Как работает датчик влажности

Измерение влажности – как повысить точность?

20 апреля 2018

Компания Texas Instruments выпускает датчики влажности HDC, позволяющие выполнять измерения с погрешностью ±2% в широком диапазоне температур. Однако для получения точных и актуальных результатов необходимо учитывать целый ряд конструктивных и схемотехнических особенностей. Основные рекомендации по применению, предлагает компания Texas Instruments в документе «SNAA297A. Application Report. Optimizing Placement and Routing for Humidity Sensors».

Поддержание требуемого уровня влажности воздуха является важной задачей в самых различных областях. Это приводит к широкому распространению датчиков влажности:

  • в бытовых приложениях (настольных метеостанциях, кондиционерах и так далее);
  • в фармакологии при производстве и хранении сырья и готовых лекарств (системы кондиционирования, холодильники);
  • в пищевой промышленности при производстве, транспортировке и хранении пищевых продуктов (системы кондиционирования, холодильники, мобильные холодильные установки для перевозки продуктов);
  • в промышленности, в частности – для поддержания оптимальных условий при сборке и тестировании электронных устройств или для правильного хранения сырья при производстве электронных компонентов (резисторов, конденсаторов и прочего);
  • в системах автоматизации зданий;
  • в системах сигнализации (в датчиках газа, детекторах дыма и другое);
  • в портативной электронике;

Современные датчики влажности должны обеспечивать высокую точность измерений и минимальное потребление, а также отличаться компактными габаритными размерами.

Вместе с тем для достижения минимальной погрешности необходимо учитывать множество схемотехнических и конструктивных особенностей.

Компания Texas Instruments не только выпускает линейку датчиков влажности HDC, позволяющих выполнять измерения с погрешностью ±2% в широком диапазоне температур, но и предлагает конкретные рекомендации по достижению указанной точности.

Датчики влажности HDC

В настоящий момент линейка датчиков влажности HDC от Texas Instruments включает три позиции (рисунок 1, таблица 1). Это миниатюрные сенсоры с минимальным потреблением и максимально простой схемой включения.

Рис. 1. Датчики влажности Texas Instruments

Таблица 1. Характеристики датчиков влажности от Texas Instruments

ПараметрHDC2010HDC1010HDC1080
Точность измерения относительной влажности (тип.), % RH ±2 ±2 ±2
Диапазон измерения относительной влажности (тип.), % RH 0100 0100 0100
Точность измерения температуры (тип.), °C ±0,2 ±0,2 ±0,2
Диапазон питающих напряжений, В 1,623,6 2,75,5 2,75,5
Средний ток потребления (тип.), мкА 0,55 (1 выб/с) 1,2 (1 выб/с) 1,2 (1 выб/с)
Коммуникационный интерфейс I²C I²C I²C
Диапазон рабочих температур, °C -40125 -40125 -40125
Корпус/габариты, мм 6DSBGA/1,5×1,5 8DSBGA/2,04×1,59 6WSON/3,00×3,00

HDC1080 – интегральный датчик влажности со встроенным измерителем температуры и нагревательным элементом. Благодаря заводской калибровке HDC1080 имеет погрешность ±2% и диапазон рабочих температур -40125°С. Измерение влажности может выполняться с разрешением 8/11/14 бит, а температуры – с разрешением 11 или 14 бит.

HDC1080 является самым крупным датчиком влажности производства Texas Instruments и выпускается в 6-выводном корпусе 6WSON размерами 3х3 мм. Чувствительный элемент в HDC1080 располагается в верхней части корпуса.

Для взаимодействия с управляющим контроллером используется интерфейс I²C. При этом HDC1080 отличается максимально простой четырехпроводной схемой включения: две цепи питания (VDD и GND) и две линии связи I²C (SCK и SDA).

Для минимизации потребления в HDC1080 реализовано два рабочих режима: режим измерений (measurement mode) и режим сна (sleep mode). При включении питания автоматически активируется режим сна с типовым потреблением 100 нА. После настройки по I²C запускается режим измерений со средним током потребления около 1,2 мкА (11-битные измерения влажности и температуры с частотой 1 измерение в секунду).

Дополнительный нагревательный элемент используется для разогрева сенсора и удаления конденсата. Правда, расплатой за это становится повышение потребления до 7,2 мА.

Диапазон питающих напряжений для HDC1080 составляет 2,75,5 В.

HDC1010 – датчик влажности, который отличается от HDC1080 уменьшенными габаритными размерами, расширенным функционалом и повышенной стойкостью к пыли и грязи.

HDC1010 выпускается в 8-выводном корпусе 8DSBGA размером 2,04×1,59 мм. Чувствительный элемент в HDC1010 располагается в нижней части корпуса, что, по задумке проектировщиков, должно увеличить стойкость к поверхностному загрязнению.

Функционал датчика был расширен за счет добавления выводов адреса (ADR0 и ADR1) и вывода прерывания DRDYn. Благодаря адресным входам ADR0 и ADR1 к одной шине I²C можно одновременно подключить несколько сенсоров HDC1010. Сигнал DRDYn сообщает об окончании цикла измерений и может быть использован для пробуждения управляющего контроллера, находящегося в режиме ожидания, что позволяет значительно сократить потребление всей системы в целом.

HDC2010 – самый новый и самый продвинутый датчик влажности производства Texas Instruments. От предшественников он отличается еще более компактными размерами, уменьшенным потреблением и пониженным диапазоном питающих напряжений.

HDC2010 выпускается в 6-выводном корпусе 6DSBGA размером 1,5х1,5 мм, что ровно в два раза меньше, чем, например, у HDC1080.

Уровень потребления в HDC2010 сокращен вдвое: в режиме измерений – до 0,55 мкА (11-битные измерения влажности и температуры с частотой одно измерение в секунду), а в режиме сна – до 50 нА. Одной из причин столь значительного повышения эффективности стало снижение нижней границы диапазона питающих напряжений почти в два раза – до 1,62 В.

Схема включения HDC2010 аналогична схеме включения HDC1010, однако вместо пары входов адреса ADR0 и ADR1 используется один вход ADR (рисунок 2).

Рис. 2. Структура и схема подключения датчика влажности HDC2010

Погрешность измерения влажности для всех представленных датчиков одинакова и составляет ±2%, а погрешность измерения температуры – ±0,2°С. Однако чтобы добиться такой точности, необходимо на этапе проектирования учитывать целый ряд конструктивных и схемотехнических особенностей. Рекомендации, предлагаемые Texas Instruments, представлены в документе “SNAA297A. Application Report. Optimizing Placement and Routing for Humidity Sensors”. Рассмотрим их подробнее.

Измерение влажности

Как и большинство датчиков влажности, сенсоры Texas Instruments измеряют относительную влажность RH%, равную отношению парциальных давлений (формула 1):

$$RH\%=\frac{P_{s}(Td)}{P_{s}(T)},\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

Источник: https://www.compel.ru/lib/89529

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Когда вы слышите термин «умный сад», вам приходит в голову система, которая измеряет влажность почвы и автоматически поливает ваши растения.

