Как определить тип электродвигателя

Как проверить электродвигатель

как определить тип электродвигателя

Проверка электродвигателя производится с тестером в руках. Обычно прозваниваются все контакты, производится замер величины сопротивлений. С небольшим уровнем знаний о внутреннем устройстве коллекторных и асинхронных двигателей удаётся определить поломку.

Часто отказывает система защиты. Особенно это касается бытовых приборов. Прежде чем проверить двигатель мясорубки, просто подождите недолго. В отдельных моделях стоят температурные реле, не позволяющие прибору включиться, пока мотор не остынет.

Сегодня поговорим, как проверить электродвигатель.

Что понадобится для проверки электродвигателя

Тестирование электродвигателя

Разумеется, потребуется набор отвёрток с различными битами. Современный производитель защищает собственные изделия. Тостер, фен или мультиварка – для вскрытия корпуса понадобится не один размер и тип насадок. Используются обычные шурупы под крест, TORX, звёздочку и прочие. Часть нестандартная, но при терпении правильная головка найдётся. Подойдут наборы бит разной конфигурации.

Большинство двигателей – без изысков в конструкции крепежа. Обычно головки выполнены под шестигранники, кресты или шлицы. Что касается щёток коллекторных электродвигателей, замена производится при помощи подручного инструмента. Понадобится терпение.

Тип электродвигателя

Если речь идёт о мясорубке или пылесосе, двигатель внутри стоит коллекторный. На валу стоит секционный барабан для коммутации обмоток ротора, поверх которого скользит токосъёмник. Это выглядит как цилиндр медного цвета, боковина которого разбита на прямоугольники.

В комплекте к бытовому прибору идут запасные графитовые щётки. А обслуживание подобного электродвигателя сводится к их замене, периодической чистке медного барабана.

Если между секциями набьётся графит, искрение усиливается, возможно возникновение замыкания между соседними обмотками.

Коллекторные электродвигатели используются по причине большого крутящего момента на старте. Скорость их легко регулируется изменением угла отсечки. Если требуется два резко различающихся режима, подобное обеспечивается разными обмотками статора. При отжиме электродвигатель начинает работать на полную. Специфичные моторы способны существенно отличаться от типовых. К примеру, говорят, что у коллекторного двигателя лишь два контакта, ведь ток идёт непрерывно по обмоткам.

Электродвигатели

На практике не только у двигателя стиральной машины два варианта включения, управляемые специальным реле (резкое изменение скорости работы при одинаковом питающем напряжении), но присутствуют выводы тахометра. Это датчик, измеряющий обороты вала, чтобы корректировать угол отсечки тока. Вдобавок коллекторные двигатели часто снабжаются схемами гашения искр и подстройки скорости при изменении нагрузки на вал:

  1. Гашение искр ведётся через варисторы. Их сопротивление резко падает при повышении напряжения. Будучи включены параллельно щёткам и замкнуты на корпус двигателя, они замыкают цепь (прямо через кожух) при резких скачках напряжения. Описанное свойство уберегает обмотки от капризов электросети.
  2. Что касается подстройки скорости вращения под нагрузку на вал, давно замечено, что при увеличении сопротивления вращению уровень искр поднимается. Специальная схема отслеживает это и уменьшает угол отсечки, в результате скорость вала вновь увеличивается. Так производится мелкая подстройка под незначительные отклонения оборотов от номинала. Указанная методика часто встречается в кухонных комбайнах, где тёрка способна шинковать капусту либо производить холостой ход. Что касается, к примеру, пылесосов, в простейших моделях присутствует только гашение искр.

Поговорим, как навскидку понять, находится рядом прибор с коллекторным или асинхронным двигателем. Как легко догадаться, первые сильно шумят. Впрочем, у блендеров это не настолько сильно заметно. Коллекторные двигатели применяются там, где на старте большая нагрузка.

Погрузили блендер, включаем. Возникает сопротивление вращению вала, которое требуется преодолеть. У асинхронного двигателя пришлось бы значительно усложнить конструкцию, сильно пострадали бы массо-габаритные характеристики.

Поэтому в основном в бытовой технике двигатели коллекторные.

Двигатель кухонной вытяжки

Это касается даже мощных кухонных вытяжек. Хотя в простейших моделях стоят асинхронные двигатели с единственной обмоткой. Указанный тип встречается в вентиляторах. Наконец, в компьютерной технике часто присутствуют двигатели постоянного тока. Язык не поворачивается назвать асинхронными, хотя по принципу действия схожи.

Лопасть настолько лёгкая, что индукции, наведённой постоянными магнитами, хватает для вращения. Старт происходит от случайных турбулентностей воздуха. На Ютуб выложено видео, где поле катушек заменено постоянными магнитами, и вентилятор (!) все равно крутится.

В таких двигателях неисправность отслеживается прозвонкой обмоток, больше здесь ломаться нечему.

