий разъем.
  • Вставляем контроллер мотора в макетную плату.
  • С помощью разноцветных проводов соединяем Vin поделки с Vin микроконтроллера, GND с GND микроконтроллера.
  • Используя еще два провода соединяем контакты «speed» и «reverse» контроллера мотора с двумя контактами микроконтроллера по вашему усмотрению.
  • Запрограммируйте микроконтроллер.

!!! Важные моменты:

  • Не превышайте напряжение 30В на Vin.
  • Не путайте контакты.
  • Если вы используете напряжение выше 15В на Vin, то подключите Vin и GND непосредственно к источнику питания, и заземлите микроконтроллер, соединив его GND и GND источника питания.
  • При работе с большими мощностями на МОП-транзистор установите радиатор.
  • Применяйте только двухконтактые моторы постоянного тока.На этом все, благодарю за мозговнимание!

(A-z Source)

Источник: http://mozgochiny.ru/electronics-2/kak-sdelat-kontroller-motora-na-osnove-mop-tranzistora/

Изготовление транзистора своими руками

Эта статья заинтересует в первую очередь тех, кто любит и умеет мастерить. Конечно, можно купить различные готовые устройства и приборы, в том числе и изделия солнечной фотовольтаики в сборе или россыпью.

Но умельцам намного интереснее создать собственное устройство, не похожее на другие, но обладающее уникальными свойствами.

Например, из транзисторов своими руками может быть изготовлена солнечная батарея, на базе этой солнечной батареи могут быть собраны различные устройства, например, датчик освещенности или маломощное зарядное устройство.

Собираем солнечную батарею

В промышленных гелиевых модулях в качестве элемента, преобразующего солнечный свет в электричество, используется кремний. Естественно, этот материал прошел соответствующую обработку, которая превратила природный элемент в кристаллический полупроводник.

Этот кристалл нарезается на тончайшие пластины, которые затем служат основой для сборки больших солнечных модулей. Этот же материал используется и при изготовлении полупроводниковых приборов.

Поэтому, в принципе, из достаточного количества кремниевых транзисторов можно изготовить солнечную батарею.

Для изготовления гелиевой батареи лучше всего использовать старые мощные приборы, имеющие маркировку «П» или «КТ». Чем мощнее транзистор, тем большую площадь имеет кремниевый кристалл, а следовательно, тем большую площадь будет иметь фотоэлемент.

Желательно, чтобы они были рабочие, в противном случае их использование может стать проблематичным. Можно, конечно, попробовать использовать и неисправные транзисторы.

Но при этом каждый из них следует проверить на предмет отсутствия короткого замыкания на одном из двух переходов: эмиттер – база или коллектор – база.

От того, какова структура используемых транзисторов (р-n-р или n-р-n), зависит полярность создаваемой батареи. Например, KT819 имеет структуру n-р-n, поэтому для него положительным («+») выходом будет вывод базы, а отрицательными («-») – выводы эмиттера и коллектора.

А транзисторы типа П201, П416 имеют структуру р-n-р, поэтому для них отрицательным («-») выходом будет вывод базы, а положительными («+») — выводы эмиттера и коллектора.

Если взять в качестве фотопреобразователя отечественные П201 – П203, то при хорошем освещении можно получить на выходе ток до трех миллиампер при напряжении в 1.5 вольта.

Транзистор П202М

После того, как будет выбран тип и собрано достаточное количество транзисторов, к примеру, П201 или П416, можно приступать к изготовлению солнечной батареи. Для этого на расточном станке следует сточить фланцы транзисторов и удалить верхнюю часть корпуса.

Затем нужно провести рутинную, но необходимую операцию по проверке всех транзисторов на пригодность использования их в качестве фотоэлементов. Для этого следует воспользоваться цифровым мультиметром, установив его в режим миллиамперметра с диапазоном измерения до 20 миллиампер.

Соединяем «плюсовой» щуп с коллектором проверяемого транзистора, а «минусовой» — с базой.

Проверка транзистора

Если освещение достаточно хорошее, то мультиметр покажет значение тока в пределах от 0.15 до 0.3 миллиампер. Если значение тока окажется ниже минимального значения, то этот транзистор лучше не использовать. После проверки тока следует проверить напряжение.

Не снимая щупов с выводов, мультиметр следует переключить на измерение напряжения в диапазоне до одного вольта. При этом же освещении прибор должен показать напряжение, равное примерно 0.3 вольта.

Если показатели тока и напряжения соответствуют приведенным значениям, то транзистор годен для использования в качестве фотоэлемента в составе солнечной батареи.

