Что такое диодный мост

Диодный мост схема, принцип работы

что такое диодный мост

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Принцип работы диодного моста

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

Источник: http://hardelectronics.ru/shema-diodnogo-mosta.html

Диодный мост

что такое диодный мост

Словосочетание “диодный мост” образуется от слова “диод“. Значит, диодный мост – это радиодеталь, которая состоит из диодов. Здесь очень важно то, как соединены эти диоды, иначе диодный мост превратится просто в кучку из диодов.

Диод на электрических схемах обозначается вот так.

Самый простой диодный мост состоит из 4 диодов, которые соединяются вот так.

Эта рисунок также является самой распространенным обозначением диодного моста на электрических схемах.

Упрощенный вариант выглядит вот так.

Можно увидеть на схемах даже что-то типа этого.

Для правильной эксплуатации диодного моста, мы должны его правильно подсоединить. Правильное подключение диодного моста выглядит таким образом.

Как вы видите, на вход диодного моста мы подаем переменное напряжение, а на выходе диодного моста снимаем постоянное напряжение. Отсюда можно сделать вывод:

Диод в цепи переменного напряжения

Итак, в статье про диод мы рассматривал, что будет на выходе диода, если подать на него переменный ток. Для этого мы даже собирали вот такую схему, где G – это синусоидальный генератор. С клемм X1 и X2 уже снимали сигнал.

Мы на диод подавали переменное напряжение.

А на выходе после диода получали уже вот такой сигнал.

То есть у нас получилось вот так.

Да, мы получили постоянный ток из переменного, но стоило ли это того? В этом случае у нас получился постоянный пульсирующий ток, где половина мощности сигнала была вообще вырезана.

Как работает диодный мост в теории

Как вы знаете, переменный ток меняет свое направление несколько раз в секунду. Поэтому, его можно разбить на положительные полуволны и отрицательные полуволны. Положительные полуволны я пометил красным, а отрицательные – синим.

Для того, чтобы диодный мост работал, ему нужна какая-либо нагрузка. Пусть это будет резистор. Следовательно, когда на диодный мост приходит положительная полуволна, протекание тока через него будет выглядеть вот так.

Как вы видите, при положительной полуволне не задействованы диоды, которые я показал штриховой линией.

После положительной полуволны приходит отрицательная полуволна, и в этом случае протекание тока в диодном мосте выглядит так.

В этом случае, диоды, которые работали при положительной полуволне, при отрицательной полуволне они отдыхают). Эстафету принимает на себя другая пара диодов. Можно даже сказать, что в диодном мосте они работают попарно. Одна пара диодов работает на положительную полуволну, а другая пара – на отрицательную.

Обратите внимание на нагрузку. На нее всегда приходит одна и та же полярность тока при любом стечении обстоятельств.

Работа диодного моста на практике

Давайте и мы посмотрим, что получается на выходе диодного моста, если подать на него переменное напряжение. Для этого возьмем 4 простых кремниевых диода и соединим их в диодный мост. Важно, чтобы диоды были одной марки.

На вход диодного моста будем подавать переменное напряжение, и посмотрим, что у нас получается на выходе.

Итак, на вход я подаю вот такой сигнал.

На выходе получаю постоянное пульсирующее напряжение.

Здесь мы видим, что отрицательная полуволна в диодном мосте не срезается, а превращается в положительную. Мощность сигнала при этом не теряется, так как отрицательная полуволна просто инвертируется в положительную полуволну. Ну разве не чудо?

Наблюдательный читатель также может заметить, что амплитуда сигнала чуть-чуть просела. Если мы на вход подавали синусоидальный сигнал с амплитудой в 6 Вольт, то на выходе диодного моста имеем чуть меньше 6 Вольт, а точнее где-то 4,8 Вольта. Почему так произошло? Дело все в том, что на кремниевом диоде падает напряжение 0,6-0,7 Вольт. Так как переменное напряжение проходит через 2 диода при каждой полуволне, то на каждом диоде падает по 0,6 Вольт. 2×0,6=1,2 Вольта. 6-1,2=4,8 Вольта.

Теперь можно с гордостью нарисовать рисунок.

Виды диодных мостов

Примерно так выглядит импортный и советский диодные мосты.

Например, на советском показаны контакты, на которые надо подавать переменное напряжение значком ” ~ “, а контакты, с которых сниамем постоянное пульсирующее напряжение значком “+” и “-“.

