Как подключить полевой транзистор

Что такое полевой транзистор и как его проверить

Добрый день, друзья!

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. Компьютер – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит. Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate). 

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Кстати, купить полевые транзисторы можно вот здесь.

Источник: https://vsbot.ru/lektronika/chto-takoe-polevoy-tranzistor-i-kak-ego-proverit.html

Транзистор полевой (p-канал) IRF9Z24

Транзистор IRF9Z24N — это полевой транзистор HEXFET пятого поколения, созданный с использованием передовых технологий позволяющих достичь минимально возможного сопротивления на единицу площади кремния, что в сочетании с высокой скоростью переключения транзистора обеспечивает возможность его использования в широком спектре радиоустройств.

Характеристики

  • Максимальное напряжение сток-исток (Uси): -55В;
  • Максимальный продолжительный ток стока (Iс): -12А;
  • Максимальный импульсный ток стока (Iс): -48А;
  • Ток утечки стока: 25мкА (при Uси = -55В);
  • Ток утечки затвора: 100нА (при Uзи = -20В);
  • Сопротивление открытого канала (Rси): 175мOм;
  • Пороговое напряжение затвор-исток (UGS): -2 -4В;
  • Максимальное напряжение затвор-исток (Uзи): ±20В;
  • Максимальная рассеиваемая мощность (Pси): 45Вт;
  • Крутизна характеристики: 2,5S;
  • Время задержки включения: 13нс (при Uси = -28В, Iс = -7,2A);
  • Время задержки выключения: 23нс (при Uси = -28В, Iс = -7,2A);
  • Корпус: ТО-220;

Подключение

Транзистор IRF9Z24N подключается как любой другой p-канальный транзистор. На рисунке представлена наиболее распространённая схема включения с общим истоком:

Работа транзистора в режиме «ключа»

  • При наличии на затворе транзистора (зелёны провод) уровня логического «0», транзистор будет «открыт» и через нагрузку Rн потечёт ток.
  • При наличии на затворе транзистора (зелёный провод) уровня логической «1», транзистор будет «закрыт» и ток через нагрузку Rн течь не будет.
  • При использовании сигнала ШИМ можно плавно увеличивать или уменьшать скорость вращения мотора или яркость свечения лампы (светодиода).
    Назначение элементов схемы
  •  — нагрузка которой управляет транзистор (лампочки, мощные светодиоды, двигатели, сервоприводы и т.д.)
  •  — ограничительный резистор цепи затвора, предназначен для ограничения тока перезаряда затвора. Если управление транзистором осуществляется при помощи Arduino и на одном выходе Arduino находится только один транзистор, то резистор Rз можно исключить из схемы.
  • Rзи — прижимающий резистор цепи затвора, гарантирует что при разрыве цепи управляющего напряжения транзистор закроется. Если в Вашей схеме невозможно отключение цепи управляющего напряжения, то резистор Rзи можно исключить из схемы.

Питание

Транзистор позволяет управлять нагрузкой с напряжением до 55 В при токе до 12 А. Управление транзистором можно осуществлять стандартным напряжением 5 В логики ТТЛ, при этом ток затвора, в открытом состоянии транзистора, не будет превышать 25 нА (ток утечки затвора).

Подробнее о транзисторе

Транзистор IRF9Z24N является полевым транзистором с изолированным затвором и индуцированным (обогащённым) каналом p-типа. Наличие встроенного диода Шоттки защищает транзистор от обратных токов и позволяет управлять индуктивной нагрузкой (например двигателями) без использования дополнительных элементов. Наличие комплементарной пары (транзистор с теми же параметрами, но другим типом проводимости канала) в виде транзистора IRFZ24N позволяет расширить область их применения.

Комплектация

  • 1х Полевой транзистор IRF9Z24N;

Ссылки

  • DataSheet;
  • Комплементарная пара (транзистор IRFZ24N);

Источник: https://iarduino.ru/shop/radioparts/tranzistor-polevoy-p-kanal-irf9z24.html

Мощные полевые транзисторы: история, развитие и перспективы. Аналитический обзор

Развитие мощных полевых транзисторов носит беспрецедентный характер.

С 70-х годов, когда в СССР были созданы, детально изучены и запущены в серию первые в мире мощные полевые транзисторы, эти приборы превратились из маломощных «недоносков» с высоким входным сопротивлением, во всем остальном уступающих биполярным транзисторам, в мощные приборы с уникально малым (до 0,001 Ом) сопротивлением во включенном состоянии, рабочими токами до 400 А и выше и рабочими напряжениями от десятков до 1200 В.

Приборы имеют высокие динамические показатели и по существу являются специализированными мощными СБИС. Ныне в мире выпускаются многие тысячи типов мощных полевых транзисторов и силовых интегральных схем на их основе. Данный аналитический обзор описывает развитие этих приборов и отражает взгляд автора, принимавшего прямое участие в исследованиях, разработках, внедрении и популяризации этих приборов.

«Доисторические» времена

Каждый современный полупроводниковый прибор наследует свойства своих предшественников, так что грамотный специалист должен учитывать при выборе приборов для построения электронных устройств. В полной мере это относится к крупному классу полупроводниковых приборов — мощным силовым (ключевым) полевым транзисторам. Тем более что некоторые «старые» устройства в ряде применений (например, в сверхскоростных импульсных устройствах) могут превосходить современные.

В конце 20-х годов XX в. Дж. Е. Лилиенфельд подал в США и в Канаде заявку на патент, в котором было предложено управление электрическим током в образце путем воздействия на него поперечного электрического поля. Реализовано устройство не было. Лишь в 1948 г.