С этим типом системы вы можете поливать растения только при необходимости и избегать чрезмерного или недостаточного полива.

Если вы хотите построить такую систему, вам обязательно понадобится датчик влажности почвы.

Как работает датчик влажности почвы, и его взаимодействие с Arduino

Как работает датчик влажности почвы?

Работа датчика влажности почвы довольно проста.

Вилка в форме зонда с двумя открытыми проводниками действует как переменный резистор (потенциометр), сопротивление которого изменяется в зависимости от содержания воды в почве.

Рисунок 1 – Работа датчика влажности почвы

Это сопротивление обратно пропорционально влажности почвы:

  • большее количество воды в почве означает лучшую проводимость и приводит к снижению сопротивления;
  • меньшее количество воды в почве означает худшую проводимость и приводит к повышению сопротивления.

Датчик выдает выходное напряжение в соответствии с сопротивлением, измеряя которое мы можем определить уровень влажности.

Обзор аппаратного обеспечения

Типовой датчик влажности почвы состоит из двух компонентов.

Зонд

Датчик содержит вилочный зонд с двумя открытыми проводниками, который погружается в почву или в любое другое место, где должно измеряться содержание воды.

Как сказано выше, он действует как переменный резистор, сопротивление которого изменяется в зависимости от влажности почвы.

Рисунок 2 – Зонд датчика влажности почвы

Модуль

Датчик также содержит электронный модуль, который соединяет датчик с Arduino.

В соответствии с сопротивлением датчика модуль выдает выходное напряжение, которое доступно на выводе аналогового выхода (AO).

Этот же сигнал подается на высокоточный компаратор LM393 для его оцифровки, с выхода которого сигнал подается на вывод цифрового выхода (DO).

Рисунок 3 – Регулировка чувствительности датчика влажности почвы

Для регулировки чувствительности цифрового выхода (DO) модуль содержит встроенный потенциометр.

С помощью этого потенциометра вы можете установить пороговое значение; таким образом, когда уровень влажности превысит пороговое значение, модуль выдаст низкий логический уровень, в остальных случаях на цифровой выход будет подаваться высокий логический уровень.

Эта настройка очень полезна, когда вы хотите инициировать действие при достижении определенного порога. Например, когда уровень влажности в почве пересекает пороговое значение, вы можете активировать реле, чтобы начать перекачивание воды. Вот вам идея!

Совет: поверните движок потенциометра по часовой стрелке, чтобы увеличить чувствительность, или против часовой стрелки, чтобы уменьшить ее.

Рисунок 4 – Светодиодные индикаторы питания и состояния почвы

Помимо этого, модуль имеет два светодиода. Индикатор питания загорится, когда на модуль будет подано напряжение питания. Светодиод состояния загорится, когда на цифровой выход будет подаваться низкий логический уровень.

Распиновка датчика влажности почвы

Датчик влажности почвы очень прост в использовании и содержит только 4 вывода для связи с внешним миром.

Рисунок 5 – Распиновка датчика влажности почвы

AO (аналоговый выход) выдает аналоговый сигнал с напряжением в диапазоне между напряжением питания и 0 В и будет подключен к одному из аналоговых входов нашей платы Arduino.

Вывод DO (цифровой выход) выдает цифровой выходной сигнал со схемы встроенного компаратора. Вы можете подключить его к любому цифровому выводу на Arduino или напрямую к 5-вольтовому реле или подобному устройству.

Вывод VCC подает питание на датчик. Рекомендуется питать датчик напряжением от 3,3 до 5 В. Обратите внимание, что сигнал на аналоговом выходе будет зависеть от того, какое напряжение питания подается на датчик.

GND для подключения земли.

Измерение влажности почвы с помощью аналогового выхода

Поскольку модуль предоставляет как аналоговый, так и цифровой выходные сигналы, то для нашего первого эксперимента мы будем измерять влажность почвы, считывая аналоговые показания.

Подключение

Давайте подключим наш датчик влажности почвы к плате Arduino.

Сначала вам нужно подать питание на датчик. Для этого вы можете подключить вывод VCC на модуле к выводу 5V на Arduino.

Однако одной из широко известных проблем с этими датчиками является их короткий срок службы при воздействии влажной среды. При постоянной подаче питания на зонд скорость коррозии значительно увеличивается.

Чтобы преодолеть эту проблему, мы рекомендуем не подавать питание на датчик постоянно, а включать его только тогда, когда вы снимаете показания.

Самый простой способ сделать это – подключить вывод VCC к цифровому выводу Arduino и устанавливать на нем высокий или низкий логический уровень, когда это необходимо.

Кроме того, итоговая мощность, потребляемая модулем (оба светодиода горят), составляет около 8 мА, поэтому можно запитать модуль от цифрового вывода на Arduino.

Итак, давайте подключим вывод VCC модуля к цифровому выводу 7 Arduino, а вывод GND модуля к выводу GND Arduino.

И, наконец, подключите вывод AO модуля к выводу A0 аналого-цифрового преобразователя Arduino.

Схема соединений показана на рисунке ниже.

Рисунок 6 – Подключение датчика влажности почвы к Arduino для считывания показаний на аналоговом выходе

Калибровка

Чтобы получить точные показания с датчика влажности почвы, рекомендуется сначала откалибровать его для конкретного типа почвы, которую вы планируете контролировать.

Различные типы почвы могут по-разному влиять на показания датчика, поэтому ваш датчик в зависимости от типа используемой почвы может быть более или менее чувствительным.

Прежде чем вы начнете хранить данные или запускать события, вы должны увидеть, какие показания вы на самом деле получаете от вашего датчика.

Чтобы отметить, какие значения выводит ваш датчик, когда почва максимально сухая, и когда она полностью насыщена влагой, воспользуйтесь скетчем, приведенным ниже.

// Выводы, подключенные к датчику #define sensorPower 7 #define sensorPin A0 void setup() { pinMode(sensorPower, OUTPUT); // Изначально оставляем датчику выключенным digitalWrite(sensorPower, LOW); Serial.begin(9600); } void loop() { // получить показание из функции ниже и напечатать его Serial.print(«Analog output: «); Serial.println(readSensor()); delay(1000); } // Данная функция возвращает аналоговый результат измерений датчика влажности почвы int readSensor() { digitalWrite(sensorPower, HIGH); // Включить датчик delay(10); // Дать время питанию установиться int val = analogRead(sensorPin); // Прочитать аналоговое значение от датчика digitalWrite(sensorPower, LOW); // Выключить датчик return val; // Вернуть аналоговое значение влажности }

Когда вы запустите этот скетч, вы увидите похожие значения в мониторе последовательного порта:

  • ~ 850, когда почва сухая;
  • ~ 400, когда почва полностью насыщена влагой.

Рисунок 7 – Калибровка датчика влажности почвы

Этот тест может потребовать несколько проб и ошибок. Как только вы получите хороший контроль над этими показаниями, вы сможете использовать их в качестве пороговых значений, если намерены инициировать какое-либо действие.