Существует множество видов диодных мостов в разных корпусах.

Есть даже диодный мост для трехфазного напряжения.

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы, а два другие – на постоянное напряжение.

Он собирается по так называемой схеме Ларионова и состоит из 6 диодов.

В основном трехфазные мосты используются в силовой электронике.

Характеристики диодного моста

Как мы уже с вами разобрали, в электронике встречаются диодные мосты в разных корпусах и имеют разные габариты.

Почему так? Дело в том, что каждый диодный мост обладает какими-то своими характеристиками, о которых мы и поговорим в этой главе.

Чтобы далеко не ходить, давайте рассмотрим диодный мост GBU6K и рассмотрим на его примере, как читать характеристики.

Для того, чтобы понять, что это за фрукт и с чем его едят, надо скачать на него техническое описание (даташит). Вот ссылка на этот диодный мост. Ниже рассмотрим основные характеристики диодного моста, которых будет достаточно для рядового электронщика.

Распиновка и корпус

Итак, на главной странице мы видим распиновку выводов. Распиновка – это какие выводы за что отвечают и как правильно их соединять с внешней цепью.

Как вы видите, на средний выводы подаем переменное напряжение, а с крайних выводов снимаем постоянное напряжение. Также на рисунке показано, как соединяются диоды в этом диодном мосте. Нам эта информация еще очень пригодится.

Чуть ниже мы видим вот такую табличку, которая показывает нам самые главные первичные характеристики.

Package – тип корпуса. Корпуса GBU выглядят вот так.

Максимальный ток

Итак, с этим разобрались. Далее следующий параметр. IF(AV) – максимальный ток, который может “протащить” через себя этот диодный мост. В даташите есть таблички и графики, какие условия должны соблюдаться, чтобы мост смог протащить через себя этот ток без вреда для своего здоровья.

Поэтому, диодные мосты в больших металлических корпусах способны “протащить” через себя очень большую силу тока. Если же маленький диодный мост вставить в какой-нибудь мощный блок питания, то скорее всего он просто-напросто сгорит.

В промышленности в силовой электронике стараются использовать диодные моста большой мощности, например, вот такой диодный мост может “протащить” через себя силу тока в 50 Ампер.

Максимальное пиковое обратное напряжение

Грубо говоря, это обратное напряжение диода. Если его превысить, то произойдет пробой и диоду, а следовательно и диодному мосту, придет “кирдык”. Этому параметру также следует уделять внимание, когда вы будете выпрямлять сетевое напряжение.

Если вы будете подавать на диодный мост 220 Вольт, то его пиковое значение будет составлять 310 Вольт (220 × √2). Так как у меня диодный мост GBU6K, то надо смотреть табличку ниже. Как вы видите, пиковое обратное напряжение диодов составляет 800 Вольт.

Значит, такой диодный мост вполне подойдет для выпрямления сетевого напряжения.

Как проверить диодный мост

1-ый способ.

Как вы теперь знаете, однофазный диодный мост состоит из 4 диодов. Для того, чтобы узнать их расположение, мы должны скачать даташит на данный диод и посмотреть, как расположены диоды в данном диодном мосте. Например, для моего моста GBU6K диоды расположены вот так.

То есть все, что мне надо сделать – это просто прозвонить каждый диод с помощью мультиметра. Как это сделать, я писал еще в этой статье.

Второй способ.

Он же 100%. Но для этого потребуется осциллограф, ЛАТР или понижающий трансформатор, а также резистор, желательно 5-10 КОм. После того, как мы нашли его расположение выводов, на “+” и “-”  припаиваем резистор 5-10 КОм. С этих же выводов снимаем осциллограмму.

То есть все должно выглядеть вот так.

Смотрим осциллограмму

Значит, диодный мост исправен.

Диодный мост генератора

Диодный мост генератора в автомобилях выпрямляет переменное напряжение, которое поступает от обмоток статора генератора. То есть грубо говоря, без диодного моста получается трехфазный мини-генератор.

Диодный мост генератора ВАЗ 2110

В этой статье будем рассматривать диодный мост от генератора ВАЗ 2110.

Он сделан по схеме Ларионова с некоторым дополнением в виде 3 дополнительных диодов.

Как проверить диодный мост генератора

Для проверки диодного моста генератора есть два способа.

Проверка с помощью лампы накаливания

Этот способ считается самым простым, и все его могут применить, так как под рукой всегда найдется аккумулятор и лампа на 12 В. Иначе откуда у вас автомобильный генератор?)