Шокли и Пирсон, применив образец из полупроводника, экспериментально подтвердили принципиальную возможность этого способа, но создать прибор они также не смогли. Лишь в 1952 г. Шoкли описал униполярный полевой транзистор с управляющим p-n-переходом.

Он изменял толщину канала внутри образца из полупроводникового материала, что сняло проблемы, связанные с захватом носителей ловушками на поверхности канала.

В 1960 г. Канг и Аталла предложили использовать для построения полевого транзистора структуру металл–окисел–полупроводник.

На ее основе были созданы MOS (или МОП) полевые транзисторы, у нас часто именуемые MДП-транзисторами (металл–диэлектрик–полупроводник). Изначально это были одиночные дискретные приборы с очень высоким входным сопротивлением (сотни мегаом и выше).

Они имели встроенный (нормально открытые приборы) или индуцированный (нормально закрытые приборы) канал n- или p-типа (рис. 1).

Рис. 1. Обозначения полевых транзисторов: а) с управляющим p-n-переходом; б) МДП с встроенным каналом (нормально открытые); в) с индуцированным каналом (нормально закрытые)

Первые полевые транзисторы были маломощными приборами — рассеиваемая мощность до 100–150 мВт [1]. Их рабочие токи не превышали 10–20 мА, максимальные напряжения на стоке 15–20 В, а времена переключения — доли микросекунды. Сопротивление включенного прибора составляло сотни Ом. Таким образом, на роль силовых приборов они явно не претендовали.

В 1964 г. Зулиг и Тешнер в своих статьях высказали идею о возможности повышения мощности полевых транзисторов путем увеличения числа каналов. Был ясен и другой путь — увеличение ширины канала. Оба варианта в дальнейшем были реализованы на основе микроэлектронных технологий.

Успешное вчера

В 70-х годах XX в. различные типы мощных полевых транзисторов (рис. 2) получили бурное развитие. Окснер в своей книге, в переводе выпущенной в 1985 г. [2], утверждал, что первые промышленные образцы мощных полевых транзисторов появились в 1976 г. Но он не учитывал пионерские работы в СССР, выполненные еще в начале 70-х и отраженные в крупных отраслевых обзорах [3–8], научных статьях [9–21 и др.] и книгах [22, 23].

Рис. 2. Классификация мощных полевых транзисторов

Первые серийные мощные полевые транзисторы были созданы в НИИ «Пульсар» (лаборатория Бачурина В. В.) еще в самом начале 70-х годов прошлого века. В 1974 г. советские серийные мощные полевые транзисторы КП901 (с током стока до 2 А и максимальным напряжением до 65 В) вызывали сенсацию в мире и были удостоены золотой медали на всемирной выставке-ярмарке в Лейпциге.

Эти приборы были с одним горизонтальным каналом сложной структуры (затвор большой ширины в виде змейки) с высокоомным язычком в области стока (рис. 3), позволившим увеличить максимальные рабочие напряжения на стоке до 60–100 В и получить малые емкости (особенно входную).

Вскоре появились самые мощные из этих приборов — транзисторы КП904 [12] с рассеиваемой мощностью 75 Вт, током стока до 7,5 А и отдаваемой на частоте 60 МГц мощностью до 50 Вт. Менее мощные транзисторы КП902 легко обеспечивали уникально малые времена переключения около 1 нс.

Рис. 3. Горизонтальная структура первых советских мощных МДП-транзисторов

Появление именно этих транзисторов не случайно. Это было время, когда в мире вовсю разыгралась холодная война, тучи самолетов и полчища танков и бронемашин участвовали в многочисленных локальных войнах и крупных военных учениях. Каждый танк или самолет имел радиостанцию.

Уровень взаимных помех и наводок от них был столь высок, что радиостанции на биполярных транзисторах в условиях их скученности на местности и поле боя оказались почти неработоспособными.

Полевые транзисторы с их малыми интермодуляционными искажениями обещали устранение этого недостатка.

В комплексном исследовании новых приборов (как отечественных, так и позже зарубежных) и в дальнейших их разработках приняли участие сотрудники кафедры промышленной электроники Смоленского филиала МЭИ под руководством автора данной статьи.

Ранее кафедра детально изучала лавинный режим работы биполярных транзисторов и лавинные транзисторы и внесла известный вклад в создание сверхскоростных импульсных устройств на них [24–26].

Это положительно сказалось на результатах исследования полевых транзисторов и позволило нам обосновать перспективность импульсных и ключевых приборов этого типа [6–10].

Было показано, что многие сильноточные полупроводниковые приборы с инжекционным механизмом управления током (биполярные транзисторы и тиристоры) не могут похвастать хорошими динамическими параметрами из-за медленного механизма инжекции, явления накопления в структуре избыточных зарядов неосновных носителей, расширения базы и падения рабочих частот с ростом тока эмиттера (эффект Кирка) и влияния больших емкостей переходов. Все это ведет к большим временам включения таких приборов. А рассасывание избыточных зарядов приводит к появлению значительных задержек их выключения.

Исследование уже первых советских мощных МДП-транзисторов выявило их уникальные возможности в импульсном (ключевом) режиме [4–9].

Были реально получены времена переключения порядка 1 нс (порою и меньше), причем, как при их включении, так и при выключении. Эти показатели являются рекордными по сей день и перекрыты лишь мощными арсенид-галлиевыми полевыми транзисторами.

Отсутствие явлений накопления избыточных зарядов неосновных носителей при включении приборов исключало большую задержку выключения.