Финальная сборка

Основываясь на значениях калибровки, программа, приведенная ниже, задает следующие диапазоны для определения состояния почвы:

  • 750 – достаточно сухая для полива.

Источник: https://radioprog.ru/post/823

Датчики влажности — принцип работы, устройство, виды, применение

Для многих производственных процессов очень важно поддерживать необходимый микроклимат, в частности, определенное содержание паров воды в воздухе или газе. Для этой цели используются такие приборы, как гигрометр и гигростат. Первые измеряют содержание водяных паров, вторые поддерживают их необходимый уровень. На рисунке 1 показано устройство Роса-10, используемое как в промышленности, так и сельском хозяйстве.

Рисунок 1. Отечественные приборы Роса-10 в различном исполнении

Но датчик влажности применяется не только в производстве (например, для определения характеристик древесины), с его помощью можно регулировать сухость воздуха в помещении (рис.

2), измерять насыщение почвы водой и т.д. Предлагаем рассмотреть устройство и принцип работы таких приборов.

Это существенно поможет их правильному применению в бытовой сфере, например, чтобы сделать вытяжной вентилятор в ванную, терморегулятор для бани или самодельный датчик температуры и влажности в теплицу.

Рисунок 2. Все современные климатические системы снабжены модулем, измеряющим влажность

Прежде чем перейти к теории, определимся с терминологией.

Терминология

Под абсолютной влажностью подразумевают содержание воды (в граммах) в одном кубометре воздуха. Соответственно, единица измерения этой величины – г/м3. Состояние, при котором содержание воды в газе достигает максимальной величины (100%), называется порогом максимального насыщения или влагоемкостью. При достижении этого предела начинается процесс конденсации.

ЭТО ИНТЕРЕСНО:  Как проверить дмрв мультиметром

Необходимо заметить, что влагоемкость прямо пропорциональна температуре: чем она выше, тем большее количество воды может содержаться в том же объеме газа. Именно поэтому цифровой или аналоговый модуль измерения влажности практически всегда снабжен датчиком температуры.

Перейдем к определению, описывающему относительную влажность. Эта величина показывает соотношение влагоемкости и абсолютной влажности, соответствующие температурному режиму на момент измерения. Состояние, при котором эти величины сравняются, называется «точка росы».

Теперь, когда мы определились с терминологией, рассмотрим существующие типы датчиков и узнаем, по какому принципу работает каждый из них.

Виды датчиков и их принцип работы

Наибольшее распространение получили четыре типа приборов, каждый из них имеет свою специфику эксплуатации:

  1. Емкостной. По сути это обычный воздушный конденсатор. Принцип работы основан на изменении диэлектрических свойств воздуха, в зависимости от содержания в нем водяных паров, что вызывает увеличение или уменьшение емкости.Рисунок 3. Емкостной датчик НСН-1000 с широким диапазоном измерения влажности
  2. Резистивный. В основу работы такого устройства заложен принцип изменения сопротивления гигроскопического материала, в зависимости от содержания в нем влаги. В качестве примера можно привести детектор SYH-2RS (рис. 4).

Рисунок 4. Датчик воды SYH-2RS

Поскольку детекторы данного типа чаще всего используются в любительских схемах, мы еще вернемся к рассмотрению их устройства.

  1. Психометрический. Принцип действия этого типа построен на физическом свойстве потери тепла при испарении. В конструкции используется сухой и влажный детектор, разница температур между ними позволяет определить содержание водяного пара в воздухе. Ранее для этого использовались специальные психометрические таблицы, появление цифровой техники существенно упростило процесс.Рисунок 5. Измеритель влажности ВИТ-1 и его цифровой аналог
  2. Аспирационный. Данный тип от предыдущего отличается наличием вентилятора для принудительного нагнетания воздушной смеси или газа. На рисунке 6 демонстрируется подобная модель. Такой прибор нашел широкое применение в тех местах, где слабое или прерывистое движение воздуха.

Рисунок 6. Аспирационный измеритель влажности МВ-4М

Мы привели наиболее распространенные виды детекторов, на самом деле их значительно больше. Например, есть еще оптический датчик, где используется рассеивание света при образовании конденсата по достижению точки росы, термический (задействованы два терморезистора в открытой и герметичной камере), канальный и т.д.

Устройство детекторов резистивного типа

Теперь, как и обещали, рассмотрим конструктивные особенности сенсоров резистивного типа на примере модели SYH-2RS.

Рисунок 7. Устройство резистивного сенсора

1) – вид сбоку; 2) – вид сверху.

Обозначения:

  • а – керамическая подложка;
  • b – напыленные электроды;
  • c – гигроскопичное покрытие на основе оксида алюминия.

Как видите, конструкция сенсора довольно простая, этим и обуславливает низкая стоимость устройств данного типа. А если еще принять во внимание взаимозаменяемость таких элементов, то неудивительно, что в большинстве самодельных устройств для дома (например, датчик протечки воды) радиолюбители предпочитают использовать резистивные сенсоры.

Краткий обзор имеющихся на рынке устройств их применение

Рассмотрим приборы, которые могут быть полезны в быту, начнем с реле влажности воздуха HIG-2 (рис.8), служащего для управления вытяжкой в ванной.

Рисунок 8. Модуль HIG-2 с релейным выходом

Основные характеристики:

  • устройство запитывается от домашней электросети с напряжением 220 В;
  • срабатывание при относительной влажности от 60% до 90% (устанавливается);
  • допустимый ток нагрузки — не более 2 А;
  • время работы вентилятора после срабатывания задается таймером (2-20 мин.).

Как подключить датчик влажности HIG-2?

Для правильного подключения устройства достаточно придерживаться схемы, приведенной в инструкции к прибору, она показана на рисунке 9.

Рисунок 9. Схема подключения вентилятора к модулю контроля влажности

На клемнике прибора есть соответствующие обозначения, поэтому сложностей эта операция не вызовет. Если электропроводке квартиры или на самом вентиляторе не предусмотрено заземление, то его можно не подключать, так же не обязательно ставить на вход питания выключатель.

Тех, кого увлекает концепция «умного дома», наверняка заинтересует внешний сенсор Mi Smart (рис. 10). При установке на смартфон специального приложения можно получать информацию о температуре и влажности в квартире. Если задать в такой программе определенные параметры микроклимата, то она известит, если условия будут нарушены.

Рисунок 10. Беспроводной сенсор производства компании Xiaomi

Заметим, что у этого устройства довольно низкая погрешность измерений (для влажности она в пределах 3%, что касается температуры, то точность показаний порядка 0,3 С°). Существенный недостаток – нерусифицированное программное обеспечение, но данная проблема будет решена в ближайшее время.

Тем, кто хочет сделать для теплицы капельный полив с датчиком влажности, можно порекомендовать сенсор Gardena (рис. 11), который регулирует работу клапанов систем этого же производителя.

Рисунок 11. Сенсор Gardena, управляющий системой полива

Для питания устройства используются две алкалиновые батарейки, их заряда хватает на 10-12 месяцев непрерывной работы.