Предварительно лучше запаять или прикрепить к лампе два провода, чтобы было проще производить проверку. Итак, собираем наш прибор для проверки диодного моста генератора из лампы и аккумулятора вот по такой схеме.

Далее, все что нам надо сделать – это просто проверить каждый диод. Итак, вспоминаем, что диод в одном направлении проводит электрический ток, а в другом нет. Получается, нам надо в каждый диод “тыкнуться” два раза, чтобы узнать исправен ли он. Так мы и сделаем.

Вместо аккумулятора у меня будет лабораторный блок питания на 12 Вольт, что в принципе не играет никакой роли. Мой “прибор” для проверки диодов выглядит вот так.

Красные крокодил – это плюс от аккумулятора, в моем случае – от блока питания, а черный – это минус.

Поехали! У нас имеется 9 диодов. Начнем, пожалуй, с больших диодов-таблеток, которые вмонтированы в металлические пластины. Цепляюсь одним выводом-крокодилом к пластине, на которой вмонтирован один конец диода

а другим выводом, который идет от лампы накаливания касаюсь другого вывода диода и вуаля! Лампа зажглась!

Теперь надо обязательно поменять выводы наших проводов с самопального прибора местами и снова повторить это действие.

Как вы видите, наша лампа не горит, и это замечательно! Потому что мы сейчас только что убедились в том, что наш диод абсолютно здоров и готов выполнять свою задачу на 100%.

Таким же образом проверяем все диоды таблетки.

Маленькие черные диоды проверяются точь-в-точь таким же способом.

Меняем выводы и убеждаемся, что диод рабочий.

Правила:

1) Если лампочка не горит ни так ни сяк, значит диод неисправен.

2) Если лампочка горит и так и сяк, значит диод тоже неисправен.

3) Если лампочка горит, а при смене щупов не горит, значит диод исправен.

Проверка с помощью мультиметра

Не у всех есть такой замечательный прибор, как мультиметр, но он должен быть у каждого уважающего себя электрика и электронщика.

В каждом хорошем мультиметре есть функция прозвонки диодов. Как я уже говорил, наш автомобильный диодный мост будет исправен, если все его диоды будут исправны.

Берем в руки мультиметр и ставим его в режим прозвонки диодов.

И начинаем проверять все диоды друг за другом на исправность. В одном направлении диод должен показать значение от 0,4 и до 0,7 Вольт. В нашем случае 0,552 Вольта, что вполне приемлемо.

Далее меняем щупы местами и видим, что мультиметр показывает нам OL, что говорит нам о том, что превышен предел измерения. Значит, диод жив и здоров).

Таким же образом проверяем все оставшиеся диоды.

Источник: https://www.ruselectronic.com/diodnyj-most/

Как поменять диодный мост — Эксперт по автомобилям

что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

статьи

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате.

Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах.

В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом.

Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех.

ЭТО ИНТЕРЕСНО:  Где применяются электрические двигатели

Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Устройство диода

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону.

Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием.

При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны.

Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный.

Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное.

Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором.

В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Другие материалы по теме

Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Источник: https://avtograf70.ru/obsluzhivanie/kak-pomenyat-diodnyj-most.html

Как работают диоды и что такое диодный мост?

Здравствуйте друзья!  Каждый день мы встречаем огромное число людей, людей с которыми мы общаемся, живем, учимся или ходим не работу. Готов поспорить что как минимум половина людей с которыми вы общаетесь имеет смутное представление о диодах, и это не смотря на то  что понятие диодов входит в школьную программу .

Возможно что такое понятие как диодный мост вызывает точно такие же ассоциации как и Бруклинский.  Я все-таки думаю, что эта статья в какой-то степени уменьшит подобные ассоциации в головах людей и принесет чуточку понимания, по крайней мере я на это надеюсь.

Ну что? Заинтересовал? Тогда поехали.

О чем сегодня статья

Как вы наверное поняли из вступления сегодняшняя статья  будет ориентирована на новичков. И сегодня я освещу сакральную тему, свет которой будет освещать  полупроводниковые приборы под названием диоды.

Как работает диод

Как работает диод? Многих новичков интересует данный вопрос и многие учителя в школах и вузах начинают чертить на доске электрические схемы и временные диаграммы.  Я считаю что это полная фигня, так  как пока ты  не получишь практический опыт ты не достигнешь полного понимания и весь наукоемкий фарш останется лишь непонятными каракулями на доске.