Схема соединений транзисторов в солнечную батарею

Если есть возможность, то можно попробовать выбрать транзисторы с максимальными показателями. У некоторых транзисторов в плане расположения выводов для монтажа батареи может оказаться более удобным переход база – эмиттер. Тогда свободным остается вывод коллектора.

И последнее замечание, которое нужно иметь в виду при изготовлении гелиевой батареи из транзисторов. При сборке батареи следует позаботиться об отводе тепла, так как при нагревании кристалл полупроводника, начиная примерно с температуры +25°С, на каждом последующем градусе теряет около 0.

5% от начального напряжения.

Транзисторы П203Э с радиаторами охлаждения

В летний солнечный день кристалл кремния может нагреваться до температуры +80°С. При такой высокой температуре каждый элемент, входящий в состав гелиевой батареи, может терять в среднем до 0.085 вольта. Таким образом, коэффициент полезного действия такой самодельной батареи будет заметно снижаться. Именно для того, чтобы минимизировать потери, и нужен теплоотвод.

Обычный транзистор как элемент солнечной фотовольтаики

Кроме того, что обычный транзистор достаточно просто можно превратить в фотоэлектрический преобразователь, при небольшой фантазии его можно использовать и в других полезных схемах, используя фотоэлектрические свойства полупроводника. И область применения этих свойств может быть самая неожиданная.

Причем применять модифицированный транзистор можно в двух вариантах – в режиме солнечной батареи и в режиме фототранзистора.

В режиме солнечной батареи с двух выводов (база – коллектор или база – эмиттер) без каких-либо модификаций снимается электрический сигнал, вырабатываемый полупроводником при освещении его.

Фототранзистор представляет собой полупроводниковое устройство, реагирующее на световой поток и работающее во всех диапазонах спектра. Этот прибор преобразовывает излучение в электрический сигнал постоянного тока, одновременно усиливая его. Ток коллектора фототранзистора находится в зависимости от мощности излучения. Чем интенсивнее освещается область базы фототранзистора, тем больше становится ток коллектора.

Из обычного транзистора можно сделать не только фотоэлемент, преобразующий световую энергию в энергию электрическую. Обычный транзистор можно легко превратить в фототранзистор и использовать в дальнейшем уже его новые функциональные возможности. Для такой модификации подходят практически любые транзисторы. Например, серии MП.

Если повернуть транзистор выводами кверху, то мы увидим, что вывод базы припаян непосредственно к корпусу транзистора, а выводы эмиттера и коллектора изолированы и заведены вовнутрь. Электроды транзистора расположены треугольником.

Если повернуть транзистор так, чтобы вершина этого треугольника – база – была повернута к вам, то коллектор окажется слева, а эмиттер – справа.

Корпус транзистора, сточенный со стороны эмиттера

Теперь надфилем следует аккуратно сточить корпус транзистора со стороны эмиттера до получения сквозного отверстия. Фототранзистор готов к работе. Как и фотоэлемент из транзистора, так и самодельный фототранзистор может быть использован в различных схемах, реагирующих на свет. Например, в датчиках освещенности, которые управляют включением и выключением, например, внешнего освещения.

Схема простейшего датчика освещения

И те, и другие транзисторы могут быть использованы в схемах слежения за положением солнца для управления поворотом солнечных батарей. Слабый сигнал с этих транзисторов достаточно просто усиливается, например, составным транзистором Дарлингтона, который, в свою очередь, уже может управлять силовыми реле.

Примеров использования таких самоделок можно привести великое множество. Сфера их применения ограничивается только фантазией и опытом человека, взявшегося за такую работу. Мигающие елочные гирлянды, регуляторы освещенности в комнате, управление освещением дачного участка Все это можно сделать своими руками.

Источник: http://solarb.ru/izgotovlenie-tranzistora-svoimi-rukami

Транзистор КТ838А

В характеристиках кремниевого транзистор КТ838А указано что изготавливается он по мезапланарной технологии и применяется в каскадах строчной развертки телевизоров. Его структура n-p-n. Также его можно встретить в схемах видоеконтрольных устройств. Весит данный транзистор не более 20г, а выпускает его акционерное общество «Кремний» город Брянск.

Распиновка

Цоколевка КТ838А выполнена в металлическом корпусе типа КТ-9 (ТО-3) с жесткими выводами и стеклянными изоляторами. На рисунке ниже представлена схема расположения выводов данного транзистора: 1 — база, 2 — эмиттер, 3 — коллектор.

