Как найти напряжение на резисторе

Как найти силу тока в цепи

как найти напряжение на резисторе
Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени.

Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций.

В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.

Если известна мощность и напряжение

Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:

P=UI

После несложных мы получаем формулу для вычислений

I=P/U

Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:

Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:

Р1 = Р2/η

Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.

Находим полную мощность с учетом cosФ (он также указывается на шильдике):

S = P1/cosφ

Определяем потребляемый ток по формуле:

Iном = S/(1,73·U)

Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.

Если известно напряжение или мощность и сопротивление

Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.

I=U/R

Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:

P=UI

При этом согласно тому же закону Ома:

U=IR

То:

 P=I2*R

Значит расчёт проводим по формуле:

I2=P/R

Или возьмем выражение в правой части выражения под корень:

I=(P/R)1/2

Если известно ЭДС, внутреннее сопротивление и нагрузка

Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:

I=E/(R+r)

Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.

Его формула выглядит так:

Q=I2Rt

Тогда расчет проводите так:

I2=QRt

Или внесите правую часть уравнения под корень:

I=(Q/Rt)1/2

Несколько примеров

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

R1+R2=1+2=3 Ома

Тогда рассчитать силу тока можно по закону Ома:

I=U/R=12/3=4 Ампера

При параллельном соединении двух элементов Rобщее можно рассчитать так:

Rобщ=(R1*R2)/(R1+R2)=1*2/3=2/3=0,67

Тогда дальнейшие вычисления можно проводить так:

I=12*0,67=18А

2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Rприв=(R2*R3)/(R2+R3)=(3*3)|(3+3)=9/6=3/2=1,5 Ома

Теперь схема примет вид:

Далее находим ток по тому же закону Ома:

I=U/(R1+Rприв)=24/(1+1,5)=24/2,5=9,6 Ампер

Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!

Наверняка вы не знаете:

Источник: https://samelectrik.ru/kak-najti-silu-toka.html

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

как найти напряжение на резисторе

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

 Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Источник: http://www.joyta.ru/7328-delitel-napryazheniya-na-rezistorax-raschet-onlajn/

Расчет токоограничивающего резистора для светодиода

как найти напряжение на резисторе

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.

Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет.

Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения.

Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристика Длина волны, нМ Напряжение, В
Инфракрасные от 760 до 1,9
Красные 610 — 760 от 1,6 до 2,03
Оранжевые 590 — 610 от 2,03 до 2,1
Желтые 570 — 590 от 2,1 до 2,2
Зеленые 500 — 570 от 2,2 до 3,5
Синие 450 — 500 от 2,5 до 3,7
Фиолетовые 400 — 450 2,8 до 4
Ультрафиолетовые до 400 от 3,1 до 4,4
Белые широкий спектр от 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.

Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.

Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.

Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.

Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Источник: https://raschet.info/raschet-tokoogranichivajushhego-rezistora-dlja-svetodioda/

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной.

Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е.

ЭТО ИНТЕРЕСНО:  Как проверить плотность аккумулятора в домашних условиях

против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

(1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

(2)

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

(3)

Итак, , и мы приравниваем правые части формул (2) и (3):

После сокращения на получаем:

Вот мы и нашли ток в цепи:

(4)

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

(5)

Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

Кпд электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

Кпд электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

(6)

или, что то же самое:

(7)

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

(8)

или:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Источник: https://ege-study.ru/ru/ege/materialy/fizika/eds-zakon-oma-dlya-polnoj-cepi/

Делитель напряжения

Для того, чтобы поделить напряжение, нам потребуется два и более резисторов.  Для начала рассмотрим вот такой рисунок:

Наш схема состоит из двух резисторов, подключенных последовательно. На эти резисторы подается напряжение. Оно может быть как переменное, так и постоянное. Назовем его U. Пропуская ток через эти резисторы, у нас сразу же в дело вступит Закон Ома.  Мы знаем, что если резисторы соединены последовательно, то их общее  сопротивление  будет равняться сумме их номиналов. То есть получается, что

Rобщее=R1+R2

I=U/Rобщее

то есть можно написать

I=U/(R1+R2)

При последовательном соединении резисторов, сила тока – I, проходящая через каждый резистор одинакова – это есть закон последовательного соединения резисторов. Так, разобрались. У нас каждый резистор обладает каким-то своим сопротивлением. Отсюда напрашивается вывод из Закона Ома, что на каждом сопротивлении у нас будет какое-то свое напряжение, которое зависит от сопротивления резистора.

На сопротивлении R1  у нас будет напряжение U1, а на сопротивлении R2  у нас будет напряжение U2

I=U2/R2=U1/R1=U/(R1+R2)

Давайте найдем значения U1 и U2. Вы все учились в школе и сможете без проблем решить эту уравнение. Умножаем, сокращаем и в конце концов получаем, что

U1=UxR1/(R1+R2)

U2=UxR2/(R1+R2)

А вы знаете, что если сложить правые части уравнения, получим U ? Не верите? Проверьте! Отсюда получаем, что U=U1+U2.