Итак, выводы:

  • В бытовой технике по большей части используются коллекторные двигатели. Исключение: вентиляторы, фены, маломощные кухонные вытяжки.
  • Коллекторный двигатель отличается наличием графитовых щёток. Секционный медный барабан выдаёт этот тип. Если указанные признаки отсутствуют, двигатель асинхронный.
  • Обслуживание коллекторного двигателя сводится к работе с щётками и секционным барабаном. У асинхронных горят лишь обмотки и термопредохранители.

Начало ремонта электродвигателя

Если определён тип двигателя, можно начинать определение количества фаз. Кстати, асинхронные двигатели промышленного типа часто выполняются в ребристых мощных цилиндрических корпусах – дополнительный ключевой признак. Щётки хрупкие, коллекторные двигатели стараются здесь не применять.

Что касается асинхронных, медь не боится (в отличие от графита) тряски, заводы оснащаются преимущественно ими. Поднимая крутящий момент на старте и улучшая прочие характеристики, используются специальные конструктивные решения. К примеру, обмотка ротора выполняется в два слоя. Нижний работает исключительно на старте, пока токи индукции низкой частоты.

Когда вал раскрутился, вспомогательный слой выключается из процесса работы. Разумеется, аналогичное происходит при снижении оборотов.

Массивный стальной корпус обычно указывает, что двигатель асинхронный. Подумайте: пыль в цеху негативно бы сказывалась на качестве контакта щёток с поверхностью.

Хотя в пылесосах воздушный поток немедленно используется для охлаждения обмоток, не забывайте, что производится тщательная фильтрация. Если брать лучшие модели Дайсон, там качество очистки таково, что ступени HEPA допускается не менять на протяжении эксплуатации.

Речь идёт уже о частицах размером 5 микрон. Вывод – если уж коллекторный двигатель и применяется в неблагоприятных условиях, принимаются специальные меры.

Возможно, стоит отгородить щётки вовсе от помещения? Но при работе оборудования выделяется масса тепла. Требуется принудительное охлаждение. В противном случае определить поломку оказывалось бы чрезвычайно просто – постоянно выходили бы из строя схемы защиты от перегрева: реле и термопредохранители. Либо горят обмотки. Почитайте инструкцию, в бумагах. Как правило, присутствует масса указаний. Поэтому определить, что сломалось, бывает легко.

Если брать мясорубки, авторам нравится приводить примеры из продукции польской фирмы Зелмер, где в модельном ряду удорожание ведётся по признаку защищённости. К примеру:

  1. Самые дешёвые мясорубки идут без защиты. Да, коллектор оснащён варисторами, не исключён факт наличия схемы тонкой подстройки оборотов. Но двигатель фактически беззащитен перед неопытной домохозяйкой. Инструкция предписывает соблюдать длительность рабочего цикла. Период работы ограничен, потом предполагается пауза (в 2-3 раза превышающая период активности). Если предписание не выполняется, горят обмотки, приходится искать способы устранения неисправностей. А дело здесь нерадостное, придётся либо двигатель заменить, либо перемотать катушки. Понять, что сломалось, можно нехитрым способом: извлеките щётки, прозвоните вначале обмотку статора, потом по секциям ротор. Вывод простой – где разрыв, там поломка. Беда дополняется невозможностью перемотать единственную секцию. В общем, весёлый уик-энд гарантирован. А цена нового двигателя кусается.

    Двигатель электромясорубки

  2. Второй (по увеличению стоимости) тип мясорубок оснащается термопредохранителями. Это плавкие элементы, горящие, когда температура доходит, допустим, до 135 градусов (часто это значение фигурирует в трансформаторах блоков питания). Это стандартный элемент, отыщется повсюду, начиная напольными вентиляторами и заканчивая стиральными машинами. Термопредохранитель выглядит как вздутие на изоляции, которой защищена обмотка. Иногда элемент крепится на определённый участок корпуса (в трансформаторах – магнитопровод) при помощи зажимной петли из тонкой стали. Потому починка, как правило, начинается с проверки термопредохранителя. В его задачи как раз входит, чтобы не встала задача прозвонить электродвигатель мультиметром. Предохранитель сгорает, обмотки остаются целыми.
  3. Наконец, дорогие приборы (касается мясорубок, кухонных комбайнов, блендеров и проч.) снабжаются температурными реле. Аналог предохранителя, только многоразовый. Внутри обычно стоит биметаллическая пластина (бывают таблетки, прочие виды датчиков), размыкающая контакт, когда температура достигла критической. Забавно, что на избранных бытовых приборах стоит кнопка принудительной работы электродвигателя, позволяющая обойти описанную защиту. Если не терпится на практике понять, как проверить электродвигатель тестером, пользуйтесь этим бустером в удовольствие. Мы считаем, что ценой мясорубки не нужно пытаться ускорить время приготовления котлет к приходу гостей. Защита на реле отключится, когда температура войдёт в допустимые пределы. Удобство оборудования в отсутствии нужды с часами в руках отслеживать длительность рабочего цикла.