Теперь рассмотрим характеристики промышленной модели цифрового измерителя Ивит-М.Т (рис. 12), который может применяться в производственной сфере, сельском хозяйстве или ЖКХ.

Рисунок 12. Измеритель влажности с выносным датчиком из серии ИВИТ-М

Перечень основных характеристик:

  • для питания прибора необходимо напряжение 18-36 В;
  • относительная влажность может быть измерена в диапазоне от 5 % до 95 % (максимальная погрешность не более 4 %);
  • измерение температуры воздуха в пределах от -40 С° до 50 С° (модификации Н1, V) или от -40С° до 60°(модели Н2, К1, К2), точность 2 С°;
  • прибор может эксплуатироваться в температурном диапазоне от -40 С° до 50 С°.

Любителей поэкспериментировать наверняка заинтересуют сенсоры DHT11 и DHT22 (рис. 13), которые используются вместе с платформой Ардуино. В сети можно найти много интересных решений на этой элементной базе.

Рисунок 13. Сенсоры влажности для платформы Arduino

a) DHT22; b) DHT11.

Как видно из рисунка внешний вид этих датчиков практически идентичен, это же касается и распиновки. Технические характеристики сенсоров очень похожи, за исключением точности и диапазона измерений. Приведем эти данные.

Основные технические параметры DHT11:

  • подключение к источнику постоянного напряжения 3-5 В;
  • в процессе запроса пиковый уровень потребляемого тока не более 2,5 мА;
  • границы измеряемой влажности и температуры — 20-80 % и 0-50 С°, погрешность 5% и 2 С°;
  • частота выборки 1 Гц, то есть получать данные можно один раз в течение секунды.

Теперь сравним эти параметры с более точной моделью DHT22:

  • напряжение источника питания остается без изменений, как и потребляемы ток при передаче данных;
  • влажность измеряется во всем диапазоне 0-100 %, погрешность в пределах 2-5 %;
  • границы замеряемой температуры существенно расширены, по сравнению с предыдущей моделью, минимальная -40 С°, максимальная +125 С°.

Стоимость этих приборов вполне доступна на Алиэкспрессе их можно заказать с бесплатной доставкой по $1.28 (DHT11) и $4,9 (DHT22). Если покупать в России цена будет примерно в полтора-два раза дороже. Что касается базовой платформы, то плату Arduino Uno можно приобрести в Поднебесной за $25-$48 (стоимость зависит от комплектации). Программное обеспечение и прошивки скачиваются бесплатно.

Источник: https://www.asutpp.ru/vidy-datchikov-vlazhnosti-ih-princip-raboty-ustrojstvo-i-primenenie.html

Почему вентилятор с таймером лучше вентилятора с регулятором влажности

Совсем недавно мы столкнулись с этой проблемой, а множество наших читателей завалили нас одним и тем же вопросом: надо ли им покупать вентилятор с регулятором влажности или достаточно наличия в нём таймера?

Да, вы можете сказать, что всё зависит от того, для чего именно вам нужен вентилятор, каковы условия в ванной комнате, как вы её используете и т.д.

Но, говоря о подавляющем большинстве людей, вентилятор с таймером всё же более предпочтителен, чем аналог с гигростатом. Если в вашей ванной нет никаких исключительных условий влажности, то всё, что вам нужно – это вентилятор с таймером. А теперь просто позвольте нам объяснить, почему.

Как работает вентилятор с регулятором влажности?

Регулировка датчика влажности осуществляется винтами

Для чего нужен гигростат в вентиляторе? Будь то вентиляторы Electrolux, Soler & Palau, VENTS или “Эра”, не важно, но большинство из них, предназначенных для ванной, существуют и в базовой комплектации, и с гигростатом, и с таймером, и с гигростатом и таймером вместе (соответственно, цена изменяется в зависимости от вашего выбора).

Гигростат – это датчик, расположенный внутри модуля вентилятора и определяющий уровень влажности воздуха и в соответствии с полученными результатами выключающий или включающий вентилятор. При необходимости он может быть установлен и отрегулирован самостоятельно, так что, даже если в воздухе повышенная влажность, гигростат будет включать вентилятор снова и снова до тех пор, пока влажность не будет устранена.

Как работает вентилятор с таймером?

Этот вентилятор достаточно прямолинеен и прост: вы можете установить на таймере время, которое вентилятор будет выжидать после того, как кто-то посетит ванную, ориентируясь на включение/выключение света.

Другими словами, вентилятор будет работать от 30 секунд до часа (в зависимости от ваших настроек) после того, как кто-то принял душ или был в ванной более 2-3 минут.

Эта разновидность является самой распространенной, ведь только она надлежащим образом вентилирует воздух в ванной и избавляется от влаги.

Почему вентилятор с таймером лучше?

Стоит сразу заметить, что мы не призываем совсем отказываться от гигростатов в пользу таймеров, но, говоря в целом, люди больше нуждаются именно в вентиляторах с таймером.

Если в вашей ванной бывает высокая влажность, то просто установите таймер на продолжительный режим. Если же влажность в ванной зашкаливает постоянно, то вам нужен гигростат.

Однако, если у вас нет особых проблем с влажностью и вам нужна элементарная вентиляция помещения и ощущение свежести, то вентилятор с таймером – самый лучший выбор.

В случае, если вы надолго уезжаете из дома и знаете, что влажность может подскочить, то вам необходим вентилятор с регулятором влажности. Но, если вы дома, а ваша семья регулярно использует ванную в течение дня, то гигростат не нужен. А вот таймер – в самый раз.

И еще самый простой пример: вам нужно выкупать ребенка, который немного приболел. Иногда в таких ситуациях люди даже полотенце под дверь укладывают, чтобы исключить малейший сквозняк и воздухообмен, т.к ребенок моментально простужается.

В таких случаях в ванную напускают побольше горячей воды, чтобы там было жарко как в бане, а уж после заносят ребенка и купают.

И тут, вдруг раз, вентилятор с датчиком влажности решает, что у вас слишком влажно и начинает работать на полную мощность, выключить вы ее уже не можете.

Кроме того, что при покупке вентилятора важно не ошибиться в выборе, но еще вентилятор нужно правильно установить. Очень важно не перемудрить. О том, как правильно установить вентилятор читайте в нашей статье: 5 советов по установке вентилятора в ванной.

Совет, если решили купить вентилятор с гигростатом

Гигростат – это очень чувствительный модуль, принцип работы которого понятен далеко не каждому. Сам факт, что вы заметили, как вентилятор на включился тогда, когда вы от него этого ожидали, ещё не значит, что надо постоянно лезть в гигростат и регулировать его.

Хотя в каждой ванной весьма индивидуальные условия, но всё же: поверьте, выставив гигростат на 60%, вы избавитесь от всех мучающих вас проблем.

Постоянная возня с гигростатом приведет лишь к его поломке, так что научитесь ему доверять даже тогда, когда вам кажется, что влажность слишком высокая.

Поделитесь своим опытом

Устанавливали ли вы гигростат? Как всё прошло? Может быть, вам хочется поделиться чем-то, что вы узнали во время установки, использования, сборки вентилятора – пожалуйста, напишите о своих впечатлениях в комментариях.