Мощные МДП-транзисторы были предложены нами как перспективный тип силовых полупроводниковых приборов, хотя их разработки шли вразрез с линией тогдашнего ВПК на развитие приборов для радиопередатчиков. В 1978 г.

мы получили авторское свидетельство СССР на побистор (биполярный транзистор, управляемый от V-MДП-транзистора) [20]. По сути дела, это был первый IGBT.

Стоит отметить, что указанные исследования проводились задолго до появления серийных мощных силовых полевых транзисторов и были экспериментально подтверждены многими уникальными разработками в области схемотехники этих приборов.

Приборы с двойной диффузией и вертикальным каналом

В те далекие времена получение полевых транзисторов с длиной затвора L менее 5 мкм было трудно решаемой технологической проблемой. В то же время уже тогда существующая диффузионная технология позволяла получать тонкие (1 мкм и меньше) слои полупроводника.

Применяя метод двойной диффузии, удалось создать мощные МДП-транзисторы с коротким каналом и слоями металлизации по обе стороны полупроводниковой пластины (рис. 4). Это улучшило теплоотвод и позволило уменьшить сопротивление сток–исток Rси включенного прибора.

Во второй половине 70-х годов появились первые приборы с токами в десятки ампер и Rси

Источник: https://power-e.ru/components/moshhnye-polevye-tranzistory-istoriya-razvitie-i-perspektivy-analiticheskij-obzor/

Как открыть полевой транзистор

В этой статье мы рассмотрим работу МОП-транзистора.

ЭТО ИНТЕРЕСНО:  Как определить мощность резистора

Виды МОП-транзисторов

Здесь работает правило два по два (2х2). В каждом семействе по два вида:

Из всех этих 4 разновидностей, наверное не ошибусь, если скажу, что самый употребимый транзистор считается именно N-канальный с индуцированным каналом:

Именно с него мы и начнем наш путь в мир современной электроники.

Режим отсечки

Давайте познакомимся с нашим героем. У нас в гостях N-канальный МОП-транзистор с индуцированным каналом:

Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.

Что будем делать с этим куском кремния? Раз уж он есть, то давайте заставим его пахать. Для начала соберем вот такую простенькую схемку ключа:

Напряжение на крокодилы идет с блока питания Bat, но лампочка не горит. Следовательно, в данный момент никакого движения электрического тока через канал Стока и Истока нет.

Это аналогично этому рисунку (только тут без лампочки):

Ток не бежит, потому что у нас там эквивалентный диод VD2, который препятствует протеканию тока.

Об этом я еще говорил в прошлой статье.

На амперметре блока питания также по нулям, что говорит о том, что тока вообще нет никакого.

Почему Затвор у нас висит без дела? Не порядок. Надо его тоже задействовать. Чем у нас занимается Затвор в полевых транзисторах? Управляет потоком основных носителей. А что такое поток заряженных частиц, которые движутся в одном направлении? Да, все верно – это электрический ток ;-).

В опыте выше на Затворе сейчас почти ноль. Почему почти? Да потому что он все равно пытается ловить какие-то наводки, но это все равно не сказывается на работе схемы. В реальных схемах Затвор никогда нельзя оставлять без дела болтаться в воздухе. Он всегда должен быть соединен с чем-нибудь.

Так, что нам теперь надо сделать, чтобы начать управлять шириной канала Сток-Исток, а следовательно и менять сопротивление этого канала? Как мы помним из прошлой статьи, достаточно подать положительное напряжение относительно Истока на Затвор;-) Для этого возьмем второй блок питания и будем с помощью него менять напряжение на Затворе нашего транзистора. Сделаем все по такой схеме:

Вот так выглядит мой блок питания, который в схеме называется Bat2. С помощью него мы будем регулировать напряжение вручную от нуля и больше.

Так выглядит вся схема в реале, которую я нарисовал выше. Так как вольтметр на блоке питания стрелочный и неточный, поэтому напряжение будем мерять с помощью мультиметра, который я цепанул параллельно щупам Bat2:

Хоть я и сделал крутилку на ноль на Bat2, все равно он выдает каких-то 22 миллиВольта. На этот опыт эти доли милливольта никак не повлияют.

Устанавливаю 1 Вольт на Bat2:

Лампочка не горит, сила тока в цепи ноль Ампер:

Так ладно. Добавляем еще 1 Вольт, итого получаем 2 Вольта:

Лампочка не горит, на амперметре опять по нулям:

Ну ладно. Раз такое дело добавляем еще 1 Вольт. Итого 3 Вольта:

Да опять лампочка не зажглась!

Активный режим работы транзистора

И вот уже при каких-то 3,5 Вольт

Через лампочку начинает течь ток силой около 10 мА, но лампочка, естественно, пока что не горит. Ток слабоват.

Во! Запомните этот момент! При этом напряжении транзистор начинает ОТКРЫВАТЬСЯ. Это значение у разных видов транзисторов разное. В основном от 0,5 и до 5 вольт. В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз.

пороговое напряжение на Затворе для включения транзистора. В даташите этот параметр указывается как VGS(th), а в некоторых даташитах как VGS(to) .

В даташите на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions):

Как вы видите, диапазон открытия этого транзистора может быть от 2 Вольт и до 4 Вольт. Но опять же, это при токе Стока от 250 мкА, как указано в даташите, а я замерял от 10 мА.

Здесь также в условиях говорится, что напряжение между Истоком и Затвором должно быть такое же, как и напряжение между Стоком и Истоком. Так как мы не пытались замерить точное напряжение 5-ым знаком после запятой, для нас эти условия не имеют значения.