Если читатели рассчитывали в обзоре найти подробную инструкцию, как проверить якорь электродвигателя в домашних условиях, возможно, отдельные личности огорчились. Авторы считают – гораздо важнее понять, где искать неисправность. Можно с пеной у рта дискутировать, как проверить двигатель стиральной машины, и при этом не обратить внимание, что отказал прессостат.

И его показания попросту не позволяют оборудованию запуститься. Аналогично – перед проверкой двигателя холодильника, ознакомьтесь хотя бы приближённо с устройством пускозащитного реле, отвечающего за правильную коммутацию обмоток на старте и после разгона вала. Что касается вопросов прозвонки, дело это недолгое.

Гораздо проще, нежели намотать секцию на ротор коллекторного двигателя болгарки.

Источник: https://vashtehnik.ru/elektrika/kak-proverit-elektrodvigatel.html

Ток, КПД и другие данные с шильдика электродвигателя

как определить тип электродвигателя

Электродвигатели встречаются в промышленности и быту повсеместно. Если Вы не обращали внимание, то я приведу парочку фото примеров:

Порой возникает необходимость, рожденная будничным любопытством, либо производственной необходимостью в определении мощности электродвигателя по внешнему виду.

Тут возможен вариант, что с него содрана табличка, на которой написаны номинальные параметры, либо же шильдик в таком состоянии, что различить ничего невозможно. Как же быть в такой ситуации

Одно дело, если Вы всю жизнь работали на производстве движков, и можете определить мощность на глаз. В иных случаях, определить поможет линейка (рулетка) и таблицы с габаритами механизмов.

Если Ваша деятельность больше лежит в теоретических изысканиях, нежели практических, то пригодится формула определения мощности ЭД или таблицы с номинальным данными, именно про это и не только в этой статье.

Бирка (шильдик) электродвигателя

Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.

Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны какой-то дрянью. Но, нам повезло. Пойдем по-порядку.

Первая строчка — число фаз и тип тока (3~), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции

Вторая строчка — тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения

Третья строчка — возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).

Четвертая строчка — номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.

Рассмотрим отдельные параметры более подробно.

Полная и активная мощность электродвигателя

Формула мощности трехфазного асинхронного двигателя:

Источник: https://pomegerim.ru/elektricheskie-mashiny/parametry-dvigateley-na-tabli4ke.php

Как определить основные параметры электродвигателя? — Онлайн-журнал

как определить тип электродвигателя

У всех электродвигателей на корпусе есть табличка, на которой указываются его электрические характеристики. Именно об основных параметрах электродвигателей мы расскажем в этой статье.

Табличка с номинальными данными электродвигателя

Параметры электродвигателя: таблица

Наименование параметра Единица измерения Примечание
Тип
Номинальная мощность Киловатт
Номинальный ток Ампер Для трехфазных электродвигателей зависит от типа соединения обмоток
Номинальное напряжение Вольт
Коэффициент мощности (КПД)
Коэффициент полезного действия (cos ϕ) %
Номинальная скорость вращения Обороты в минуту

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Параметры электродвигателя №1: мощность

В паспортных данных указывается номинальная активная мощность, потребляемая из сети при номинальной нагрузке на валу. Для производства измерений нужно нагрузить электродвигатель, испытывая его со штатной нагрузкой (в составе устройства, для привода которого он предназначен).

Для измерений можно использовать электросчетчик. Для этого нужно подключить электродвигатель в качестве единственной нагрузки на счетчик на время, засекаемое по секундомеру.

Для удобства расчетов двигатель подключается на время, равное 10 минутам. До подключения и через 10 минут со счетчика снимаются показания. Разность показаний в кВт∙ч, поделенная на 60/10=6, и будет равна мощности электродвигателя в киловаттах.

Некоторые электронные счетчики имеют функцию измерения мгновенной мощности, при этом задача упрощается. Нужно при работающем двигателе зайти в меню измерений счетчика и найти в нем искомое значение.

Параметры электродвигателя №2: потребляемый ток

Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи, измеряющие ток в цепи без ее разрыва.

Токоизмерительные клещи

При использовании мультиметра (как пользоваться мультиметром?) или амперметра нужно заранее убедиться в том, что ожидаемое значение измеряемого параметра лежит в диапазоне измерений. Прибор подключается последовательно с электродвигателем или с одной из обмоток трех фаз. И не стоит забывать о пусковом токе, перед запуском прибор нужно надежно закоротить, чтобы он не сгорел.

Можно воспользоваться и электронным счетчиком с функцией измерения токов.