Характеристики

Основные технические параметры кт838а:

  • Рассеиваемая мощность коллектора (постоянная) при использовании теплоотвода при температуре от -450С до +250С — 12,5 Вт.
  • Статический коэффициент передачи тока (при Uкэ=5 В, Iк=50 мА) не менее — 6.
  • Граничная частота коэффициента передачи тока в схеме с общим эмиттером при Uкэ=20В, Iк=0,3А не менее — 3 МГц.
  • Предельно допустимое напряжение коллектор-база — 1500 В.
  • Предельно допустимый постоянный ток коллектора — 5 А.
  • Обратный ток коллектор-эмиттер (при Тк = +250С, Uкэ=1500 В, Uбэ=0) — 1 мА.
  • Типовое значение емкости коллекторного перехода при Uкб=170 пФ

Представленные значения даются самим производителем. При работе устройства в этих приделах гарантируется его целостность и долговечность. Ниже представлены все значение которые взяты из документации компании АО «Кремний».

Также у транзистора кт838а есть предельные значения, которые он может выдержать разово в короткий промежуток времени, если при неоднократном измерении одного из указанных параметров у вас любой из них совпадают или превышают значение из таблицы, то стоит проверить всю схему на неисправность.

Особенности монтажа

При пайке расстояние от корпуса транзистора до места пайки должно быть от 5 мм и более. Температура жала паяльника более +2500С, время пайки менее 3 с.

Аналоги

Наиболее подходящими для замены зарубежными аналогами кт838а являются транзисторы BU204, BU2506DF, 2SD380. Существуют также аналоги его с другим типом корпуса: BU2506DF, BU706D, BU706, BU506D, BU506, BU506DF, 2SD1738.

Производитель

Выпускает данное изделие акционерное общество «Кремний» г. Брянск. Одним из крупных поставщиков транзистора является компания «Вертекс».

Применение

На транзисторе КТ838 можно собрать регулируемый источник переменного тока. В данной схеме его включают последовательно с нагрузкой. Преимущество данной схемы, перед тиристорными, заключается в следующем: отсутствие дорогостоящих деталей, синусоидальное напряжение на выходе, простота схемы, отсутствие дефицитных деталей, во время работы не создает помех в электросеть.

Данный регулируемый источник переменного тока можно использовать вместо лабораторного автотрансформатора. С его помощью можно регулировать температуру паяльника, скорость вращения электродвигателя. Данный прибор можно использовать для регулирования напряжения, как при активной, так и при реактивной нагрузке.

При работе в такой схеме транзистор КТ838 выделяет много тепла и поэтому возникает проблема с его отводом.

Диодный мост VD1 обеспечивает протекание прямого тока через транзистор при любом полупериоде переменного напряжения сети. Выпрямленное диодным мостом VD2 напряжение сглаживается электролитическим конденсатором С1.

При помощи переменного резистора R2 регулируется ток базы транзистора VТ1, а значит и его сопротивление в цепи переменного тока. Резистор R1 выступает в роли ограничителя тока. Диод VD3 нужен для того, чтобы напряжение отрицательной полярности не попало на базу транзистора.

Таким образом, регулируя напряжение на базе, мы управляем сопротивлением транзистора, а значит и током в коллекторной цепи. Изменяя ток коллектора, мы меняем ток нагрузки.

В диодном мосте VD1 используется четыре диода Д223. Для диодного моста VD2 можно использовать диоды КЦ405А. Диод VD3 это Д226Б. Электролитический конденсатор С1 имеет емкость 200 мкФ и рассчитан на напряжение 16 В.

Переменный резистор R2 обязательно должен быть проволочным ППБ15 или ППБ16 мощностью не менее 2,5 Вт. Его сопротивление 1 кОм. Трансформатор Т1 рассчитывается на мощность от 12 до 15 Вт. Напряжение на вторичной обмотке трансформатора 6 — 10 В.

Транзистор должен быть установлен на радиаторе площадью не менее 250 см2.

Чтобы увеличить мощность регулируемого источника переменного тока, нужно заменить транзистор VТ1 и диоды, используемые в диодном мостике VD1. При замене транзистора КТ838 на КТ856 можно будет подключать нагрузку 150 Вт, при замене на КТ834 — 200 Вт, КТ847 — 250 Вт.

Данный регулируемый источник тока гальванически связан с электрической сетью. Поэтому его корпус должен быть сделан из диэлектрика, а на переменный резистор R2 нужно надеть изолированную ручку.

Также можете скачать DataSheet от компании ООО «Электроника и Связь»

Источник: https://shematok.ru/transistor/kt838a

Понравилась статья? Поделиться с друзьями:
220 вольт