Источник: https://indclimat.ru/fans-s-tajmerom-luchshe-ventilyatora-s-regulyatorom-vlazhnosti/

Как выбрать датчик влажности

Наиболее важные технические параметры, которые необходимо просмотреть при выборе датчика влажности, это: — точность — повторяемость — взаимозаменяемость — долгосрочная стабильность — восстановление от конденсата — стойкость к химическим и физическим загрязнениям — размер — корпус

— стоимость

Дополнительными фактора для рассмотрения могут стать стоимость замены, калибровка, сложность конструкции, надежность усилителя сигнала и схемы обработки данных. Чтобы рассмотреть все предложения, которые доступны на современном рынке электронных компонентов, необходимо рассмотреть основные типы датчиков влажности и общие закономерности работы каждого из них.

Емкостные датчики относительной влажности (RH)

Емкостные датчики влажности широко используются в современном промышленном оборудовании, бытовой технике и телеметрических системах сбора метеорологических данных.

Такие датчики конструктивно состоят из подложки, на которой расположен тонкопленочный полимерный или металлооксидный между двумя проводящими электродами. Чувствительная поверхность покрыта пористым металлическим электродом для защиты от загрязнения и конденсата.

Подложка обычно изготавливается из стекла, керамики или кремния. Инкрементальные изменения в диэлектрической константе емкостного датчика влажности практически прямо пропорциональны относительной влажности окружающего воздуха. При колебании влажности на 1% емкость изменяется на 0.2-0.

5 пФ, а при 50% влажности (25°С) колебания могут достигать от 100 до 500 пФ.

Емкостные датчики влажности характеризуются низким температурным коэффициентом, возможностью работы на высоких температурах (вплоть до 200°С), возможностью полного восстановления от попадания конденсата и умеренной стойкостью к химическим испарениям. Время отклика датчиков составляет от 30 до 60 с для шага изменения влажности в 63%.

Современные технологии производства емкостных датчиков интегрировали в себя многие достижения полупроводниковой электроники, чтобы добиться минимального смещения параметров и гистерезиса при долгосрочной эксплуатации. Например, тонкопленочные емкостные датчики могут интегрировать на подложке монолитную микросхему усилителя сигнала. Часто современные усилители сигналов имеют CMOS генератор для сглаживания линейного выходного сигнала.

Типичный класс точности емкостных датчиков составляет ±2% отн.влажности в диапазоне от 5 до 95% при калибровки по двум точкам.

Следует учитывать, что емкостные датчики имеют ограничения по рабочему расстоянию, чувствительный элемент может быть расположен вдали от схемы усиления сигнала, чтобы избежать паразитных эффектов соединительного кабеля (уровень колебаний емкости датчика не велик). Расстояние должно быть менее 3 метров.

Прямая замена датчиков может стать проблемой, если датчик при производстве не прошел лазерную обработку или если не используется компьютерная калибровка датчиков. Датчики с лазерной обработкой имеют значение взаимозаменяемости ±2%.

ЭТО ИНТЕРЕСНО:  Как подключить регулятор напряжения

Емкостные датчики точки росы

Тонкопленочные емкостные датчики отличаются дискретным изменением сигнала при малой относительной влажности. Их работа характеризуется стабильностью и минимальным сдвигом во всем периоде эксплуатации. Однако такие датчики не имеют линейного выхода, когда относительная влажность падает ниже нескольких процентов.

Такая особенность датчиков привела к разработке системы измерения точки росы, которая объединяет емкостной датчик с микропроцессорной схемой, хранящей данные калибровки в блоке энергонезависимой памяти. Такой подход к решению проблемы значительно сократил стоимость гигрометров и передатчиков точки росы, которые используются в системах кондиционирования воздуха и телеметрических системах сбора метеорологических данных.

Датчики монтируются на микросхеме, которая имеет выходной сигнал по напряжению в зависимости от уровня относительной влажности. Микропроцессорное управление запоминает уровень напряжения на уровне 20 в диапазоне температур -4027°С. Опорные значения подтверждается с NIST гигрометром, работающим по технологии охлаждаемого зеркала на элементах Пельтье. Уровень напряжения в точке росы и точке замерзания сохраняется в EPROM память датчика.

Микропроцессор использует эти данные для расчета алгоритма линейной зависимости при одновременном измерении температуры сухого термометра и давления водяного пара. Как только определено давление водяного пара, температура точки росы рассчитывается из термодинамической зависимости, хранящейся в EPROM памяти. Корреляция с технологией измерения охлаждаемого зеркала выше ±2°С для точки росы в диапазоне -40-7°С и выше ±1°С в диапазоне -727°С.

Долгосрочная стабильность датчика составляет менее 1.5°С в год. Измерительные метрологические приборы, работающие по этому принципу, широко используются в различных приложениях, благодаря своей привлекательной цене по сравнению с приборами на технологии охлаждаемого зеркала.

Резистивные датчики влажности

Резистивные датчики влажности фиксируют изменения электрического сопротивления гигроскопической среды (например, проводящего полимера, соли или обработанной подложки).

Резистивные датчики имеют бифилярную намотку. После покрытия гигроскопическим полимером, их сопротивление оказывается обратно пропорциональным влажности.

Обычно, резистивные датчики состоят из металлических электродов, наложенных на подложку с помощью фоторезистора или намотанных на пластиковых или стеклянный цилиндр электродов. Подложка покрывается солевым или проводящим полимером. Когда он растворяется или помещается в жидкое вещество, он ровно покрывает датчик.

В другом случае, подложка может быть обработана каким-либо химическим реагентом, например, кислотой. Датчик поглощает водяной пар и ионные группы распадаются, что увеличивает электрическую проводимость. Время отклика для большинства резистивных датчиков составляет от 10 до 30 секунд для шага измерений 63%.

Диапазон сопротивлений типичного резистивного элемента колеблется от 1 кОм до 100 МОм.

Большинство резистивных датчиков используются АС напряжение возбуждения без смещения постоянным током для предотвращения поляризации датчика. Образовывающийся ток конвертируется и выпрямляется в сигнал постоянного напряжения для дальнейшего усиления, линеаризации или аналого-цифрового преобразования.

Номинальная частота составляет от 30 Гц до 10 кГц.

Резистивные датчики не является полностью резистивные за счет емкостного эффекта в диапазоне более 10-100 МОм. Главное преимущества резистивных датчиков влажности заключается в их отличной взаимозаменяемости (обычно она составляет ±2% отн.влаж.

), что позволяет использовать резистор для калибровки схемы усиления сигнала на фиксированном уровне влажности. Это позволяет устранить необходимость в стандартах калибровки влажности. Точность каждого резистивного датчика влажности можно измерить в калибровочной емкости или с помощью специальной компьютерной системы.

Диапазон рабочих температур резистивных датчиков влажности составляет от -40 до 100°С.