Как вы помните, у биполярных транзисторов транзистор начинал открываться только при напряжении на базе-эмиттере более 0,6-0,7 Вольт для кремниевых видов.

Неужели мы сегодня так и не зажжем лампочку? Зажжем, да еще как! Для того, чтобы чуток накалить нить лампы, мы просто добавляем напряжение на Затвор, покрутив крутилку блока питания Bat2.

Вуа-ля! Нить лампы стала слабенько гореть.

На амперметре видим значение около 1 Ампера:

При этом стал очень сильно греться сам транзистор. Почему? Давайте разберемся

Почему греется транзистор

Итак, раз мы с помощью Затвора стали управлять сопротивлением канала Сток-Исток, то грубо говоря, это у нас получился резистор R. Это и есть сопротивление канала Сток-Исток. При напряжении на Затворе в 0 Вольт, сопротивление этого резистора достигает очень большого значения, а следовательно, сила тока, протекающего через него, будет вообще микроАмперы. Закон Ома.

Так как резистор R включен последовательно в цепь, то вспоминаем правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, а на меньшем сопротивлении падает меньшее напряжение. Также не забываем, что нить лампы тоже обладает сопротивлением, поэтому рисунок у нас примет вот такой вид:

В первом случае у нас на Затвор ничего не подавалось и транзистор был в закрытом состоянии. Как только мы стали подавать напругу на Затвор, то у нас сопротивление канала стало меняться, а следовательно и падение напряжение на резисторе R и проходящий через него ток.

Получился типичный делитель напряжения. В этом случае на резисторе R падает какое-то напряжение и через него течет приличная сила тока. В нашем случае почти 1 Ампер.

Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке помноженной на силу тока через Сток-Исток или просто на ток Стока или буквами:

где R – это сопротивление канала Сток-Исток

IC – ток, проходящий через канал (ток Стока)

А что такое мощность, рассеиваемая на радиоэлементе? Это и есть тепло. Поэтому в нашем случае транзистор нагрелся очень сильно. Опыт пришлось приостановить.

Значит, самые щадящие режимы для МОП-транзистора – это когда канал полностью открыт. В этом случае у нас сопротивление канала достигает сотые доли Ома. Либо когда канал полностью закрыт.

В этом случае сила тока, проходящая через канал, будет достигать тока утечки между Стоком и Истоком. А это микроАмперы. В этих двух случаях транзистор будет холодным, как айсберг в океане.

Поэтому такой транзистор предназначен в основном для работы в ключевом режиме, где как раз и используются эти два режима.

Режим насыщения МОП-транзистора

Для того, чтобы полностью открыть транзистор, достаточно будет просто подать чуть больше напряжения для полного открытия канала. В моем случае это составило 4,2 Вольта и выше:

Как вы видите, лампочка горит в полный накал. Сопротивление канала в этом случае минимальное.

Лампа ест свои честные 1,69 Ампер:

Умножайте силу тока на напряжение и получаем потребляемую мощность лампочки. Итого P=IU=12 Вх1,69 А=20,28 Ватт

А на лампочке написано 21 Ватт:

Ладно, спишем на погрешность и на то, что лампа еще не раскочегарилась. Транзистор в этом случае остается холодным и ни капельки не греется.

Раз уж транзистор полностью открылся, то можно ли еще подавать напряжение на Затвор? Можно. Но при этом лампочка уже ярче светить не будет. Оно и понятно, так как лампочка итак горит уже на всю мощь, а сопротивление канала достигло уже почти нуля. Какое максимальное напряжение можно подать на Затвор? Смотрим даташит и находим что-то типа максимальных параметров (Absolute Maximum Ratings)

Находим параметр VGS , что обозначает напряжение между Затвором и Истоком. В нашем случае это напряжение на Bat2. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать – это +-20 Вольт. Напряжение более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, в нашем случае это оксид кремния, и транзистору придет жопа. Значит, мы можем спокойно подавать от 0 и до 20 Вольт на Затвор, не боясь что транзистор уйдет на тот свет.

Также для нас могут представлять интерес такие параметры, как максимальная сила тока, которая может течь через канал Сток-Исток. В даташите такой параметр обозначается как ID (ток Стока).

Как мы видим, транзистор в легкую может протащить через себя 49 Ампер.

Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуе кристалла 100 градусов, что чаще всего происходит на практике.

Так как транзистор с индуцированным каналом в основном используется в импульсном и ключевом режиме, поэтому нам важен такой параметр как сопротивление канала полностью открытого транзистора. В даташите он указывается как RDS(on)

Как мы видим всего 17,5 миллиОм. Или 0,017 Ом. Тысячные доли Ома! Давайте предположим, что мы пропускаем через открытый транзистор максимальный ток в 49 Ампер. Какая мощность будет рассеиваться на транзисторе в этом случае? Формула мощности через силу тока и сопротивление выглядит вот так: P=I 2 R= 49 2 x 0,017 = 41 Ватт.

А максимальная мощность, которую может рассеять транзистор – это 94 Ватта.

Основные параметры полевых МОП-транзисторов указываются в основном сразу на первой страничке даташита в отдельной рамке.

Также различные зависимости одних параметров от других можно увидеть в даташите. Очень информативно и наглядно.

Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:

Также есть интересная зависимость сопротивления канала полностью открытого транзистора от температуры кристалла:

Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.

Интересное свойство МОП-транзистора

А давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1:

Для наглядности вместо переключателя я использовал проводок от макетной платы.

В данном случае лампочка не горит. А с чего ей гореть то? На Затворе то у нас голимый ноль, поэтому канал закрыт.