Так что же я этим хочу сказать? А сказать я хочу,что нужно просто брать в руки паяльник и идти вперед —  превращать теорию в ценный практический опыт!

Хорошо, а теперь обсудим немного теорию.

На электрических схемах диоды изображаются как равнобедренный  треугольник на одной из вершин которого размещается черточка. Это словесное описание условного  графического обозначения диода (принятое сокращение УГО). Графически  это обозначение выглядит вот так.

У диода всего два вывода и обозначаются они катод и анод.  На условном обозначении диода вывод катода всегда обозначен «палочкой», а треугольник можно представить как стрелка указывающая на черточку катода.

Впрочем так диоды обозначаются на электрических схемах.  В жизни диоды могут быть разными, к примеру могут быть как на этих картинках.

Как определить на каком выводе у диода анод, а на каком катод? В принципе это можно определить визуально, по маркировке.

Как правило катод на корпусе диода обозначается полоской, точкой или чертой. Если сомневаетесь то катод и анод можно определить с помощью мультиметра. О том как пользоваться мультиметром  и в частности как проверить диод мультиметром я писал здесь, так что почитаете и разберетесь — ничего сложного.

Диоды примечательны тем, что обладают односторонней проводимостью. Это значит что электрический ток «потечет» через диод только в том случае если к аноду приложить  плюс (более положительный потенциал ) а к катоду приложить минус (более отрицательный  потенциал). В обратной ситуации у вас ничего не получится. Подобное поведение диода определяется таким понятием как ВАХ.

Что означает ВАХ диода?

ВАХ диода это просто напросто вольтамперная характеристика диода. Она описывает зависимость тока от напряжения прикладываемого к диоду.  Давайте рассмотрим это обстоятельство чуток подробнее.

Слева у нас показан вольтамперной характеристики для резистора. Как видите, зависимость тока от напряжения линейная, чем больше напряжение приложенное к резистору  тем больше ток.

Для диода кривая зависимости явно отличается. Если мы подключим к аноду положительный потенциал, а к катоду отрицательный  и будем плавно повышать напряжение то будет происходить следующее. Ток в начальный момент времени будет очень мал поэтому диод еще не будет открыт по полной. Но если мы будем прибавлять напряжение то это приведет к полному открытию диода.

Хорошо, а что же случится если мы подключим диод иначе? Положительный потенциал приложим к катоду, а отрицательный к аноду. В этом случае график ВАХ диода у нас буквально перевернется и картина будет следующая. При плавном повышении напряжения ток будет повышаться, но величина тока будет настолько незначительной, что им зачастую пренебрегают. Этот ток при обратном подключении называют еще током утечки.

Только есть здесь один нюанс.  Если мы будем и дальше повышать обратное напряжения на диоде, то можно добиться резкого повышения тока. На вольтамперной характеристике этот момент выглядит в виде небольшого «хвостика» причудливо оттопыренного в конце.

Это так называемый обратимый пробой диода. Такой пробой не страшен, если напряжение уменьшить то ток снова уменьшится и будет вновь очень незначительным.

Явление подобного обратимого пробоя является  побочным и  для диода его всегда стараются сводить к минимуму.

Как видите всю эту информацию мы получили лишь используя график ВАХ, но будет полезно все это проверить своими руками на практике. Действительно, соберите несложную схему и  сделайте несколько замеров мультиметром, это пойдет на пользу. Вот только диод нужно уметь правильно подключать, ато ведь его легко можно пожечь, так что читайте дальше -поведаю обо всем.

Для чего используют диоды и как включать в цепь?

О том как функционирует диод мы поговорили, вот только пока непонятно как его можно применять и вообще для чего все это.

Для начала рассмотрим простейший пример включения диода в электрическую цеп, причем в переменке. 

И для начала простой вопрос, зачем здесь резистор? Внимательный читатель посмотрит вольтамперную характеристику диода и все станет ясно. Ток в диоде без дополнительной нагрузке начнет очень быстро расти, возникнет подобие короткого замыкания от чего диоду может не поздоровиться. Дабы не произошло подобного конфуза применяют токоограничивающий резистор.

Свойство односторонней проводимости диода применяется не просто широко а повсеместно. В состав любого блока питания входят диоды как сами по себе так и в составе диодного моста.