В условиях бытовой и коммерческой эксплуатации срок службы таких датчиков составляет более 5 лет, однако воздействие химических паров и других загрязнений (масла, например) может привести к их досрочному выходу из строя. Другой недостаток резистивных датчиков влажности – их тенденция к сдвигу значений при работе в конденсате, если используется растворимое в воде покрытие.

Резистивные датчики имеют значительную зависимость от температуры, когда применяются в среде с большими температурными изменениями (более 10°F). В тоже время, схема термокомпенсация может быть добавлена в конструкцию датчика для увеличения его точности.

Таким образом, основными преимуществами резистивных датчиков являются небольшие размеры, малая стоимость, взаимозаменяемость и долгосрочная стабильность.

В конструкции современных резистивных датчиков используется керамическое покрытие для снижения слияния условий окружающей среды при возникновении конденсата. Датчики состоят из керамической подложки с металлическими электродами, нанесенными по фоторезистивной технологии. Поверхность подложки покрыта проводящим полимером (или смешанным керамическим составом), а сам датчик помещается в защитный пластиковый корпус с пылевым фильтром.

Связующим материалом является керамический порошок, взвешенный в жидкой среде. После того, как поверхность покрыта и высушена, датчики обрабатывается высокой температурой. Результатом является толстопленочное покрытие, нерастворимое в воде, которое полностью защищает датчик от конденсата.
После попадания в воду, типичное время восстановления до уровня 30% датчика с керамической подложкой составляет 5-15 минут, в зависимости от скорости движения воздуха.

Взаимозаменяемость датчиков составляет менее 3% в диапазоне измерений 15-95% отн.влажнсоти. Точность составляет ±2%. При использовании датчика вместе со схемой усиления сигнала, выходное напряжение прямо пропорционально относительной влажности окружающей среды.

Теплопроводящие датчики абсолютной влажности

Такие датчики измеряют абсолютную влажность путем определения разницы между теплопроводимостью сухого воздуха и воздуха, насыщенного водяными парами.

Для измерения абсолютной влажности на высоких температурах часто используются теплопроводящие датчики. Их рабочий принцип сильно отличается от резистивных и емкостных датчиков.

Если воздух или газ сухой, он имеет значительные возможности поглощения тепла. Типичный пример – климат пустынь. Днем в пустыне очень жарко, однако ночью температура резко падает благодаря сухому атмосферному климату. И наоборот, влажный климат не может так быстро охлаждаться, поскольку тепло сохраняется водяными парами в атмосфере.

Теплопроводящие датчики влажности (или датчики абсолютной влажности) состоят из двух согласованных NTC термисторов, включенных по мостовой схеме. Выходное напряжение моста прямо пропорционально абсолютной влажности. Один термистор герметично изолирован в сухом азоте, а корпус другого открыт.

При прохождении тока через термисторы, термосопротивление увеличивает температуру до более 200°С. Тепло, рассеиваемое с герметичного термистора, больше, чем тепло открытого термистора, за счет разницы в теплопроводимости водяного пара и сухого азота. Поскольку рассеиваемое тепло создает разные рабочие температуры, разница сопротивления термисторов пропорциональна абсолютной влажности.

Простая сборка резисторов дает выходное напряжение в диапазоне 0 – 130 г/куб.м при 60°С. Калибровка проводится путем помещения датчика в сухую воздушную среду или в азот с регулировкой выходного сигнала до нуля. Датчики абсолютной влажности имеют долгий срок службы, их рабочая температура достигает 300°С, а корпус датчиков устойчив к химическим парам.

Интересная особенность теплопроводящих датчиков заключается в том, что они реагируют на любой газ, обладающий отличной от азота теплопроводимостью. Это повлияет на результаты измерений. Обычно, датчики абсолютной влажности используются в сушильных аппаратах, микроволновых печах и пароварках.

В целом, датчики абсолютной влажности имеют большее разрешение при температурах более 200°F, чем емкостные и резистивные датчики влажности. Их можно использовать в тех приложениях, где обычные датчики влажности не допустимы. Типичная точность абсолютных датчиков составляет 3г/куб.м., это составляет около 5% отн.

влажности при 40°С или 0.5% при 100°С.

Сравнительная таблица преимуществ датчиков влажности

Резистивные датчики Емкостные датчики Теплопроводящие датчики
Взаимозаменяемость Возможность удаленного использованияНевысокая стоимость Широкий диапазон измерений Стойкость к конденсатуВзаимозаменяемость при лазерной обработке Работа в коррозионной среде Работа при высокой температуре

Источник: http://www.sensorica.ru/docs/art3.shtml

Датчики влажности. Виды и работа. Применение и особенности

Приборы, измеряющие влажность, называют гигрометрами. Их можно также назвать и датчики влажности. В обыденной жизни влажность – это немаловажный параметр. Она важна для сельхозугодий, техники.

От процента влажности зависит здоровье человека. Метеозависимые люди очень чувствительны к этому параметру. Также от нее зависит здоровье больных астмой, гипертонией. Когда воздух сухой здоровые люди чувствуют сонливость, раздражение кожи, зуд. Излишне сухой воздух провоцирует болезни дыхания.

На заводах и фабриках влажность оказывает влияние на сохранность сырья и выпускаемой продукции, и станков. В сельскохозяйственных угодьях влажность оказывает влияние на почву, ее плодородие. Чтобы владеть информацией о влажности применяют гигрометры (датчики влажности).

Классификация датчиков влажности

Некоторые приборы изготавливают калиброванными под определенную влажность, но для точной настройки нужно знать точное значение этого параметра в воздухе.

Влажность измеряется по параметрам:

  • Воздух и газы определяются по влажности в г*м3 при абсолютной величине, или при относительной величине в RН.
  • Твердые предметы, жидкости, измеряют в % от веса образца.
  • Жидкостей не смешиваемых, влажность меряют частями воды (ррm).

Емкостные датчики влажности

Эти чувствительные элементы можно представить, как элементарные конденсаторы с двумя пластинами, между которыми находится воздух. Это наиболее простая конструкция. Воздух не проводит электрический ток в сухом состоянии. При ее изменении, меняется и емкость конденсатора.

Конструкцией более сложной является емкостный датчик с диэлектриком, который значительно изменяется от влажности. Такой способ повышает качество датчика, по сравнению с воздушным типом.

Второй тип лучше применять для измерений на предметах твердых. Предмет размещается между пластинами конденсатора, который подключается к контуру колебаний, к генератору. Делается замер частоты контура колебаний, по результату рассчитывается емкость образца.

Такой способ измерения содержит негативные стороны. При влажности материала менее 0,5 процента, точность будет низкой, материал должен быть чистым от веществ с высокой проницаемостью. Важнейшим также является геометрическая форма предмета, которая не должна меняться в опыте по измерению влажности.

Третий тип датчика представляет собой тонкопленочный гигрометр, включающий подложку с двумя электродами в виде гребенки. Они являются обкладками. Для компенсации температуры в 1 датчик включены 2 термоэлемента.

Резистивные датчики влажности

Резистивные датчики состоят из 2-х электродов. Они нанесены на подложку. На электроды наложен слой токопроводящего материала. Но этот материал значительно меняет значение сопротивления в зависимости от влажности.