Короче говоря простым языком чайника: если резисторы включены в цепь последовательно, то на каждом резисторе падает напряжение (падает, значит на концах резистора имеется это напряжение) и сумма падений напряжений на всех резисторах будет равняться напряжению источника (батарейки, блока питания или какого-нибудь источника ЭДС). Мы разделили напряжение источника U на два  разных напряжения U1 и U2.

Делитель напряжения из большого количества резисторов

Для лучшего понимания давайте рассмотрим еще одну цепь, состоящую из n резисторов

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

Делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замеряем напряжение с помощью мультиметра (не смотрите на показания блока питания, он обладает бОльшей погрешностью, чем мультиметр).

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять с помощью мультиметра.

Замеряем напряжение на большом резисторе. На нем падает 3,21 Вольт.

Замеряем напряжение на маленьком резисторе. На нем падает 6,77 Вольт

Ну что, с математикой думаю у всех в порядке. Складываем эти два значения напряжения 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения.

Сила тока в цепи при последовательном соединении резисторов

Давайте же убедимся, что сила тока при последовательном соединении резисторов везде одинакова. 0,04 А или 40 мА.

Убедились?

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно делить напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

Принцип такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться  в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая , всего 1 Вт, то не будем нагружать его большим напряжением. Формула мощности P=IU.  Ток потребления из закона Ома I=U/R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого  резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Суммируем напряжение  и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись, скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор может использоваться как делитель напряжения.

Источник: https://www.ruselectronic.com/djelitjel-naprjazhjenija/

Формула сопротивления резистора

> Теория > Формула сопротивления резистора

Резисторы применяются практически во всех электросхемах. Это наиболее простой компонент, в основном, служащий для ограничения или регулирования тока, благодаря наличию сопротивления при его протекании.

Виды резисторов

Внутреннее устройство детали может быть различным, но преимущественно это изолятор цилиндрической формы, с нанесённым на его внешнюю поверхность слоем либо несколькими витками тонкой проволоки, проводящими ток и рассчитанными на заданное значение сопротивления, измеряемое в омах.

Существующие разновидности резисторов:

  1. Постоянные. Имеют неизменное сопротивление. Применяются, когда определенный участок электроцепи требует установки заданного уровня по току или напряжению. Такие компоненты необходимо рассчитывать и подбирать по параметрам;
  2. Переменные. Оснащены несколькими выводными контактами. Их сопротивление поддается регулировке, которая может быть плавной и ступенчатой. Пример использования – контроль громкости в аудиоаппаратуре;
  3. Подстроечные – представляют собой вариант переменных. Разница в том, что регулировка подстроечных резисторов производится очень редко;
  4. Есть еще резисторы с нелинейными характеристиками – варисторы, терморезисторы, фоторезисторы, сопротивление которых меняется под воздействием освещения, температурных колебаний, механического давления.

Важно! Материалом для изготовления практически всех нелинейных деталей, кроме угольных варисторов, применяемых в стабилизаторах напряжения, являются полупроводники.

Параметры резисторного элемента

  1. Для резисторов применяется понятие мощности. При прохождении через них электротока происходит выделение тепловой энергии, рассеиваемой в окружающее пространство. Мощность детали является параметром, который показывает, сколько энергии она может выделить в виде тепла, оставаясь работоспособной.

    Мощность зависит от габаритов детали, поэтому у маленьких зарубежных резисторов ее определяют на глаз, сравнивая с российскими, технические характеристики которых известны;

Ряд сопротивления резистора Е24

Важно! Импортные резисторные элементы идентичной мощности имеют несколько меньшие размеры, так как российские производятся с некоторым запасом по этому показателю.

На схеме мощность показана следующим образом.

Условное обозначение мощности

  1. Второй параметр – сопротивление элемента. На российских деталях типа МЛТ и крупных импортных образцах оба параметра указываются на корпусе (мощность – Вт, сопротивление – Ом, кОм, мОм). Для визуального определения сопротивления миниатюрных импортных элементов применяется система условных обозначений с помощью цветных полосок;

Цветовая маркировка резисторов

  1. Допуски. Невозможно изготовить деталь с номинальным сопротивлением, в точности соответствующим заявленному значению. Поэтому всегда указываются границы погрешности, называемые допуском. Его величина – 0,5-20%;
  2. ТКС – коэффициент температуры. Показывает, как варьируется сопротивление при изменении внешней температуры на 1°С. Желательно, но не обязательно подбирать элементы с близким или идентичным значением этого показателя для одной цепи.

Расчет резисторов

Для расчета сопротивления резистора формула применяемая в первую очередь – это закон Ома:

I = U/R.

Исходя из этой формулы, можно вывести выражение для сопротивления:

R = U/I,

где U – разность потенциалов на выводных контактах резистора.