Ведь в любом блоке питания происходит один очень важный момент, а именно происходит превращение переменного тока в постоянный. А вот эту ответственную миссию берут на себя именно диоды.

Полное превращение мы рассмотрим когда будем обсуждать диодные мосты, но как ведет себя диод в переменном токе мы сейчас увидим. Схема все та же что и была, диод и резистор включенные в цепь переменного тока.

Вот вам наглядный пример в виде временной диаграммы зависимости тока от напряжения до и после применения диода.

Как видите произошел очень интересный момент, нижние полупериоды диод просто срезал, оставив холмики положительной полярности.  Это уже более похоже на постоянку, можно еще кстати использовать конденсатор для лучшего сглаживания.

Хотя диод и справляется с задачей выпрямления переменного тока, все-таки с этой задачей диодный мост справится лучше, кстати диодный мост мы сейчас и рассмотрим.

Как построить  диодный мост?

При использовании одиночного диода в целях выпрямления переменки остаются ощутимые провалы в диаграмме. Этого нужно как-то избегать, а вот избежать этого явления нам поможет диодный мостик.

Диодный мост это не один диодик а целых четыре, включенных специальным образом. На электрических схемах додные мосты выглядят вот таким незамысловатым образом.

Кликните чтобы увеличить

И диодный мост отчасти позволяет решить проблему провалов, возникающую при использовании одиночного диода.

Как видите диодный мост работает на каждом полупериоде синусоиды, организуя такие холмики положительной полярности. Это уже более похоже на постоянку, хотя постоянный здесь только знак  положительного потенциала. О постоянном напряжении здесь пока говорить рано.

Далее вид выходного напряжения еще можно будет скорректировать используя стабилитрон и конденсатор. Правда о конденсаторах мы сегодня разговаривать не будем, а как работает стабилитрон рассмотрим в следующих статьях так что не пропустите и обязательно подпишитесь.

Ну чтож, на этом у меня все, поэтому я буду закругляться и пойду готовить материалы для новых статей. Также очень советую подписаться через форму Email рассылок, тогда вы точно ничего не пропустите и более того каждый подписчик получит от меня подарок.

Желаю вам удачи , успехов и до новых встреч.

С н/п Владимир Васильев.

Источник: http://popayaem.ru/kak-rabotayut-diody-i-chto-takoe-diodnyj-most.html

Диодный мост генератора, проверка неисправностей мультиметром, снятие, замена или ремонт своими руками, схема подключения

Присутствует диодный мост генератора исключительно в «бортовых электростанциях» переменного тока. Поскольку большинство легковых авто комплектуются генераторами переменного тока, выпрямитель с диодами и стабилитроном присутствует в каждом из них. Обычно этот узел встраивается в генератор, но существуют выносные диодные мостики для удобного сервисного обслуживания, ремонта и замены диодов.

Рис. 1 Выпрямитель генератора представляет собой диодный мост со стабилитроном

Назначение выпрямителя

Поскольку генераторы переменного тока более прогрессивны, компактны и ремонтопригодны в сравнении с модификациями тока постоянного, в конструкцию по умолчанию добавлен диодный мост генератора для преобразования переменного тока в постоянный.

Рис. 2 Схема подключения блока диодов

Другими словами – без узла выпрямителя электричество будет вырабатываться обмотками генератора, но станет непригодным для бортовой сети и аккумулятора. Лампы фар, обмотки компрессора кондиционера и электрические цепи прочих потребителей перегорят, а двигатель не сможет завестись.

Конструкция выпрямителя

В прямом смысле выпрямитель не в состоянии «выпрямить» переменное напряжение. Название этот узел получил из-за принципа действия входящих в него диодов:

  • переменный ток периодически меняет направление движения в цепи;
  • диоды пропускают его лишь в одном направлении, отсекают токи обратной полярности;
  • чтобы в сети скачки напряжения были незаметны для запитанного потребителя, 3 диода установлены в одном направлении, оставшиеся 3 – в другом.

Рис. 3 Принцип работы выпрямителя генератора

В настоящее время классическую конструкцию имеют мощные диоды, маломощные полупроводниковые приборы этого типа выполнены в виде кремниевого перехода на плате. Однако для отведения от корпуса или кремниевого перехода высоких температур, и те, и другие модификации либо вмуровываются в пластину теплоотвода, либо оснащаются собственными радиаторами в индивидуальном порядке.