Если потребляемая мощность уже известна, ток можно подсчитать. Для однофазного двигателя:

Для трехфазного:

Величину напряжения тоже рекомендуется измерить, желательно – непосредственно на зажимах электродвигателя.

Если измерения производятся без нагрузки, то получится ток холостого хода. Подсчитать номинальный ток не представляется возможным, так как ток холостого хода не нормируется и составляет 20-40% от номинального. В этом случае для подсчета токов холостого хода трехфазных асинхронных электродвигателей используются данные таблицы.

Мощность двигателя, кВт Ток холостого хода (в процентах от номинального)
При частоте вращения, об/мин
3000 1500 1000 750 600 500
0,12-0,55 60 75 85 90 95
0,75-1,5 50 70 75 80 85 90
1,5-5,5 45 65 70 75 80 85
5,5-11 40 60 65 70 75 80
15-22,5 30 55 60 65 70 75
22,5-55 20 50 55 60 65 70
55-110 20 40 45 50 55 60

Параметры электродвигателя №3: тип соединения обмоток

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

https://www.youtube.com/watch?v=QihRrkIr3Ig

Схема соединения обмоток

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В». Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Пусковой ток электродвигателя

В момент запуска вал электродвигателя неподвижен. Чтобы его раскрутить, нужно усилие, превышающее номинальное. Поэтому и ток при пуске превышает номинальный. При раскручивании вала ток плавно уменьшается.

Пусковые токи мешают работе электрооборудования, вызывая резкие провалы напряжения. При запуске мощных агрегатов могут даже отпадать пускатели других электродвигателей, гаснуть лампы ДРЛ.

Для снижения последствий запуска применяют три способа.

  1. Переключение в процессе разгона схемы электродвигателя со звезды на треугольник.
  2. Использование электронных устройств плавного пуска.
  3. Использование частотных преобразователей.

Источник: http://electric-tolk.ru/kak-opredelit-parametry-elektrodvigatelya/

Коллекторный двигатель: виды, принцип работы, схемы

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

ЭТО ИНТЕРЕСНО:  Как проверить двигатель постоянного тока

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

Кд универсального типа

на рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. данное исполнение характерно практически для всех кд.

конструкция универсального коллекторного двигателя

обозначения:

  • а – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • в – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • с – сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • d – обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • е – вал якоря.

у устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. что касается универсальных кд последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

схема универсального коллекторного двигателя

универсальный кд может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. в результате этого вращательный момент не изменяет своего направления.

особенности и область применения универсальных кд

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа.

Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность).

Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока.

Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Источник: https://www.asutpp.ru/kollektornyj-dvigatel.html

Расчет мощности двигателя

Как правило, мощность электродвигателя указывается на шильдике, который закреплен на корпусе или в техническом паспорте устройства. Однако в случае, когда данные на шильдике прочитать невозможно, а документация утеряна, определить мощность можно несколькими способами. Сегодня мы расскажем о двух наиболее надежных них.

Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета — к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.

После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения: 

• 2 полюса – 3000 об/мин;

• 4 полюса – 1500 об/мин;

• 6 полюсов – 1000 об/мин;

• 8 полюсов – 750 об/мин.

Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий.

Полученные данные сравниваем с параметрами из таблиц 1-3.

Таблица 1. Определение мощности двигателя по диаметру вала и его вылету

Таблица 2. Определение мощности по расстоянию между отверстиями в лапах

Таблица 3. Определение мощности по диаметру фланца и крепежных отверстий

Определение мощности по потребляемому току

Мощность двигателя можно определить по потребляемому им току. Для измерения силы тока будем использовать токоизмерительные клещи. 

Перед началом измерений предварительно отключаем подачу напряжения на электродвигатель. После этого снимаем крышку с клеммной коробки и расправляем токопроводящие жилы, чтобы обеспечить удобный доступ к ним. 

Затем подаем напряжение на двигатель и даем поработать в режиме номинальной нагрузки в течение нескольких минут. Устанавливаем предел измерений на значение «200 А» и токовыми клещами выполняем измерение потребляемого тока на одной из фаз. Далее замеряем напряжение на обмотках с помощью щупов, входящих в комплект токоизмерительных клещей.

Колесо выбора режимов и пределов измерений устанавливаем в позицию для измерения переменного напряжения с пределом в 750 В. Щуп красного цвета присоединяем к гнезду для измерения напряжения, сопротивления и силы тока до десяти Ампер, а черного – к гнезду «COM». Замеры выполняем между клеммами «U1-V1» или «V1-W1» или «U1-W1». 

Расчет мощности электродвигателя выполняем по формуле:

Источник: https://cable.ru/articles/id-2020.php

Электродвигатели: какие они бывают

В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро? Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».

С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи. Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Почему ДПТ не делают мощнее? проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).

В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения.

Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря.

Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ.

Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.

Универсальный коллекторный двигатель

Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ.

При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся. Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря.