Пример. Необходимо провести зарядку аккумулятора 2,4 В зарядным током 50 мА от автомобильной 12-вольтовой батареи. Прямое соединение сделать нельзя из-за слишком высоких показателей по току и напряжению. Но возможно поставить в схему сопротивление, которое обеспечит нужные параметры.

Предварительно нужно рассчитать резистор:

  • Расчет начинается с определения падения напряжения, которое должен обеспечить резисторный элемент:

U = 12-2,4 = 9,6 B

  • Протекающий по детали ток – 50 мА. Следовательно, R = 9,6/0,05 = 192 Ом

Теперь можно уже подобрать нужный резистор по одному показателю.

Если рассчитанной детали не нашлось, можно применить соединение из нескольких резисторных элементов, установив их последовательно или параллельно. Расчет сопротивлений при этом имеет свои особенности.

Последовательное соединение

Последовательно соединенные сопротивления складываются:

R = R1+ R2.

Если нужно получить общий результат 200 Ом, и имеется один резистор на 120 Ом, то расчет другого:

R2 = R-R1 = 200-120 = 80 Ом.

Последовательное соединение

Параллельное соединение

При параллельной схеме другая зависимость:

1/R = 1/R1 + 1/R2.

Или преобразованный вариант:

R = (R1 x R2)/ (R1 + R2).

Важно! Параллельное соединение можно использовать, когда в наличии детали с большим сопротивлением, чем требуется, последовательное наоборот.

Пример. Необходимо сопротивление 200 Ом. Имеется деталь R2 на 360 Ом. Какое сопротивление подобрать еще? R1 = R2/(R2/R-1) = 360/(360/200-1) = 450 Ом.

Смешанное соединение

В смешанных схемах присутствуют последовательно-параллельные комбинации. Расчет таких схем сводится к их упрощению путем преобразований. На рисунке ниже представлено, как упростить схему, рассчитывая общий показатель для шести резисторов с учетом их соединения.

Расчет сопротивления в смешанной схеме

Мощность

Определив сопротивление, еще нельзя выбрать деталь. Чтобы обеспечить надежную работу схемы, необходимо найти и другой параметр – мощность. Для этого надо знать, как рассчитать мощность резисторного элемента.

Формулы, по которым можно рассчитать мощность резистора:

Пример. I = 50 мА; R = 200 Ом. Тогда P = I² x R = 0,05² x 200 = 0,5 Вт.

Если не учитывать значение тока, расчет мощности резистора ведется по другой формуле.

Пример. U = 9,6 В, R = 200 Ом. P = U²/R = 9,6²/200 = 0,46 Вт. Получился тот же результат.

Теперь, зная точные параметры рассчитываемого резисторного элемента, подберем радиодеталь.

Важно! При выборе деталей возможно их заменить на резисторы с мощностью, больше рассчитанной, но обратный вариант не подходит.

Это основные формулы для расчета резисторных деталей, на основании которых производится анализ узлов схемы, где главным является определение токов и напряжений, протекающих через конкретный элемент.

Сопротивление тока: формула

Источник: https://elquanta.ru/teoriya/formula-soprotivleniya-rezistora.html

Делитель напряжения — Основы электроники

Делитель напряжения это цепь или схема соединения резисторов, применяемая для получения разных напряжений от одного источника питания.

Рассмотрим цепь из двух последовательно соединенных резисторов с разными сопротивлениями (рис. 1).

Рисунок 1. Последовательная цепь есть простейший делитель напряжения.

Согласно закону Ома если приложить к такой цепи напряжение, то падение напряжения на этих резисторах будет тоже разным.

UR1=I*R1;

UR2=I*R2.

Схема, изображенная на рисунке 1, и есть простейший делитель напряжения на резисторах. Обычно делитель напряжения изображают, как это показано на рисунке 2.

Рисунок 2. Классическая схема делителя напряжения.

Для примера разберем простейший делитель напряжения, изображенный на рисунке 2. В нем R1 = 2 кОм, R2 = 1 кОм и на­пряжение источника питания, оно же и есть входное напряжения делителя Uвх = 30 вольт. Напряжение в точке А равно полному напряжению источника, т. е. 30 вольт. Напряжение Uвых, то есть в точке В равно напряжению на R2.Определим напряжение Uвых.

Общий ток в цепи равен:

(1)

Для нашего примера I=30 В/ (1 кОм + 2 кОм) = 0,01 А = 10 мА.

Напряжение на R2 будет равно:

(2)

Для нашего примера UR2 = 0,01 А*1000 Ом = 10 В.

Выходное напряжение можно вычислить вторым способом, подставив в выражение (2) значение тока (1), тогда получим:

(3)

UR2 = 30 В*1 кОм/(1 кОм + 2 кОм) = 10 В.

Второй способ применим для любого делителя напряжения, состоящего из двух и более резисторов, включенных последовательно. Напряжение в любой точке схемы можно вычислить с помощью калькулятора за один прием, минуя вычисление тока.

Делитель напряжения из двух последовательно включенных резисторов с равными сопротивлениями

Если делитель напряжения состоит из двух одинаковых резисторов, то приложенное напряжение делится на них пополам.