Рис. 4 Силовые 1 и дополнительные 2 диоды собраны на теплоотводящей подкове

При пробое кремниевого перехода или полноценного диода в корпусе требуется замена диодного моста генератора или отдельных полупроводников, входящих в его состав.

Основной мост диодный

На нижнем рисунке представлены синусоиды и направление движения тока в генераторе и диодном мостике.

Рис. 5 Направление напряжения в графике переменного тока и схеме выпрямителя

Положительным значением условно принято напряжение, направленное к 0 точке обмотки статора. После выпрямителя ток в нагрузке потребителей протекает только в положительном направлении, то есть от «+» генератора к ее массе «–».

Поэтому в диодном мосту силовом (основном) использованы крупногабаритные 25 – 30 А диоды, мощность которых можно повысить дополнительно за счет дополнительного плеча выпрямителя, рассматриваемого ниже.

В отличие от прочих узлов «электростанции авто», визуальный осмотр не позволяет выявить, какие имеются неисправности диодного моста генератора. Для выпрямителя необходима только аппаратная диагностика мультиметром.

ЭТО ИНТЕРЕСНО:  Как обозначается в электрической схеме двигатель

Находятся диоды на теплоотводящей пластине в форме подковы под задней крышкой генератора. На выносных выпрямителях диодный мост расположен вблизи генератора, вместо пластин классической конфигурации может использоваться обычная плата. На корпус каждого диода в этом случае надевается ребристый радиатор.

Дополнительные диоды

Основная сложность конструкции автомобильного генератора заключается в том, что обмотка возбуждения его якоря так же является потребителем постоянного напряжения. Для этой катушки используется собственный диодный мост генератора:

  • 3 дополнительных диода отсекают ток АКБ в момент, когда двигатель не работает;
  • отрицательные диоды взяты из основного (силового) мостика генератора.

Рис. 7 Диоды дополнительные

Вместо мощных полупроводниковых приборов использованы малогабаритные 2 А диоды.

Стабилитрон

Поскольку величина напряжения, вырабатываемого генератором машины, напрямую зависит от оборотов коленвала, передающего крутящий момент на его шкив, в бортовой сети возможны «всплески» до 20 В, что вредно для потребителей. Чтобы исключить частый ремонт, проще всего подключить диодный мост выпрямителя через стабилитрон:

  • этот полупроводниковый прибор отсекает ток обратной полярности по аналогии с диодом, но только до определенного значения, названного напряжением стабилизации;
  • при увеличении напряжения с обмоток статора до 25 – 30 В стабилитрон начинает пропускать избыточное напряжение, но уже в обратном направлении;
  • на выводе «+» клеммы генератора при этом сохраняется корректное значение тока для бортовой сети и подзарядки АКБ.

При диагностике выпрямителя проверка диодного моста генератора мультиметром осуществляется косвенным способом:

  • нормальный диод должен иметь «бесконечное» сопротивление в одну сторону, 500 – 700 Ом в противоположном направлении;
  • если при перемещении щупов тестера показания омметра не изменились, на индикаторе высвечивается 0 или бесконечность, диод пробит, требуется его замена.

Более подробно проверка описана в следующих пунктах данного руководства.

Дополнительное плечо выпрямителя

Для фазных напряжений характерно отклонение графика напряжения от синусоиды. Поэтому схема генератора с дополнительным плечом выпрямителя возможна только при соединении статорных обмоток «звездой»:

  • форма фазных напряжений в этом случае отличается от синусоиды на величину гармоники;
  • эта характеристика (гармоника третьей фазы) имеется только в фазном напряжении, отсутствует в напряжении линейном;
  • мощность гармоники можно использовать в качестве дополнительного плеча, добавив диоды в 0 точке фазных обмоток статора.

Рис. 9 Схема с дополнительным плечом выпрямителя

Величина плеча составляет 5 – 15% от мощности генератора, но возникает оно только на оборотах более 3000 об/мин. Долговечность выпрямителя зависит так же от работоспособности регулятора напряжения. Зато ремонт доступен владельцу машины после разборки генератора.

Неисправности выпрямителя

Поскольку узел выпрямителя генератора состоит из нескольких полупроводниковых приборов, в 90% случаев защищен крышкой, для диагностики понадобятся электроприборы и частичная разборка генератора. Однако в некоторых случаях признаки неисправности диодного моста водитель может услышать:

  • при появлении пульсаций (в бортовую сеть подается переменное напряжение вместо постоянного) электродвигатели некоторых потребителей могут воспроизводить звуки по аналогии с динамиком;
  • чаще всего «пищит» привод стеклоподъемников и печки, причем тональность изменяется при изменении оборотов этих приборов, а не частоты вращения коленвала.