Подходящим по чувствительности материалом стал оксид алюминия. Он поглощает влагу извне, его сопротивление значительно меняется. В итоге полное сопротивление сети датчика имеет большую зависимость от влажности. Значение проходящего тока будет показывать о значении влажности. Преимуществом таких датчиков стала их небольшая стоимость.

Термисторный вариант датчика

Гигрометр на термисторах включает два однотипных термистора. Это нелинейные компоненты. Их сопротивление прямо пропорционально температуре. Один из термисторов расположен в герметичной камере с сухим воздухом. 2-й термистор находится в камере с отверстиями. Через них поступает влажный воздух. Эту влажность нужно определить. Термисторы подключены по мостовой схеме. Разность потенциалов подается на одну диагональ, показания снимают с другой.

При нулевом напряжении на выходе термисторов, их температура одинакова, поэтому влажность обоих термисторов также равна. При нулевом напряжении влажность разная. Поэтому, по измеренному напряжению рассчитывают влажность.

Возникает вопрос, почему при изменении влажности меняется температура термистора. Ответить можно так. При повышении влажности с поверхности термистора испаряется вода, и температура термистора снижается. Чем больше показатель влажности, тем эти процессы протекают более стремительно, термистор остывает быстрее.

Оптические датчики влажности

В его основе действия определения влажности стоит точка росы. Когда достигается это состояние точки росы, то жидкость и газ приобретают равновесие термодинамики.

Если стекло расположить в газовой среде с температурой, находящейся выше точки росы, далее снижать температуру стекла, то на стекле возникнет конденсат. Это процесс перехода воды в жидкое состояние. Температура такого перехода и называется точкой росы. Температура этой точки зависит от давления и влажности среды. В итоге, если мы сможем определить температуру и давление, то легко вычислим и влажность. Такой метод является основным.

Простая цепь датчика включает светодиод, испускающий свет на поверхность зеркала, отражающего и изменяющего его направление. В нашем случае есть возможность изменять температуру зеркала путем подогрева или охлаждения устройством регулировки температуры особой точности. Можно использовать термоэлектрический насос. На зеркало монтируют датчик температуры.

Перед началом замеров температуру зеркала устанавливают так, чтобы его значение было больше точки росы. Затем охлаждают зеркало. На зеркале будут образовываться водяные капли, вследствие этого луч света, поступающий от светодиода, будет преломляться и рассеиваться, что приведет к снижению тока в фотодетекторе.

Владея информацией от фотодетектора, регулятор будет поддерживать температуру на зеркале, а термодатчик определит температуру. Зная давление и температуру, определяют влажность.

Оптический датчик имеет максимальную точность, по сравнению с другими аналогами. Из недостатков можно выделить повышенную стоимость и немалый расход энергии, а также обслуживание, которое заключается в поддержании поверхности зеркала в чистом виде.

Электронный гигрометр

Его принцип действия заключается в изменении электролита, которым покрыт изоляционный материал. Имеются устройства с автоподогревом, поддерживающие температуру точки росы.

Замер температуры точки росы проводится над раствором хлорида лития. Этот раствор очень чувствительный к самым малым изменениям влажности. Для наибольшего удобства к гигрометру прикрепляют термометр. Такой гигрометр имеет повышенную точность, небольшую погрешность. Он может измерить влажность при любой температуре среды.

Большую известность имеют обычные электронные гигрометры с двумя электродами. В почву втыкаются два электрода. По степени проводимости тока определяют влажность. Перед приобретением датчика нужно определиться, для чего он будет применяться, диапазон замеров, точность и т. д. Наиболее точным прибором является оптический датчик. В зависимости от условий нужно обратить внимание на класс защиты, интервал температур измерения.

Многие умельцы хотят собственными руками сделать гигрометр для вентилятора. Для такой работы им понадобятся современные цифровые устройства:

  • Сенсорные датчики и температуры (DНТ 11, DНТ 22).
  • Устройство обработки данных на основе Ардуино.

Arduino – устройство, состоящее из комплекта микропроцессоров, собранных на недорогих микроконтроллерах. Оно имеет открытые понятные схемы.

Любой желающий может узнать в интернете, какие составные части входят в схему, какая будет у него цена. Подключение вентилятора к такому устройству не составит труда. Интересным фактом является взаимодействие такого устройства с компьютером.

Существует множество драйверов и специальных программ, с помощью которых можно работать и выполнять разные операции.

Если учесть стоимость в настоящее время, то хочется сделать своими руками вытяжной вентилятор в комплекте с датчиком влажности. Но такие устройства рекомендуется изготавливать для задач сложнее. Можно, например, соединить в одну сеть множество разного оборудования. Многие фирмы монтируют датчики влажности на выпускаемое оборудование. Вследствие этого не имеет серьезного смысла этим заниматься, и делать то, что уже давно сделано.

ЭТО ИНТЕРЕСНО:  Как измерить емкость конденсатора мультиметром

Если сделать увлажнитель для дома и попытаться подключить его к вентилятору, то это совсем другое дело. Для таких целей необходимо разработать несколько схем.

Можно найти и подобный датчик влажности для вентилятора. Такие имеются на оборудовании компании Honeywell. Их действие основывается на способе работы конденсатора. Могут отпугнуть такие понятия, как «особая полимерная изоляция», или «электроды платиновые». Эти устройства стоят не дешево. Сначала нужно изучить этот вопрос и определиться, нужно это или нет. Довольно сложной работой окажется и сборка схемы замера аналогового значения, и градуировка датчика.

Компания Regeltechnik производит сенсоры совмещенного типа для измерения влажности и температуры, как для внешней среды, так и для внутри зданий и помещений.

Канальные датчики влажности

Существуют гидростаты канального вида. Применение их пока остается не очень понятным. В заводских условиях это можно как-либо объяснить. На электростанции имеется контроль множества параметров. Там высокая влажность в вентиляционном канале системой автоуправления может определиться, как нарушение функций оборудования.

Для домашнего хозяйства канальный вентилятор с датчиком влажности нигде не пригодится, так как он не предназначен для контроля значений среды.

Если канальный вентилятор эксплуатируется сразу на множество помещений, и образуется влага в канале, то это является командным сигналом для увеличения скорости работы электродвигателя вентилятора. Это возникает при близком к холостому ходу режиме.

В этом случае датчик влажности с вентилятором станут мощной системой экономии электричества. Эксплуатация этой системы на полную мощность осуществится только при необходимости.

Можно также сделать управление действием рекуператора и аналогичного оборудования. Его смысл заключается в том, что при нормальном режиме происходит экономия электричества.

Влажность рекомендуется создавать в пределах 40-60 процентов. Иногда появляется в таких случаях задача по увлажнению.

Вентилятор с устройством увлажнения может достичь номинальных параметров автоматически, так как в его составе имеется встроенный гигростат, другими словами генератор пара. Эти приборы востребованы в летний период в сухих климатических условиях.