ЭТО ИНТЕРЕСНО:  Как подключить датчик температуры

А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится.

Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться.

Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.

Асинхронный электродвигатель

Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана отдельная статья. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле.

Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым).

ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев. Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения.

Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле.

Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да.

Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение.

А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.

Синхронный электродвигатель

Источник: https://habr.com/ru/company/npf_vektor/blog/371749/

Как определить мощность электродвигателя без бирки

Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.

Практические измерения

Самый доступный способ – проверка показаний бытового счетчика электроэнергии. Сначала следует отключить абсолютно все бытовые приборы и выключить свет во всех помещениях, поскольку даже горящая лампочка на 40Вт будет искажать показания.

Проследите, чтобы счетчик не крутился или индикатор не мигал (в зависимости от его модели).

Вам повезло, если у вас счетчик «Меркурий» — он показывает величину нагрузки в кВт, поэтому от вас потребуется только включить двигатель на 5 минут на полную мощность и проверить показания.

Индукционные счетчики ведут учет в кВт/ч. Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.

Если двигатель маломощный, вычислить параметры будет несколько сложнее. Выясните, сколько оборотов (или импульсов) равно 1кВт/ч – информацию вы найдете на счетчике. Допустим, это 1600 оборотов (или вспышек индикатора).

Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) – это и есть мощность двигателя.

Результат тем точнее, чем дольше вы измеряете показания, но небольшая погрешность все равно присутствует.

Определение по таблицам

Как узнать мощность электродвигателя по диаметру вала и другим показателям? В интернете нетрудно найти технические таблицы, с помощью которых можно узнать тип мотора и, соответственно, его мощность. Вам потребуется снять следующие параметры:

  • диаметр вала;
  • частота его вращения или число полюсов;
  • крепежные размеры;
  • диаметр фланца (если двигатель фланцевый);
  • высота до центра вала;
  • длина мотора (без выступающей части вала);
  • расстояние до оси.

Далее – вопрос времени и внимательности. Согласитесь, надежнее измерить детали и узнать точный, без погрешностей результат. В сети есть параметры абсолютно всех, даже очень старых моторов.

Вычисление по количеству оборотов в минуту

Определите визуально количество обмоток статора. Используйте тестер или миллиамперметр для того чтобы узнать число полюсов – при этом не требуется разбирать мотор. Подключите прибор к одной из обмоток и равномерно вращайте вал. Количество отклонений стрелки – это число полюсов. Учтите, что частота вращения вала при данном методе вычисления несколько ниже полученного результата.

Определение по габаритам

Еще один способ – проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:

  • Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.
  • Частота валового вращения (n) и частота сети (f).

Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи – назовем это показание А. 120 умножьте на f – это В. Разделите А на В.

Как видите, чтобы подсчитать значение, достаточно вспомнить школьный курс математики.

Определение по мощности, выдаваемой двигателем

Здесь опять придется вооружиться калькулятором. Узнайте:

  • число оборотов вала в секунду (А);
  • показатель тяглового усилия мотора (В);
  • радиус вала (С) – это можно сделать с помощью штангенциркуля.

Определение мощности электродвигателя в Вт осуществляется по следующей формуле: Ах6.28хВхС.

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая – мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты – это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

Источник: https://www.szemo.ru/press-tsentr/article/kak-opredelit-moshchnost-elektrodvigatelya-bez-birki/

Виды электродвигателей

ПЕРЕМЕННОГО ТОКА
ПОСТОЯННОГО

Одним из основных стимулов к широкой электрификации, начавшейся в XX веке, стала возможность легкого преобразования энергии электрического тока в механическую — к тому времени уже был известен коллекторный электродвигатель, изобретенный Якоби еще в первой половине XIX века.

Изобретение асинхронного двигателя переменного тока стало еще большим шагом вперед.

Электромотор лишился механически трущихся и искрящих узлов (щеток и коллектора), превзойдя по бесшумности и ресурсу любой другой существовавший в то время тип привода.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует:

  • перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях;
  • создания вращающегося магнитного поля в самом статоре (классический пример – асинхронный трехфазный двигатель).

Достоинства электродвигателей переоценить трудно. Это:

Крайняя простота.

Электродвигатель состоит из минимального количества узлов, поэтому ломаться в нем практически нечему.

Самостоятельный запуск.

Электродвигателю не нужен пусковой импульс, он начинает вращаться сам при включении питания (исключение – однофазные электродвигатели с пусковой обмоткой, но они практически вышли из употребления). Это позволяет отказаться от холостого хода, включая электромотор только при необходимости.

Отсутствие вибраций.

Так как в электродвигателях энергия магнитного поля непосредственно преобразуется во вращение, при должной балансировке ротора они полностью бесшумны и не создают вибрации.

Легкость управления оборотами и крутящим моментом.