Uвых = Uвх/2

Делитель напряжения из трех последовательно включенных резисторов с равными сопротивлениями

На рисунке 3 изображен делитель напряжения, состоящий из трех одинаковых резисторов сопротивлением в 1 кОм каждый. Вычислим напряжение в точках А и В относительно точки Е.

Рисунок 3. Делитель напряжения из трех резисторов.

Общее сопротивление R= R1+R2+R3 = 1 кОм + 1 кОм + 1 кОм = 3 кОм

Напряжение в точке А относительно точки Е будет равно:

Тгда Ua-e =30 В/(1 кОм + 1 кОм + 1 кОм)*1 кОм = 10 В.

Напряжение в точке В относительно точки Е будет равно:

Тгда Ub-e =30 В/(1 кОм + 1 кОм + 1 кОм)*(1 кОм + 1 кОм) = 20 В.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник: http://www.sxemotehnika.ru/delitel-napryazheniya.html

Резистор тока

Резистор тока выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи, создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность – это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А),

где

  • P(Вт) – мощность,
  • U(В) – напряжение,
  • I(А) – ток.

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт – 0,5 Ватт в данном случае – минимум.

Мощность резистора может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

  • 0.125 Вт
  • 0.25 Вт
  • 0.5 Вт
  • 1 Вт
  • 2 Вт
  • Более 2 Вт

Рассмотрим на примере: номинальное сопротивление нашего резистора тока – 100 Ом. Через него течет ток 0,1 Ампер. Чтобы узнать мощность, на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом), 

где

  • P(Вт) – мощность,
  • R(Ом) – сопротивление цепи (в данном случае резистора),
  • I(А) – ток, протекающий через резистор.

Внимание! При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А . Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)       

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор с мощностью в 1,5 – 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора тока сопротивлением 100 Ом. Ток, протекающий через него – 0,1 Ампер. Соответственно, его мощность – 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом – 0,2 Вт, мощность резистора на 80 Ом – 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

R2 – 80 Ом (1 Вт)

Из всего вышесказанного можно сделать вывод, что разное сопротивление резисторов гарантирует их разную выделяемую мощность, так как она распределяется между резисторами разных номиналов. Если не учитывать это обстоятельство, то можно столкнуться с большим количеством трудностей. Если один из резисторов выбран неправильно – второй работает в тяжелом температурном режиме. Также присутствует угроза возгорания резистора из-за несоблюдения правил мощности.

Для того, чтобы сэкономить время и не рассчитывать мощность каждого отдельного резистора тока нужно запомнить одно простое правило: мощность заменяемого резистора должна быть равна мощности каждого резистора, составляющего параллельную или последовательную цепь. То есть при замене резистора мощностью 0,5 Вт надо следить за тем, чтобы каждый из резисторов для замены имел мощность не менее 0,5 Вт.

При параллельном соединение резисторов важно помнить, что чем меньше сопротивление резистора, тем больший ток через него протекает, а значит на нем будет рассеяна большая мощность.

Источник: https://www.calc.ru/Rezistor-Toka.html

Расчет простых цепей постоянного тока

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.  

Пример 1

  Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r= 0,5 Ом. Сопротивления резисторов  R1 = 20 и R2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи. 

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов. 

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. 

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. 

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.

Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

  Общий ток цепи, содержащей два соединенных параллельно резистора R1=70 Ом и R2=90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока. Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов. 

Токи в резисторах 

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если у вас возникли затруднения, прочтите статью законы Кирхгофа.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи 

А затем напряжение 

Зная напряжения, найдем токи, протекающие через резисторы 

Как видите, токи получились теми же.

Пример 3

  В электрической цепи, изображенной на схеме R1=50 Ом, R2=180 Ом, R3=220 Ом. Найти мощность, выделяемую на резисторе R1, ток через резистор R2, напряжение на резисторе R3, если известно, что напряжение на зажимах цепи 100 В.

Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R1, необходимо определить ток I1, который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи 

Отсюда мощность, выделяемая на R1 

Ток I2 определим с помощью формулы делителя тока, учитывая, что ток I1 для этого делителя является общим 

Так как, напряжение при параллельном соединении резисторов одинаковое, найдем U3, как напряжение на резисторе R2 

Таким образом производится расчет простых цепей постоянного тока.