На фото ниже показан этот случай.

Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь:

Даже не надо ни о чем заморачиваться! Тупо подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет копейки.

Лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал равен почти как и на Истоке, то есть нулю, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой стол.

Источник: https://hd01.ru/info/kak-otkryt-polevoj-tranzistor/

Полевой МОП (MOSFET) транзистор

Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Да-да это все слова синонимы и относятся они к одному и тому же радиоэлементу.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор.

Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором? С чем это связано? Об этих и других вещах вы узнаете в нашей статье.

Не переключайтесь на другую вкладку! ;-)

Откуда пошло название “МОП”

Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!

Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:

Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий кусок колбасы, а сверху кладем еще слой металла – тонкую пластинку сыра. И у нас получается вот такой бутерброд:

А как  будет строение транзистора сверху-вниз? Сыр – металл, колбаса – диэлектрик, хлеб – полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник.

А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором ;-).

А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать что почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места ;-)

Строение полевого МОП-транзистора

Давайте еще раз рассмотрим структуру нашего МОП-транзистора:

Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике.

Как вы помните, электроны в P-полупроводнике –  это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. Она является основой МОП-транзистора, так как на ней создаются другие слои.

От подложки выходит вывод с таким же названием.

Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От  полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Подложка полевого МОП-транзистора

Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.

Принцип работы МОП-транзистора

Тут все то же самое как и в полевом транзисторе с управляющим PN-переходом. Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:

Если рассмотреть наш транзистор с точки зрения P-N переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-исток, П-Подложка, С-Сток.

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме

никакой движухи электрического тока не намечается.

НО

Индуцирование канала в МОП-транзисторе

Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал.

Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.

ЭТО ИНТЕРЕСНО:  Как работает jk триггер

Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в  морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:

На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле. А раз  подаем на Затвор положительное напряжение, значит он будет заряжаться положительно не так ли?

Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов. А раз и на Затворе положительный потенциал и дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные  – притягиваются. Картина будет выглядеть следующим образом пока что без источника питания между Истоком и Стоком:

Дырки обращаются в бегство подальше от Затвора и поближе к выводу Подложки, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому электронам ничего другого не остается, как просто создать вавилонское столпотворение около слоя диэлектрика.

В результате, картина будет выглядеть следующим образом:

Видели да? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.

Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А  такой транзистор уже будет называться N-канальным МОП-транзистором.

Если вы читали статью проводники и диэлектрики, то наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно этот канал стал проводником для электрического тока.

Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.

Получается, если подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину:

Как вы видите, цепь стает замкнутой и в цепи начинает спокойно протекать электрический ток.

Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал. А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор ;-) Подавая бОльшее напряжение на Затвор с помощью Bat2, мы  увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе ;-) Ну гениальнее некуда!

Работа P-канального МОП-транзистора

В нашей статье мы разобрали N-канальный МОП транзистор с индуцированным каналом. Также есть еще и P-канальный  МОП-транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться уже дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора:

На ютубе нашел очень неплохое видео, поясняющее работу полевого МОП-транзистора. Рекомендую к просмотру (не реклама):

А вот и  продолжение

Источник: https://www.ruselectronic.com/polevoj-mop-tranzistor/

Полевой транзистор как коммутатор (JFET)

Как и биполярный родственник, полевой транзистор может использоваться в качестве коммутатора вкл/выкл, управляющего подачей питания на нагрузку. Давайте начнем исследование использование полевого транзистора в качестве коммутатора со знакомой схемы включения лампы:

Помня о том, что управляемый ток в полевом транзисторе течет между истоком и стоком, мы заменяем контакты ключа на рисунке выше выводами истока и стока:

Если вы еще не заметили, выводы истока и стока полевого транзистора выглядят на условном обозначении одинаково.

В отличие от биполярного транзистора, где эмиттер четко отличается от коллектора наличием стрелки, линии истока и стока полевого транзистора выглядят как линии, перпендикулярные полосе, представляющей полупроводниковый канал.

Это не случайно, поскольку выводы истока и стока полевого транзистора на практике часто являются взаимозаменяемыми! Другими словами, полевые транзисторы обычно способны обрабатывать ток канала любого направления, от истока к стоку или от стока к истоку.

Теперь всё, что нам нужно на схеме, – это способ управления проводимостью полевого транзистора. При нулевом приложенном напряжении между затвором и истоком канал полевого транзистора будет «открыт», что позволит току протекать к лампе. Чтобы выключить лампу, нам нужно будет подключить еще один источник постоянного напряжения между выводами затвора и истока полевого транзистора следующим образом:

Замыкание этого ключа «пережмет» канал полевого транзистора, заставив его перейти в режим отсечки и выключить лампу:

Обратите внимание, что через затвор ток не протекает. Как PN переход с обратным смещением, он твердо противостоит потоку через него любых электронов. Как устройство, управляемое напряжением, полевой транзистор требует незначительного входного тока. Это является достоинством полевого транзистора по сравнению с биполярным транзистором: для управляющего сигнала требуется практически нулевая мощность.

Размыкание управляющего ключа должно снова отключить от затвора постоянное напряжение обратного смещения, таким образом позволяя транзистору снова открыться. В идеале, так это должно работать. На практике это может не работать вовсе:

После размыкания ключа ток через лампу не протекает!

Почему? Почему канал полевого транзистора не открывается снова и не пропускает ток через лампу, как он делал ранее без напряжения, приложенного между затвором и истоком? Ответ заключается в работе обратно смещенного перехода затвор-исток. Область истощения в этом переходе действует как изолирующий раздел, отделяющий затвор от истока.