Несмотря на то, что на разных типах электродвигателей это достигается разными способами, управление ими в любом случае достаточно просто и надежно.

Возможность реверса.

На коллекторном двигателе достаточно поменять местами полюса якоря, на трехфазном электромоторе – изменить порядок включения фаз.

Обратимость.

Коллекторные электродвигатели при внешнем приводе начинают работать как электрогенераторы, что позволяет использовать их для рекуперации энергии при торможении электротранспорта.

Электродвигатели переменного тока

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

Электродвигатели постоянного тока

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

ЭТО ИНТЕРЕСНО:  Как сделать сварочный аппарат

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/jelektrodvigateli_vidy.html

Как определить мощность и обороты электродвигателя без бирки?

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность электродвигателя Р, кВт Диаметр вала, мм Переход к модели
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
0,18 11 11 14 АИР56А2, АИР56В4, АИР63А6
0,25 14 19 АИР56В2, АИР63А4, АИР63В6, АИР71В8
0,37 14 19 22 АИР63А2, АИР63В4, АИР71А6, АИР80А8
0,55 19 АИР63В2, АИР71А4, АИР71В6, АИР80В8
0,75 19 22 24 АИР71А2, АИР71В4, АИР80А6, АИР90LA8
1,1 22 АИР71В2, АИР80А4, АИР80В6, АИР90LB8
1,5 22 24 28 АИР80А2, АИР80В4, АИР90L6, АИР100L8
2,2 24 28 32 АИР80В2, АИР90L4, АИР100L6, АИР112МА8
3 24 32 АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8
4 28 28 38 АИР100S2, АИР100L4, АИР112МВ6, АИР132S8
5,5 32 38 АИР100L2, АИР112М4, АИР132S6, АИР132М8
7,5 32 38 48 АИР112M2, АИР132S4, АИР132М6, АИР160S8
11 38 48 АИР132M2, АИР132М4, АИР160S6, АИР160М8
15 42 48 55 АИР160S2, АИР160S4, АИР160М6, АИР180М8
18,5 55 60 АИР160M2, АИР160M4, АИР180М6, АИР200М8
22 48 55 60 АИР180S2, АИР180S4, АИР200М6, АИР200L8
30 65 АИР180M2, АИР180M4, АИР200L6, АИР225М8
37 55 60 65 75 АИР200M2, АИР200M4, АИР225М6, АИР250S8
45 75 75 АИР200L2, АИР200L4, АИР250S6, АИР250M8
55 65 80 АИР225M2, АИР225M4, АИР250M6, АИР280S8
75 65 75 80 АИР250S2, АИР250S4, АИР280S6, АИР280M8
90 90 АИР250М2, АИР250M4, АИР280M6, АИР315S8
110 70 80 90 АИР280S2, АИР280S4, АИР315S6, АИР315M8
132 100 АИР280M2, АИР280M4, АИР315M6, АИР355S8
160 75 90 100 АИР315S2, АИР315S4, АИР355S6
200 АИР315M2, АИР315M4, АИР355M6
250 85 100 АИР355S2, АИР355S4
315 АИР355M2, АИР355M4

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

Источник: https://xn--80aqy.com.ua/poleznoe/kak-uznat-moshhnost-i-oboroty-dvigatelya/

Что следует учитывать при выборе асинхронного электродвигателя

При выборе асинхронных электродвигателей переменного тока часто не учитываются требования к конструкции, которые связаны с их применением в составе того или иного оборудования.

Также обычно имеет место подход, основанный на универсальности электродвигателя, и тогда выбор зависит только от его напряжения, мощности и скорости вращения ротора.

Тем не менее есть еще целый ряд дополнительных аспектов для рассмотрения, таких как диапазон напряжения питания, сохранение номинальной мощности при изменении скорости вращения и область применения. Все это в итоге сводится к решению следующих вопросов: какова цель применения электродвигателя, как сделать все быстрее и эффективнее?

Базовые принципы выбора электродвигателя

Отправными точками для выбора асинхронного двигателя являются напряжение питания обмоток статора, создающего магнитное поле, а также номинальная мощность и скорость вращения ротора, которые соответствуют требованиям конкретного применения. Еще один, не менее важный момент — это необходимый вариант установки двигателя в приводе.

Должен ли двигатель иметь крепление на основании, или он будет помещен на фланец на конце привода, или же должен предоставлять обе возможности? Кроме того, необходимо учитывать характеристики окружающей среды, в которой будет эксплуатироваться двигатель.

При этом для выбора двигателя необходимо знать, потребуется ли ему работать под дождем и имеется ли вообще риск попадания на него воды, а также оценить уровень загрязнения и наличия пыли. Для эксплуатации в жестких условиях хорошо подходят электродвигатели закрытого типа с вентиляторным охлаждением (англ. totally enclosed fan cooled, TEFC) или электродвигатели закрытого типа без охлаждения (англ.

totally enclosed non-vented, TENV). Если среда, в которой будет использоваться двигатель, не загрязнена и он будет эксплуатироваться без риска попадания на него воды, то в этом случае может быть достаточно применения каплезащищенного электродвигателя открытого исполнения (англ. open drip proof, ODP).