1 1 1 1 1 1 1 1 1 1 4.48 (192 Голоса)

Источник: https://electroandi.ru/toe/dc/raschet-prostykh-tsepej-postoyannogo-toka.html

Смешанное соединение проводников. Расчёт электрических цепей

1. При по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков общее со­про­тив­ле­ние участ­ка равно сумме со­про­тив­ле­ний про­вод­ни­ков:

2. При по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков силы тока в каж­дом из про­вод­ни­ков равны и равны общей силе тока на участ­ке цепи:

3. При по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков сумма на­пря­же­ний равна об­ще­му на­пря­же­нию на участ­ке цепи:

4. При па­рал­лель­ном со­еди­не­нии про­вод­ни­ков общая про­во­ди­мость участ­ка равна сумме про­во­ди­мо­стей про­вод­ни­ков:

5. При па­рал­лель­ном со­еди­не­нии про­вод­ни­ков сумма сил токов равна общей силе тока на участ­ке цепи:

6. При па­рал­лель­ном со­еди­не­нии про­вод­ни­ков на­пря­же­ния в каж­дом из про­вод­ни­ков равны и равны об­ще­му на­пря­же­нию на участ­ке цепи:

Задача 1

Че­ты­ре оди­на­ко­вые лампы под­клю­че­ны к ис­точ­ни­ку по­сто­ян­но­го на­пря­же­ния (см. Рис. 1). Опре­де­ли­те силу тока в каж­дой лампе, если на­пря­же­ние на ис­точ­ни­ке со­став­ля­ет 30 В.

Дано: ;

Найти: , , ,

Ре­ше­ние

Рис. 1. Ил­лю­стра­ция к за­да­че

На ри­сун­ке 1 изоб­ра­же­на элек­три­че­ская цепь со сме­шан­ным со­еди­не­ни­ем про­вод­ни­ков: лампы 2 и 3 со­еди­не­ны па­рал­лель­но, а лампы 2 и 4 со­еди­не­ны по­сле­до­ва­тель­но с участ­ком цепи, со­сто­я­щим из ламп 2 и 3.

Про­во­ди­мость участ­ка цепи, со­сто­я­ще­го из ламп 2 и 3, равна:

Сле­до­ва­тель­но, со­про­тив­ле­ние этого участ­ка равно:

Так как лампы 1 и 4 со­еди­не­ны по­сле­до­ва­тель­но с участ­ком цепи, со­сто­я­щим из ламп 2 и 3, то общее со­про­тив­ле­ние ламп будет равно:

Со­глас­но за­ко­ну Ома, сила тока всей цепи равна:

Так как при по­сле­до­ва­тель­ном со­еди­не­нии про­вод­ни­ков силы тока в каж­дом из про­вод­ни­ков равны и равны общей силе тока на участ­ке цепи, то:

Необ­хо­ди­мо найти силу тока на лам­пах 2 и 3. Для этого вы­чис­лим на­пря­же­ние на участ­ке цепи, ко­то­рый со­сто­ит из ламп 2 и 3:

Так как лампы 2 и 3 со­еди­не­ны па­рал­лель­но, то на­пря­же­ния на этих лам­пах равны:

От­сю­да сила тока в каж­дой лампе равна:

Ответ:  ;  

Задача 2

Уча­сток цепи, ко­то­рый со­сто­ит из че­ты­рёх ре­зи­сто­ров, под­клю­чён к ис­точ­ни­ку с на­пря­же­ни­ем 40 В (см. Рис. 2). Вы­чис­ли­те силу тока в ре­зи­сто­рах 1 и 2, на­пря­же­ние на ре­зи­сто­ре 3. Со­про­тив­ле­ние пер­во­го ре­зи­сто­ра равно 2,5 Ом, вто­ро­го и тре­тье­го – по 10 Ом, чет­вёр­то­го – 20 Ом.

Дано: ; ; ;

Найти: , ,

Ре­ше­ние

Рис. 2. Ил­лю­стра­ция к за­да­че

Через ре­зи­стор  течёт такой же ток, как и через весь уча­сток (), сле­до­ва­тель­но, со­глас­но за­ко­ну Ома:

То есть для на­хож­де­ния  нужно вы­чис­лить со­про­тив­ле­ние (R) всего участ­ка цепи, ко­то­рый со­сто­ит из двух по­сле­до­ва­тель­но под­клю­чён­ных ча­стей, одна часть с ре­зи­сто­ром , дру­гая часть с ре­зи­сто­ра­ми :

Ре­зи­стор  со­еди­нён па­рал­лель­но ре­зи­сто­рам  и , сле­до­ва­тель­но:

Ре­зи­сто­ры  и  со­еди­не­ны по­сле­до­ва­тель­но, по­это­му:

Сле­до­ва­тель­но, со­про­тив­ле­ние всей цепи равно:

Под­ста­вим дан­ное зна­че­ние в фор­му­лу для на­хож­де­ния тока в ре­зи­сто­ре :

Так как при па­рал­лель­ном со­еди­не­нии про­вод­ни­ков на­пря­же­ния в каж­дом из про­вод­ни­ков равны и равны об­ще­му на­пря­же­нию на участ­ке цепи, то:

От­сю­да:

При по­сле­до­ва­тель­ном со­еди­не­нии силы тока оди­на­ко­вы, по­это­му:

По­лу­чи­ли си­сте­му урав­не­ний:

Решив эту си­сте­му по­лу­чим, что:

Так как  и  со­еди­не­ны по­сле­до­ва­тель­но:

На­пря­же­ние на ре­зи­сто­ре  равно:

Ответ: ;  ;  

Задача 3

Най­ди­те пол­ное со­про­тив­ле­ние цепи (см. Рис. 3), если со­про­тив­ле­ние ре­зи­сто­ров , , . Най­ди­те силу тока, иду­ще­го через каж­дый ре­зи­стор, если к цепи при­ло­же­но на­пря­же­ние 36 В.