Таким образом, он обладает определенной емкостью, способной хранить потенциал электрического разряда. После того, как этот переход был принудительно обратно смещен подачей внешнего напряжения, он будет стремиться удерживать это напряжение обратного смещения, как сохраненный заряд, даже после того, как источник этого напряжения был отключен.

То, что необходимо для повторного открытия полевого транзистора, заключается в том, чтобы слить этот накопленный заряд между затвором и истоком через резистор:

Через резистор стекает заряд, сохраненный в PN переходе, чтобы позволить транзистору открыться снова

Величина резистора не очень важна. Емкость перехода затвор-исток полевого транзистора очень мала, и поэтому даже довольно высокоомный разрядный резистор создает быструю постоянную времени RC цепи, позволяя транзистору снова начать проводить ток с небольшой задержкой после размыкания ключа.

Как и с биполярным транзистором, не имеет большого значения, откуда подается управляющее напряжение. Мы могли бы использовать солнечный элемент, термопару или любой другой тип устройства, генерирующего напряжение, чтобы обеспечить напряжение, управляющее проводимостью полевого транзистора.

Всё, что требуется от источника напряжения для работы коммутатора на полевом транзисторе, – это достаточное напряжение, чтобы обеспечить отсечку канала полевого транзистора. Этот уровень обычно составляет несколько вольт постоянного напряжения и называется напряжением срабатывания или отсечки.

Точное напряжение срабатывания для любого заданного полевого транзистора является функцией его уникальной конструкции и не является универсальным значением, например, как 0,7 В для напряжения перехода база-эмиттер кремниевого биполярного транзистора.

Подведем итоги:

  • Полевые транзисторы управляют током между выводами истока и стока с помощью напряжения, приложенного между затвором и истоком. В полевом транзисторе (JFET) имеется PN-переход между затвором и истоком, который для управления током исток-сток обычно смещается в обратном направлении.
  • Полевые транзисторы являются обычно нормально открытыми (нормально насыщенными) устройствами. Прикладывание напряжения обратного смещения между затвором и истоком приводит к расширению области истощения этого перехода, тем самым «пережимая» канал между истоком и стоком, через который проходит управляемый ток.
  • Может потребоваться установить «отводящий» резистор между затвором и истоком, чтобы разрядить сохраненный заряд, накопленный естественной емкостью перехода, когда будет снято управляющее напряжение. В противном случае заряд может сохраняться, удерживая полевой транзистор в режиме отсечки даже после отсоединения источника питания.

Оригинал статьи:

  • The Transistor as a Switch (JFET)

Теги

КоммутацияОбучениеПолевой транзисторТранзисторный ключЭлектроника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Источник: https://radioprog.ru/post/338

Принцип работы полевого транзистора для чайников

Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

  • Что такое полевой транзистор
  • Полевые транзисторы, их виды
  • Полевой транзистор, принцип работы
  • Зачем нужен полевой транзистор
  • Применение полевых транзисторов
  • Плюсы и минусы полевых транзисторов

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

Контакты:

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Прибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода.

Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал.

При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работыпять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

На простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука.

Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт.

Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

Плюсы:

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.

Минусы:

  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Источник: https://instrument.guru/elektronika/printsip-raboty-polevogo-tranzistora-dlya-chajnikov.html

Полевой транзистор: для чего он нужен, как его открыть, схемы

Для того чтобы быстро изменить силу тока в усилительных схемах, лампочках или электрических двигателях применяют транзисторы. Они умеют ограничивать силу тока плавно и постепенно или специальным методом «импульс-пауза». Второй способ особо часто используется при широтно-импульсной модуляции и управления.

Если используется мощный источник тока, то транзистор проводит его через себя и регулирует параметр слабым значением. Если тока маловато, то используют сразу несколько транзисторов, обладающих большей чувствительностью. Соединять в таком случае их нужно каскадным образом.

В этой статье будет рассмотрено, как открыть полевой транзистор, какой принцип работы полевого транзистора для чайников и какие обозначения выводов полевой транзистор имеет.

Что это такое

Полевой транзистор — это радиоэлемент полупроводникового типа. Он используется для усиления электросигнала. В любом цифровом приборе схема с полевым транзистором исполняет роль ключа, который управляет переключением логических элементов прибора.

В этом случае использование ПТ является очень выгодным решением проблемы с точки зрения уменьшения размеров устройства и платы.

Обусловлено это тем, что цепь управления радиокомпонентами требует не очень большой мощности, а значит, что на одном кристалле могут располагаться тысячи и десятки тысяч транзисторов.

ЭТО ИНТЕРЕСНО:  Как подключить дисплей к ардуино

Схема подключения электротранзистора полевого типа

Материалами, из которых делают полупроводниковые элементы и транзисторы в том числе, являются:

  • Фосфид индия;
  • Нитрид галлия;
  • Арсенид галлия;
  • Карбид кремния.

График области насыщения электротранзистора

Важно! Полевые транзисторы также называют униполярными, так как при протекания через них электротока используется только один вид носителей.

Характеристики полевого транзистора

Основными характеристики полевого транзистора являются:

  • Максимально допустимая постоянная рассеиваемая мощность;
  • Максимально допустимая рабочая частота;
  • Напряжение сток-исток;
  • Напряжение затвор-сток;
  • Напряжение затвор-исток;
  • Максимально допустимый ток стока;
  • Ток утечки затвора;
  • Крутизна характеристики;
  • Начальный ток стока;
  • Емкость затвор-исток;
  • Входная ёмкость;
  • Выходная ёмкость;
  • Проходная ёмкость;
  • Выходная мощность;
  • Коэффициент шума;
  • Коэффициент усиления по мощности.