Выбор инвертора

Благодаря усилиям лоббистов местных энергетических компаний в сочетании с преимуществами, получаемыми при возможности регулирования скорости вращения ротора двигателей, все более распространенными становятся частотно-регулируемые приводы (ЧРП, англ. variable frequency drive, VFD).

При их использовании особое внимание следует уделять генерации электромагнитных помех, которая характерна для таких приводов исходя из самой их природы.

Для того чтобы электродвигатель мог использоваться с ЧРП, необходимо учитывать несколько технических особенностей, которым должен удовлетворять подходящий по остальным характеристикам электродвигатель. Среди них можно выделить две главные:

Максимально допустимое напряжение изоляции обмоточных проводов статора электродвигателя.

Электрическая прочность изоляции провода, из которого выполнена обмотка статора асинхронного электродвигателя, находится в пределах 1000–1600 В, но, как правило, в документации указывается значение прочности изоляции, равное 1200 В. Однако чем больше воздушный зазор между приводом и двигателем, тем, естественно, бо́льшим скачкам переходного напряжения, воздействующим на двигатель, он может противостоять.

Электродвигатель, в котором для обмотки статора используется провод с электрической прочностью изоляции провода, равной 1600 В, может иметь ссылку на стандарт Национальной ассоциации производителей электрооборудования (NEMA, США) NEMA MG-1 2003, раздел 4, параграф 31, в котором говорится, что двигатель должен выдерживать без повреждений начальное напряжение коронного разряда (англ.

corona inception voltage, CIV) уровнем до 1600 В.

Коэффициент сохранения постоянного крутящего момента (CT) двигателя, часто упоминается как «xx: 1 CT».

Этот показатель дает представление о диапазоне регулирования скорости. По нему можно узнать, насколько может быть снижена скорость вращения ротора двигателя, при которой он будет работать с сохранением того же крутящего момента (англ. CT — constant torque, постоянный крутящий момент), что и при номинальной скорости. Ниже этого значения крутящего момента производительность асинхронного электродвигателя снижается.

Например, возьмем электродвигатель мощностью 10 л. с. с начальной скоростью 1800 об/мин. При номинальной скорости (около 1800 об/мин), как указано, он имеет крутящий момент 29 фунтов на фут.

Если в спецификации на электродвигатель написано, что коэффициент сохранения номинальной мощности составляет 10:1 CT, это означает, что такой электродвигатель может обеспечить номинальный крутящий момент до скорости 180 об/мин.

Если же указано, что электродвигатель имеет коэффициент сохранения номинальной мощности 1000:1 CT, то имеется в виду, что крутящий момент сможет сохранять номинальное значение до скорости 1,8 об/мин.

При этом необходимо учитывать еще один нюанс, который связан с охлаждением электродвигателя. Нужно обязательно уточнить у поставщика, будет ли электродвигатель перегреваться при длительной работе на малых оборотах.

Дело в том, что если двигатель охлаждается за счет крыльчатки, закрепленной на его валу, то на малых скоростях вы столкнетесь с низкой скоростью охлаждающего двигатель потока воздуха.

Если асинхронный электродвигатель работает на низкой скорости и в течение длительного времени используется с большим крутящим моментом, то он будет выделять много тепла — при таких условиях, возможно, придется остановить свой выбор на двигателе с иным методом охлаждения.

Например, для организации принудительного охлаждения можно применить воздуходувное устройство, имеющее собственный, отдельно управляемый двигатель. Производительность такого устройства не связана с системой управления электропривода. В этом случае воздушный поток, который обдувает мощный электродвигатель, будет постоянным и достаточным для его охлаждения при низкой или даже при нулевой скорости.

Связь мощности и крутящего момента

При выборе асинхронного электродвигателя еще одним важным аспектом является номинальная, или основная, скорость двигателя. Обычно используются двухполюсные (3600 об/мин) и четырехполюсные (1800 об/мин) электродвигатели.

Однако имеются и коммерчески доступные 6-, 8- и 12-полюсные асинхронные электродвигатели со скоростью вращения ротора 1200, 900
и 600 об/мин соответственно.

Номинальная скорость асинхронного электродвигателя напрямую связана с числом полюсов, которые такой двигатель конструктивно содержит (табл.), и определяется по следующей формуле:

Об/мин = (120 × частота) / N (число полюсов)

В качестве примечания необходимо отметить, что, хотя прямой связи здесь нет, но, как правило, с увеличением количества полюсов возрастают и размеры, а также стоимость электропривода.