Во всех остальных случаях неисправности генератора автомобиля в узле выпрямителя диагностируются исключительно приборами. Для этого потребуется схема подключения диодного моста в конкретной модификации генератора, так как симптомы нарушения механической части полностью аналогичны поломке электрических деталей.

Диагностика поломок

Узел выпрямителя собирается по различным технологиям – часть деталей крепится механическим способом, мелкие диоды впаиваются в схему, крупногабаритные обычно запрессовываются. Поэтому потребоваться ремонт выпрямителя может, не только при выходе из строя полупроводниковых элементов, но и при некорректной их установке на «подкове» теплоотводящей пластины.

Перед тем, как прозвонить схему или отдельный полупроводник, следует визуально осмотреть конструкцию. Даже в отсутствие тестера, омметра, вольтметра можно использовать лампочку и специальную схему подключения АКБ, чтобы понять, неисправен диод или работает корректно.

Методика диагностики выглядит следующим образом:

  • с генератора снимается задняя крышка для обеспечения доступа к диодам;
  • на пластину подается проводом «–» от АКБ, она прижимается к корпусу на генераторе, один провод лампы касается к диоду в месте присоединения статорной обмотки, второй – к «+» аккумулятора, при пробое лампочка загорится;
  • тестер выставляется в режим омметра на 1 кОм, если поменять местами щупы мультиметра, показания должны измениться с 0 на 400 – 800 Ом в разных направлениях.

Рис. 10 Диагностика выпрямителя лампойРис. 11 Диагностика мультиметром

В большинстве случаев горит диодный мост при проникновении влаги.

Ремонт и замена диодного моста

Поскольку устройство выпрямителя простое, а стоимость узла целиком невысокая, выбор ремонта или замены диодов зависит преимущественно от наличия свободного времени у автолюбителя:

  • снимать узел выпрямителя придется в любом случае;
  • замена генератора своими руками обойдется немного дороже, зато осуществляется быстрее;
  • выбивание и запрессовка новых диодов дольше по времени, но дешевле материально;
  • если влага попадает на узел выпрямителя регулярно, проще снять диодный мост и вынести его в отдельный узел под капотом, защитив самодельным корпусом, так как исправная бортовая сеть стоит потраченного времени.

Основной ошибкой при замене «подковы» выпрямителя генератора является замыкание двух пластин болтом. Этот крепежный элемент переставляется со старого диодного мостика, а изолятор остается в квадратном посадочном отверстии. Его необходимо извлечь и перенести на новое место эксплуатации перед тем, как заменить диодный мост.

Рис. 12 Изолятор под болтом нужно перенести на посадочное место

На трех винтах крепления обмоток статора имеются диэлектрические прокладки (гетинакс или текстолит). Четвертый винт без подобной шайбы крепится в специально предназначенное для него отверстие, поэтому лучше запомнить его расположение перед тем, как снять.

Рис. 13 Один винт устанавливается без диэлектрической шайбы

При покупке диодов «с рук» на рынке или после установки комплекта полупроводниковых приборов из собственных запасов может быть выявлена их неисправность:

  • в холодном состоянии диод «прозванивается» нормально (сопротивление 500 – 700 Ом в одну сторону, бесконечность в противоположном направлении);
  • после запуска ДВС при нагревании мостика диод «пробивается», не отсекает отрицательное значение напряжения.

Поэтому перед тем, как проверить диодный мост генератора мультиметром, лучше производить в нагретом до 50 – 80 градусов состоянии.

Вынос диодного мостика генератора

Частый ремонт узла выпрямителя неизбежен при экстремальной эксплуатации внедорожника – преодоление рек, «грязевые ванны» авто на рыбалке и охоте. Поэтому данная категория автовладельцев решает проблему кардинально, вынося выпрямитель заодно с реле регулятором напряжения в отдельный узел, повыше под капотом.

Например, на нижнем фото показан диодный мост автомобильного генератора внутри корпуса фильтра воздушного.