Дано: ; ; ;

Найти: , , , , , , ;

Ре­ше­ние

Рис. 3. Ил­лю­стра­ция к за­да­че

Ре­зи­сто­ры , ,  со­еди­не­ны по­сле­до­ва­тель­но, по­это­му со­про­тив­ле­ние на этом участ­ке равно:

Ре­зи­стор  под­клю­чён па­рал­лель­но участ­ку с ре­зи­сто­ра­ми , , , по­это­му со­про­тив­ле­ние на участ­ке с ре­зи­сто­ра­ми ,, ,  равно:

Ре­зи­сто­ры  и  со­еди­не­ны с участ­ком цепи с ре­зи­сто­ра­ми ,, ,  по­сле­до­ва­тель­но, то есть общее со­про­тив­ле­ние цепи равно:

Через ре­зи­стор  и   () нераз­ветв­лён­ной цепи течёт весь ток цепи, по­это­му:

По за­ко­ну Ома этот ток равен:

Общее на­пря­же­ние цепи будет со­сто­ять из на­пря­же­ний , так как ,,  со­еди­не­ны по­сле­до­ва­тель­но (, по­то­му что  и  па­рал­лель­ны):

Со­глас­но за­ко­ну Ома:

Ре­зи­сто­ры , ,  со­еди­не­ны по­сле­до­ва­тель­но, сле­до­ва­тель­но:

Ответ: ; ; ;   

Разветвление: Задача на бесконечную электрическую цепь

Най­ди­те со­про­тив­ле­ние R бес­ко­неч­ной цепи, по­ка­зан­ной на ри­сун­ке 4.

Рис. 4. Ил­лю­стра­ция к за­да­че

Ре­ше­ние

По­сколь­ку рас­смат­ри­ва­е­мая в за­да­че цепь бес­ко­неч­на, уда­ле­ние одной «ячей­ки», со­сто­я­щей из ре­зи­сто­ров  и , не вли­я­ет на её со­про­тив­ле­ние. Сле­до­ва­тель­но, вся цепь, на­хо­дя­ща­я­ся пра­вее звена , тоже имеет со­про­тив­ле­ние R. Это поз­во­ля­ет на­ри­со­вать эк­ви­ва­лент­ную схему цепи (см. Рис. 5) и за­пи­сать для неё урав­не­ние.

Рис. 5. Ил­лю­стра­ция к за­да­че

По­лу­чи­ли квад­рат­ное урав­не­ние от­но­си­тель­но R. Решая это урав­не­ние и от­бра­сы­вая от­ри­ца­тель­ный ко­рень (от­ри­ца­тель­но­го со­про­тив­ле­ния не су­ще­ству­ет), по­лу­ча­ем фор­му­лу для об­ще­го со­про­тив­ле­ния цепи:

Про­ана­ли­зи­ро­вав дан­ную фор­му­лу, можно за­ме­тить, что если , то общее со­про­тив­ле­ние цепи . То есть ре­зи­стор с малым со­про­тив­ле­ние  прак­ти­че­ски за­ко­ро­тит всю по­сле­ду­ю­щую бес­ко­неч­ную цепь.

Ответ:

Итоги

Мы рас­смот­ре­ли раз­лич­ные за­да­чи на сме­шан­ное со­про­тив­ле­ние про­вод­ни­ков, а также на рас­чёт элек­три­че­ских цепей.

Разветвление: Задача из ЕГЭ

Со­про­тив­ле­ние каж­до­го ре­зи­сто­ра в цепи (см. Рис. 6) равно 100 Ом. Уча­сток под­клю­чён к ис­точ­ни­ку по­сто­ян­но­го на­пря­же­ния вы­во­да­ми AиB. На­пря­же­ние на ре­зи­сто­ре  равно 12 В. Найти на­пря­же­ние между вы­во­да­ми схемы на участ­ке A–B(ва­ри­ан­ты от­ве­та: а) 12 В; б) 18 В; в) 24 В; г) 36 В.

Дано: ;

Найти:

Ре­ше­ние

Рис. 6. Ил­лю­стра­ция к за­да­че

Ре­зи­сто­ры  рас­по­ло­же­ны по­сле­до­ва­тель­но, зна­чит, силы тока на этих ре­зи­сто­рах равны:

Так как, по усло­вию, , то и на­пря­же­ния на этих ре­зи­сто­рах будут равны:

Сле­до­ва­тель­но, общее на­пря­же­ния на участ­ке, со­сто­я­щем из ре­зи­сто­ров , будет равно:

Так как уча­сток с ре­зи­сто­ра­ми  со­еди­нён с участ­ком с ре­зи­сто­ра­ми  па­рал­лель­но, то на­пря­же­ния на этих участ­ках равны между собой и равны об­ще­му на­пря­же­нию на участ­ке A–B:

Ответ: г) 36 В

Дан­ную за­да­чу, как видим, можно ре­шить, не зная зна­че­ний со­про­тив­ле­ния, а зная толь­ко то, что они равны. Также эту за­да­чу можно ре­шить, зная зна­че­ние со­про­тив­ле­ний , даже если они не равны.