Кроме того, пользователям электроприводов, в зависимости от области применения данных устройств, может понадобиться обеспечить необходимый крутящий момент путем изменения скорости. В целом по мере увеличения скорости двигателя крутящий момент уменьшается, что также относится к редукторам и цепным приводам. Это соотношение объясняется следующим уравнением:

мощность (л. с.) = (крутящий момент × × номинальная скорость) / 5252

Крутящий момент, в соответствии с заданной целью, может быть достигнут путем выбора электродвигателя с необходимой мощностью и номинальной скоростью и реализован через любую цепную, ременную передачу или редуктор. Такой подход снижает стоимость привода, его габаритные размеры и время, уходящее на замену его подвижных заменяемых частей в ходе выполнения ремонта или технического обслуживания.

Таблица. Связь между числом полюсов, скоростью (об/мин) и крутящим моментом асинхронного электродвигателя
Число полюсов, N Скорость, об/мин Крутящий момент, л. с. / фут-фунт
2 3600 1,46
4 1800 2,92
6 1200 4,38
8 900 5,84
10 720 7,29
12 600 8,75

Примечание. Как правило, увеличение числа полюсов приводит к увеличению габаритов, а следовательно, и к повышению стоимости привода на основе асинхронного электродвигателя

Источник: https://controlengrussia.com/e-lektroprivod/vybor-asinhronnogo-jelektrodvigatelja/

Как узнать мощность электродвигателя?

Чаще всего мощность двигателя обозначена в техническом паспорте к устройству и продублирована на корпусе, где есть специальная наклейка или планка с основными техническими параметрами.

Однако нередко случается, что данные на корпусе являются не читаемыми, а технический паспорт давно утерян.

Как же в таком случае выяснить параметры мощности электромотора?

 

Определение по счетчику:

При отсутствии маркировки на корпусе электромотора можно вычислить его мощность несколькими способами. Самым простым методом является вычисление по счетчику электричества: потребуется отсоединить от этого прибора все прочие устройства, подключить электродвигатель и запустить его под нагрузкой на 5-7 минут. Большинство современных счетчиков выдает показатель нагрузки в киловаттах, и полученный показатель и будет исковым результатом.
 

Вычисление по таблицам:

Другим способом определения мощности мотора является расчет по данным из таблиц. Для этого понадобится измерить диаметр вала, длину мотора без учета выступающей части вала, а также расстояние до оси.

По этим параметрам можно выяснить, к какой серии относится данный мотор, и найти его технические характеристики, в том числе мощность.

В сети можно отыскать технические таблицы по двигателям постоянного и переменного тока, где по найденному значению легко отыскать тип устройства и его мощность.
 

Вычисление по габаритам:

По данному способу необходимо провести следующие действия:

  • Измерить диаметр сердечника в статоре по внутренней части, а также длину с учетом отверстий вентиляции. Значение выражается в сантиметрах.
  • Вычислить частоту сети, к которой подключен электродвигатель, и синхронную частоту валового вращения.
  • Узнать показатель полюсного деления: для этой цели диаметр сердечника умножается на синхронную частоту вращения вала, а найденное значение умножается на 3,14 и делится на частоту сети, умноженное на 120.

Формула вычисления постоянного полюсного значения:

  • Найти число полюсов, перемножив частоту тока на 60 и разделив на частоту валового вращения.
  • Найденное число умножить на 2, после чего обратиться к таблице по определению зависимости константы от числа полюсов и выявить соответствующий показатель.
  • Найденную постоянную величину умножают на квадрат от диаметра сердечника, длину и частоту вращения вала, после чего результат умножается по нижеприведенной формуле:

Найденное значение выражается в кВт.
 

Вычисление мощности, выдаваемой электродвигателем

Для вычисления реального показателя мощности, с которой работает электродвигатель, необходимо найти скорость валового вращения, выражаемую в числе оборотов за секунду, тяговое усилие мотора. Частота вращения умножается последовательно на 6,28, показатель силы и радиус вала, который можно вычислить при помощи штангенциркуля. Найденное значение мощности выражается в ваттах.
 

Определяем потребляемый ток:

Для тех, кому надо знать не только мощность, но и объем потребляемого тока, также есть несколько способов получения таких данных. Для каждого из них важным критерием в процессе определения является количество фаз. Если у вас однофазная сеть, разделите показатель мощности на значение напряжения.

Если двигатель 3-фазный, схема подсчета еще проще: удвойте значение мощности — это и будет показатель в Амперах.

Как вы убедились, узнать мощность двигателя и потребляемый ток, даже если эти данные утеряны, достаточно просто.

Выбирайте самый простой для вас способ решения проблемы и пусть ваша техника всегда работает исправно и имеет высокий КПД!

Источник: https://mirprivoda.ru/articles/kak-uznat-moshchnost-elektrodvigatelya

Понравилась статья? Поделиться с друзьями:
220 вольт