Характеристика напряженности поля заряда

Как он работает

Полевой транзистор включает нескольких составных элементов — истока (источника носителя заряда наподобие эмиттера на биполярном элементе), стока (приемника заряда по аналогии с коллектором) и затвора (управляющего электрода наподобие сетки в лампах или базы).

Работа первых двух очевидна и состоит в генерации и приеме носителя электрозаряда, среди которых электроны и дырки. Затвор же нужен в первую очередь для управления электротоком, который протекает через ПТ.

То есть, получается классического вида триод с катодом, анодом и электродом управляющего типа.

Вам это будет интересно  Перевод ватт в киловатты

Когда происходит подача напряжения на затвор, возникает электрополе, которое изменяет ширину определенных переходов и влияет на параметр электротока, протекающего от истока к стоку. Если управляющее напряжение отсутствует, то ничто не будет препятствовать потоку носителей заряда в виде электронов.

Когда напряжение управления повышается, то канал, по которому движутся электроны или дырки, наоборот, уменьшается, а при достижении некоего предела закрывается совсем, и полевой транзистор входит в так называемый режим отсечки.

Именно эта характеристика ПТ делает возможным их применение в качестве ключей.

Подключение нагрузки к электротранзистору для его открытия

Свойства усиления электротока этого радиокомпонента обусловлены тем, что сильный электрический ток, который протекает от истока к стоку, повторяет все динамические характеристика напряжения, прикладываемого к затвору. Другим языком, с выхода этого усилителя берется абсолютно такой же по форме сигнал, как и на электроде управления, только более сильный.

Строение ПТ (униполярного транзистора) немного отличается от биполярного. А именно тем, что электричество в нем пере пересекает определенные переходные зоны. Электрозаряды совершают движение по участку регуляции, который называется затвором. Его пропускная способность регулируется параметром напряжения.

Виды электротранзисторов полевого типа с маркировкой

Важно! Пространство зон транзистора под действием электрического поля уменьшается и увеличивается. Исходя из этого изменяется количество носителей зарядов — от их полного отсутствия до переизбытка.

Для чего нужен

ПТ нужны для того, чтобы управлять выходным током с помощью создаваемого электрического поля и изменять его важнейшие параметры. Структуры, созданные на основе полевого транзистора, часто используются в интегральных схемах цифрового и аналогового вида.

n- и p-канальные электротранзисторы

Именно за счет полевого управления, эти транзисторы воздействуют на величину приложенного к их затвору напряжения. Это отличает их от биполярных транзисторов, которые управляются током, который протекает через их базу. ПТ потребляют значительно меньшее количество электроэнергии, что и определило их популярность при использовании в ждущих и следящих устройствах, а также интегральных схемах малого потребления ( при организации спящего режима).

Важно! Одними из наиболее известных устройств, основанных на действии полевых транзисторов, являются пульты управления от телевизора, наручные часы электронного типа. Эти устройства за счет своего строения и применения ПТ могут годами работать от одного крошечного источника питания в виде батарейки.

Вам это будет интересно  Все об законе Джоуля-Ленца

Схематический вид электротранзистора полевого типа

Как открыть полевой транзистор

Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».

Режим насыщения элемента через транзистор

Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».

Схема (структура)

На схеме ниже можно увидеть примерное строение транзистора полярного типа. Его выводы соединены с металлизированными участками затвора, истока и стока. Схема изображает именно p канальное устройство, затвором которого является n-слой. Он имеет гораздо меньшее удельное сопротивление, чем канальная область p-слоя. Область же перехода n-p в большей степени находится в p-слое.

Схематическое изображение электротранзистора с n-p каналами

Как подключить

Все зависит от того, каким именно образом полевой транзистор будет включаться в усилительный каскад. Таких способа есть три:

  • С общим истоком;
  • С общим стоком;
  • С общим затвором.

Схемы включения полевого электротранзистора в цепи

Их различия заключаются в том, что они используют различные электроды подаются питающим напряжением и к каким электроцепям присоединен источник сигнала и нагрузка для него.

Общий исток наиболее часто используется для достижения максимального усиления сигнала входа. Общий сток используется для устройств согласования, потому что усиление там используется небольшое, но сигналы входа и выхода аналогичны по фазе. Схема с общим затвором применяется чаще всего в усилителях высокой частоты. При таком способе подключения полоса пропускания намного шире, чем в других способах.

Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа

Таким образом, полевой транзистор это очень важный полупроводниковый радиоэлемент, который способен управлять сопротивлением канала электротока путем воздействия на него поперечного электрического поля, создаваемого напряжением затвора.

Источник: https://rusenergetics.ru/polezno-znat/polevoy-tranzistor

Подключение Mosfet к Aрдуино | Технохрень

Mosfet или МОП-транзистор это такая штука для управления нагрузкой. Типа как реле, но лучше

Бывают N и P  типов. Картинка поможет:

Картинку надо запомнить чтобы потом не путаться в документации. Да, и N-канальные круче как правило

NPN mosfet подключение к arduino

Тут все без гемора. Вот пара вариантов подключения:

Если надо еще и плавно включать/выключать лампочку, либо не на всю мощность, а только на половину например, можно из ардуино пищать шимом, а между затвором и истоком включить еще конденсатор микрофарад на 300. Это нужно чтобы открыть мосфет на половину.. Однако это подойдет только для маломощной лампочки, потому как полуоткрытый мосфет имеет некислое внутреннее сопротивление и греется как утюг.