Рис. 14 Выносной диодный мост в корпусе фильтра

Основными нюансами тюнинга в данном случае являются:

  • корпус фильтра предохраняет электронику от влаги;
  • полностью решена проблема охлаждения;
  • повышена ремонтопригодность узла, не нужно разбирать генератор;
  • усилены клеммы, использован провод большего сечения;
  • термоусадочный материал не подвергался высокотемпературной обработке, поэтому жгут внутри него сохранил мягкость;
  • использован мост на 8 диодах 90 А.

При необходимости выносной узел можно смонтировать внутри салона, например, за пассажирским сиденьем.

Таким образом, выпрямитель генератора влияет на работоспособность АКБ и потребителей бортовой системы. При возникновении посторонних звуков из электродвигателей приборов, загоревшейся лампы зарядки аккумулятора необходимо произвести диагностику каждого реле мостика, отремонтировать или заменить узел выпрямителя полностью.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Источник: https://swapmotor.ru/ustrojstvo-dvigatelya/diodnyj-most-generatora.html

Что такое диодный мост — простое объяснение

Мы рассматривали пассивные компоненты электронных схем, такие как резисторы и конденсаторы. Но кроме них электрикам и радиолюбителям приходится сталкиваться и с другими, например полупроводниковыми диодами, стабилитронами и т.д. В этой статье мы расскажем, что такое диодный мост, как он работает и для чего нужен.

Определение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.

Принцип действия

Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.

Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.

Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:

  • На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или ~).
  • Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.

Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.

Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.

Основные характеристики

Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):

  • Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
  • Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
  • Io – средний выпрямленный ток, то же что и Iпр у отечественных.
  • Ifsm – пиковый выпрямленный ток.
  • Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.

При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?

В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:

  • максимальный выпрямленный ток – 3А;
  • пиковый ток (кратковременно) – 50А;
  • обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).

Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.

Схемы выпрямителей

Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

Чтобы не было путаницы, давайте разбираться в терминологии.

Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

Как спаять и подключить

Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

Область применения и назначение

Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

ЭТО ИНТЕРЕСНО:  Что такое переменный резистор

Способы проверки

Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:

На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-diodnyj-most.html

Диодный мост – как он работает?

Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток.

Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления – это борьба противоречий.

Производить (вырабатывать на электростанциях) удобнее и проще переменный ток.

Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.

С точки зрения трансформации (уменьшение величины напряжения) удобнее работать с переменным током. Принцип работы трансформаторы построен на пульсирующем или переменном напряжении.

Большинство потребителей электроэнергии (речь идет об устройствах) работают на постоянном токе. Электросхемы не могут работать с переменным напряжением.

В результате мы имеем следующую картину:
До розетки доходит переменный ток с напряжением 220 вольт. А все домашние электроприборы (за исключением тех, которые содержат мощные электродвигатели и нагревательные элементы) питаются постоянным током.

Внутри большинства домашнего оборудования есть блоки питания. После понижения (трансформации) величины напряжения, необходимо преобразовать ток из переменного в постоянный. Основой такой схемы является диодный мост.

Для чего нужен диодный мост?

Исходя из определения, переменный ток с определенной частотой (в бытовой электросети 50Гц) меняет свое направление, при неизменной величине.

Происходит это в два или три этапа:
С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.

Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.

После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.

Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.

И все же, первым элементом любого блока питания является диодный мост.

Он может быть выполнен как из отдельных деталей, так и в моно корпусе.

Первый вариант занимает много места и сложнее в монтаже.

Есть и преимущества:
такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.

Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.

Как работает диодный мост при минимальном напряжении?

Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима.

Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.

При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.

Кроме того, если проверить мультиметром диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.

Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.

Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.

Однако у диодов Шоттки есть и недостатки
. При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.

Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.

Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.

Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.

Что делать, если есть подозрения на поломку моста?

Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.

На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.

Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.

Как прозвонить диодный мост без выпаивания из схемы?

Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.

Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.

Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.

Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.

Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете

Источник: https://obinstrumente.ru/elektronika/diodnyj-most.html

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Диодный мост: устройство, принцип работы, обозначение на схеме

Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы.

Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента.

Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный.

Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы.

Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Технические характеристики

При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.

Среди таких характеристик наиболее значимыми для диодного моста являются:

  • Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или V­rpm для зарубежных.
  • Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение  Uобр в отечественных образцах или V­r(rms) для зарубежных диодных мостов.
  • Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
  • Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
  • Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как V­fm.

Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки.

Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д.

В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.  

Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения.

Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому.

Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Рис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Рис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост  VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Источник: https://www.asutpp.ru/diodnyy-most.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как отремонтировать теплый пол

Закрыть