Вопросы к конспектам

Уча­сток элек­три­че­ской цепи со­сто­ит из трех со­про­тив­ле­ний: ; ;  (см. Рис. 7). Опре­де­ли­те по­ка­за­ния вольт­мет­ров  и ам­пер­мет­ров , если ам­пер­метр  по­ка­зы­ва­ет силу тока 2 А.

Рис. 7. Ил­лю­стра­ция к за­да­че

Как нужно со­еди­нить че­ты­ре ре­зи­сто­ра, со­про­тив­ле­ния ко­то­рых 0,5 Ом, 2 ОМ, 3,5 Ом и 4 Ом, чтобы их общее со­про­тив­ле­ние было 1 Ом?

Источник: https://100ballov.kz/mod/page/view.php?id=1132

Соединение резисторов

Это такое соединение, при котором все элементы идут один за одним без разветвлений.

Свойства последовательного соединения

1. Ток во всех резисторах одинаков- I1 = I2 = I3;

2. Общее напряжение цепи равно сумме напряжений на всех резисторах- U=U1 + U2 + U3;

3.Сопротивление по отношению к входным зажимам называется входным сопротивлением и равно сумме сопротивлений участков — Rвх= R1 + R2 + R3;

4. Чем больше сопротивление участка, тем больше на нём падает напряжение-.

ПАРАЛЛЕЛЬНОЕ Соединение резисторов

Это такое соединение, при котором все начала элементов соединяются в одну точку, а все концы в другую и к этим точкам подводится напряжение.

Свойства параллельного соединения резистора:

1. Общее напряжение цепи равно напряжению на каждом участке-

U = U1 = U2 = U3

2. Общий ток цепи равен сумме токов на всех участках- I = I1 + I2 + I3

3. Чтобы найти входное сопротивление, рассчитывают вначале величину обратную входному сопротивлению

— проводимость (G)

Общая проводимость цепи равна сумме проводимостей на каждом участке.

G = G1 + G2 + G3

4.Чем больше сопротивление участка, тем меньше ток, протекающий на нем.

При параллельном соединении двух резисторов формулу входного сопротивления можно преобразовать

1.

2. Если известен общий ток, то можно найти ток ветви, умножив общий ток на сопротивление противоположной ветви и разделить на сумму сопротивлений ; .

Тестовые задания:

Задание Варианты ответов
1.Являются ли при последовательном соединении резисторов напряжения участков пропорционально сопротивлениям этих участков. Да;Нет.
2.Являются ли при параллельном соединении резисторов токи ветвей пропорциональны сопротивлениям этих ветвей. Да;Нет.
3.Укажите по какому из приведенных математических выражений нельзя рассчитать входное сопротивление двух параллельно соединенных резисторов. а) ; б);в) ; г)

Смешанное соединение резисторов

Пример решения задач

Дано:

U = 60 В

R1 = 7 Ом

R2 = 12 Ом

R3 = 4 Ом

Найти: I1; I2; I3 = ?

Резисторы R2 и R3 параллельны между собой, и их общее сопротивление R2-3 последовательно с R1.

Rвх = R1 + R2 — 3

R

вх =R1+R2∙3= 7 + 3 = 10 Ом

I1 = I

вх = 6 А

U2 — 3 = I∙R2 — 3

— находим напряжение разветвленного участка:

U2 — 3 = I∙R2 — 3 = 6∙3 = 18 В

U2 — 3 = U2 = U3 =18 В

— т.к. параллельное соединение

А

Дано:

U=240 В

R1 = 20 Ом

R2 = 120 Ом

R3 = 40 Ом

R4 = 60 Ом

R5 = 30 Ом

R6 = 20 Ом

Найти: I

1-6 -?

; R4-6 = 10 Ом;

;

; R2-3 = 30 Ом

Rвх=R1+R2-3+R4-6 = 20 + 30 +10 = 60 Ом;

; ;

U2-3 =I∙R2-3=

4∙30 = 120 В;

U2 — 3 = U2 = U3;

;

;

U4-6=I∙R4-6=4∙10=40B;

U4-6=U4=U5=U6;

;

;

;

Дано:

E =

20 В

Ri=2Ом

R1 =

9Ом

R2 =

6 Ом

R3 =

12 Ом

R4 =

1 Ом

R5 =

2 Ом

R6 =

1 Ом

R4-6 = R4 + R5 + R6;

;

R3-6 = 3 Ом;

Rвх = R1 + R3-6 +R2 = 9 + 3 + 6 = 18 Ом;

I=;

I=I1=I2=1А;

U3-6=I∙R3-6=1∙3=3В;

U3-6=U3=U4-6;

I3=;

I4=I5=I6=;

Cоставим подробное уравнение баланса мощностей для данной схемы. Оно является проверкой правильности решения задачи.