В эту схему подойдет к примеру мосфет  h6n03l. Но тут есть нюанс в выборе резюков. Тот, который между ардуино и gate – чем больше сопротивление, тем меньше ток на ноге ардуино и меньше вероятность что она задымится. И чем больше сопротивление тем медленнее открывается мосфет.

Кароч 150 ом норм для ардуино (по закону ома I = E / R, I = 5 / 150 = 0.033 А  — это 33 миллиампера, норм). Зачем он вообще нужен? Дело в том, что затвор (gate) у полевика имеет определенную емкость и является в какой-то мере конденсатором.

Так что в момент переключения через затвор проходят большие токи, которые может не выдержать ардуина. Для этого и нужен резистор между gate и пином.

А второй 10 кОм типа подтягивающий резистор – нужен чтобы держать мосфет закрытым и нагрузку выключенной пока порт ардуины в неопределенном состоянии например при загрузке (так называемое Z-состояние).

Но у этой схемы есть косяк – она медленновата. На переключение уйдет 600ns что подходит не для всех задач. Вот фронт и спад.

Желтая – выход с мосфета, зелено-бирюзово-светло-голубая – выход с ШИМ ардуино. Желтая не успевает. Для решения этой проблемы надо поставить парочку транзисторов как тут предлагают http://joost.damad.be/2012/09/dimming-12v-led-strip-with-mosfet-and.html

Но это нужно далеко не всегда и как правило достаточно первой схемы. И кстати есть вариант получше — про него в конце статьи.

PNP mosfet arduino

Тут чутка сложнее

Если нам надо на нагрузку подать 5 вольт:

  • R1 ограничивает ток на затворе чтобы ардуинка не сломалась
  • R2 подтягивает порт на землю чтобы не было ложных срабатываний
  • D1 диод шотки чтобы не спалить все – он нужен только если нагрузка имеет большую индуктивность – например реле или мотор или еще что-то, где есть много намотанной проволоки. Кстати для NPN мосфета он тоже нужен. А на переменном токе не нужен, а то задымится)

Если на мотор или лампочку надо 12 вольт то все немного сложнее. Чтобы открыть мосфет нам надо подать 12 вольт на gate, а при таком варианте наш ардуино задымится. Надо еще один транзистор так:

Тут Q1 – биполярный транзистор – он то и включает 12 вольт на gate Q2, а R1 нужен чтобы ограничить ток чтобы ардуино опять таки не задымилась. Работает все так:

  • подаем с ардуино high – q1 начинает проводить ток с коллектора на эмиттер и 12 вольт утекает не в gate q2, а на землю. q2 включает мотор
  • подаем с ардуино low – q1 закрыт и не пропускает ток, 12 вольт через резистор подаются на gate q2, моторчик не крутится. все просто. резистор r2 нужен чтобы ограничить ток q1 и q2 чтобы он не задымились

Управлять больше чем 12 вольт можно, например 24 вольтами, если q1 выдержит. Чтобы наверняка можно добавить диод D2:

Рулим 220 вольтами с помощью мосфета

Мосфетом не совсем удобно рулить 220 вольтами. Ну всяким извращенцам это нравится Вот пример схемы:

Эта схема диммера для лампочек, с помощью ШИМ можно менять яркость. Подробнее тут http://www.learningelectronics.net/circuits/dimmer-with-mosfet.html

А для нормального управления нагрузкой в 220 вольт вместо мосфетов можно использовать:

  • симисторы типа bt131. Если нужна плавная регулировка света, то нужно делать что-то вроде этого:Вкратце из за того, что напряжение переменное, надо будет с помощью прерывания отлавливать момент когда лучше всего открыть симистор, и сделать из обычной фазы что-то вроде этого:Подробнее тут http://www.cyber-place.ru/showthread.php?t=525
  • транзисторы дарлингтона
  • КР1182ПМ1 (не особо надежно, по отзывам дохнут они)

Подключение Mosfet к Ардуино по-хорошему

Для таких вещей люди специально придумали специальные драйверы типа этих http://voltmaster-samara.ru/catalog/drajvery-mop-i-igbt-tranzistorov

Тут уж народ издевается над МОП транзисторами как хочет

Суть в том, что драйвер нужен как раз для согласования пяти вольт с выводов ардуино (а также других микроконтроллеров) с уровнями, необходимыми для управления затворами мосфетов.

На картинке первые две схемы а) и б) не очень, так как из-за кривых рук разработчика все может задымится. Зато вторые норм.

И кстати если надо использовать ШИМ — то лучше выбрать высокоскоростной драйвер типа TC4420.

Подбор MOSFET для подключения к ардуино

Качаем даташит, например для FQP30N06. Первое на что надо обратить внимание это ток и вольты:

Второе — определить по такой вот диаграмме падение напряжения. Например если мы рулим лампочкой с потреблением 2А, а для управления используем 5 вольт на gate:

Падение напряжения будет где-то 5,4 вольта и нам лучше найти что нибудь менее нагревательное

Третье — надо если используется ШИМ — время открытия и закрытия:

Если прокосячить с частотой, дать большую чем он может вытянуть, то транзюк перегреется.

Опубликовать вашу статью на нашем сайте можно тут!

Источник: http://skproj.ru/podklyuchenie-mosfet-k-arduino/

Как проверить полевой МОП (Mosfet)

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

Источник: http://www.sxemotehnika.ru/zhurnal/kak-proverit-polevoi-mop-mosfet-tranzistor-tcifrovym-multimetrom.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]