Pu=Pн+Р0;

EI=I21∙ R1+ I22∙ R2+ I23R3+I42R4+I25R5+I26+I2Ri;

20∙1=12∙9+12∙6+(0,25)2∙12+(0,75)2∙1+(0,75)22+(0,75)21+12∙2;

20Вт=20Вт- задача решена верно

ТОЭЭ   к библиотеке    

Знаете ли Вы, что, как и всякая идолопоклонническая религия, релятивизм представляет собой инструмент идеологического подчинения одних людей другим с помощью абсолютно бессовестной манипуляции их психикой для достижения интересов определенных групп людей, стоящих у руля этой воровской машины? Подробнее читайте в FAQ по эфирной физике.

НОВОСТИ ФОРУМАРыцари теории эфира

Источник: http://bourabai.kz/toe/resistors.htm

Как рассчитать падение напряжения на резисторе?

При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

Значение Формула
Базовый расчёт напряжения на участке цепи U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного тока U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

Значение Формула
Расчет сопротивления одного элемента R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводника R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2++Rn, где R=R1+R2++Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2++1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Потери напряжения

Потеря напряжения представляет собой расход электрической энергии на преодоление сопротивления и нагревание проводов.

Падение напряжения происходит при работе различных электронных компонентов, например, диодов. Складывается оно из суммы порогового напряжения p-n перехода и проходящего через диод тока, умноженного на сопротивление.

При прохождении тока через резистор также наблюдается падение напряжения. Этот эффект используется для снижения напряжения на отдельных участках цепей. Например, для использования приборов рассчитанных на низкое напряжение в цепях с высоким значением напряжения.

Последовательное включение сопротивления

На схеме приведен пример последовательного включения резистора, который вызывает падение напряжения на лампе с 12 до 7 Вольт. На этом принципе построены регуляторы интенсивности освещения (диммеры).

При эксплуатации проводки с длиной до 10 метров потерями напряжения можно пренебречь.

Потеря напряжения на резисторе и способы замера показаны в видео от канала «Радиолюбитель TV».

К чему приводит потеря напряжения

Потери напряжения в кабельной системе являются причинами ряда негативных явлений:

  • неполноценная и некорректная работа потребителей;
  • повреждение и выход из строя оборудования;
  • понижение мощности и крутящего момента электродвигателей (особенно заметное в момент пуска);
  • неравномерное распределение тока между потребителями на начальном участке и в конце цепи;
  • из-за работы ламп на неполном накале происходит неполное использование мощности тока, что ведет к потерям электроэнергии.

От чего зависит потеря

Потеря напряжения в цепях переменного и постоянного напряжения имеет зависимость от силы тока и сопротивления проводника. При увеличении указанных параметров потери напряжения возрастают. Кроме того, на потерю оказывает влияние конструкция кабелей. Плотность прижатия и степень изоляции проводников в кабеле превращают его в конденсатор, который формирует заряд с ёмкостным сопротивлением.

Потеря напряжения на диодах зависит от типа материала. При использовании германия значение лежит в пределах 0,5-0,7 вольта, на более дешевых кремниевых значение увеличивается и достигает 0,7-1,2 вольта. При этом падение не зависит от напряжения в цепи, а зависит только от силы тока.

К основным причинам потерь тока в магистралях относят:

  1. При прохождении тока происходит нагрев проводника и дополнительное формирование ёмкостного сопротивления, являющегося частью реактивного. При возникновении реактивной нагрузки возникает эффект неполной реализации энергии, частичного отражения от нагрузки и возникновения циркулирующих паразитных токов.
  2. При больших реактивных сопротивлениях возникают скачки напряжения и силы тока, а также дополнительный разогрев проводки.
  3. Индуктивная мощность, возникающая при работе обмоток трансформаторов.

Ещё одной причиной падения напряжения на линиях является воровство электроэнергии.

В бытовых условиях потери напряжения зависят от ряда факторов:

  • затраты энергии на нагрев проводки из-за повышенного потребления;
  • плохой контакт на соединениях;
  • емкостный и индуктивный характер нагрузки;
  • применение устаревших потребителей.

Причины снижения напряжения изложены в видео от канала ElectronicsClub.

Допустимые значения

Значение потери напряжения относится к регламентированным значениям и нормируется несколькими правилами и инструкциями ПУЭ (Правила устройства электроустановок).

Источник: https://1000eletric.com/kak-rasschitat-padenie-napryazheniya-na-rezistore/

Расчёт резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,82В;
  • зеленый и желтый — 22,4В;
  • белые и синие — 33,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Источник: http://radiostorage.net/3811-raschyot-rezistora-dlya-svetodioda-formuly-i-kalkulyator.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как найти общее сопротивление цепи

Закрыть