Вентиляторы могут при помощи цифровой управляемой системы бороться с капризами природы. Плохой погоды не бывает, но микроклимат всегда можно оптимизировать.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/datchiki-vlazhnosti/

Датчик измерения влажности в воздухе

Гигрометр необходим для измерения соответствующих показателей, причем не только в быту, но и в сельском хозяйстве и в промышленности (например, для измерения влажности почвы или для измерения остаточной влажности в древесине в процессе сушки).

В быту датчик контроля влажности воздуха обеспечивает контроль микроклимата, на предприятиях – точность технологических процессов и сохранность оборудования, в сельском хозяйстве – оценку качества почв, их плодородности.

Конечно, настройка комнатного датчика от промышленного отличается. Кроме того, отличается и сам способ измерения. Чтобы сделать какие-то выводы или настроить оборудование для совместной работы, важно понимать, какой именно величиной измеряется влажность.

И здесь возможно несколько вариантов:

  • Абсолютное значение, в граммах на кубометр;
  • Относительное значение, в единицах RH;
  • В процентах от массы исследуемых образцов, если речь идет о твердых телах, материалах;
  • В частях воды на 1000000 частей веса образца или ppm.

Абсолютная влажность или влагоемкость может варьироваться от 0 до 100% (то есть до полного насыщения, теоретически). Большинство бытовых гигрометров измеряют именно ее.

Принцип работы (действия) датчика измерения влажности воздуха

Существует 5 типов гигрометров, различающихся по принципу действия:

  • Емкостные. Это простые модели, представляющие собой конденсаторы с воздухом как диэлектриком. Диэлектрическая проницаемость воздуха напрямую связана с влажностью, а при изменении влажности меняется и емкость воздушного конденсатора. Также есть модели с содержанием диэлектрика в воздушном зазоре: они срабатывают лучше, чем «просто воздушные». Такими устройствами уже можно измерять содержание воды в твердых веществах (позволяет измерить влажность исследуемого образца, помещенного между обкладками конденсатора, в том случае, если она превышает 0,5%).к этой категории относятся и тонкопленочные гигрометры с гребенчатыми электродами вместо обкладок. В них также присутствуют термодатчики, обеспечивающие компенсацию.
  • Резистивные. Конструкционно эти датчики влажности представляют собой два электрода на подложке, причем поверх электродов наносится материал с малым сопротивлением (величина сопротивления сильно меняется в зависимости от влажности). Часто в качестве покрытия используют оксид алюминия, который хорошо поглощает влагу из окружающей среды. Резистивные датчики измеряют величину протекающего тока и стоят недорого.
  • Термисторные или психометрические. Устройства представляют собой пару одинаковых термисторов (нелинейных электронных компонентов с сопротивлением, сильно зависящим от температуры). Работает следующим образом: один термистор размещают в герметичной камере, заполненной сухим воздухом, второй – в камере с отверстиями, через которые проходит воздух для измерений. Термисторы соединены по мостовой схеме: если на выходе получается нулевое напряжение, то влажность в камерах одинакова, если нет – то разность показателей влажности в камерах можно измерить в соответствии со значением полученного напряжения.
  • Оптические, также носят название конденсационные. Это – самый точный тип устройств, основанный на таком физическом понятии как «точка росы». В процессе определяется температура, при которой на поверхности материала выпадает конденсат. В зависимости от температуры точки росы измеряется влажность окружающей среды. В простейшем случае такие конструкции представляют собой светодиод, подсвечивающий зеркальную поверхность, после чего луч света меняет направление и попадает на фотодетектор. Зеркало подогревается или охлаждается высокоточным температурным регулятором (термоэлектрическим насосом), а в момент выпадения конденсата температуру фиксируют соответствующим датчиком. Для работы важно, чтобы зеркало было чистым: в конденсированных каплях воды световые лучи преломляются, и величина тока в цепи фотодетектора падает.
  • Электронные. Основной принцип действия этого устройства – измерение концентрации электролита, которым покрыт электроизоляционный материал. Часто используют концентрированный раствор хлорида лития, высокочувствительного к изменениям влажности. Электронные гигрометры зачастую дополнены еще и термометром, что позволяет производить замеры с высокой точностью. Для замеров влажности почвы тоже используют электронные гигрометры, представляющие собой 2 электрода, погружаемые в грунт. Влажность измеряется в зависимости от уровня токопроводимости земли.

Виды и типы датчиков измерения влажности воздуха

При выборе конкретного типа датчика, исходя из его принципа работы, следует учитывать основные факторы:

  • Какую величину влажности понадобится измерять – относительную или абсолютную;
  • Где будет замеряться влажность – в воздухе, в почве, в образце материала;
  • Имеет ли значение гистерезис, с какой точностью необходимы измерения и в каком диапазоне они будут проводиться.

Так, самыми точными датчиками считаются оптические, но они же и самые дорогие. Емкостные часто применяются в бытовой технике и в промышленном оборудовании. Их ключевое преимущество – устойчивость к высоким температурам и химическим испарениям.

В быту чаще всего применяют резистивные детекторы, работающие с относительно малым временем отклика, от 10 до 30 секунд. Они могут работать в температурном диапазоне от -40 до +100 градусов, но чувствительны к химическим и масляным испарениям.

Электронные хороши тем, что благодаря компьютерной калибровке работают с высокой точностью.

У всех этих моделей есть преимущества и недостатки, а также факторы, влияющие на точность измерений.

Применение датчиков измерения влажности воздуха

В промышленных условиях, для определения относительной влажности почв, материалов или помещений чаще используются гигрометры, измеряющие относительную влажность. Они оснащены встроенными преобразователями сигналов и легко интегрируются в соответствующую измерительную систему. Также эти приборы могут иметь встроенный датчик температуры, чтобы проводить комплексный контроль микроклимата и устанавливать реальную связь между уровнями температуры и влажности.

Для измерения относительной влажности воздуха наиболее доступны несколько типов датчиков: психрометрические, аспирационные, емкостные и резистивные. Рассмотрим более детально каждый вид датчика.

Датчики емкостного и резистивного типа часто используют в офисных системах климат-контроля, где показатели влажности могут варьироваться от 30 до 70%.

Для агропромышленных комплексов (теплиц, грибоводческих хозяйств, овощехранилищах) такие модели не подойдут, так как в условиях повышенной влажности и при возможном выпадении конденсата дают сбой и могут показывать значения с погрешностью до 6%. В этом случае рекомендуется использование психрометрических датчиков.

Если замеры производятся в зонах с воздушным потоком, то стоит применять аспирационный датчик, то есть психрометрический, дополненный вентилятором. За счет работы электровентилятора на мокром термометре создается нормированный воздушный поток. При измерении высокой относительной влажности воздуха такой прибор дает погрешность 1%, не более.

В целом область использования датчиков влажности воздуха очень широка и включает в себя:

  • Поддержание микроклимата в заданных пределах на производстве, оборудованном чувствительными к влажности электронными приборами;
  • Контроль за показателями влажности в офисных помещениях, в быту;
  • В сфере ЖКХ – в котельных и на водоочистных станциях позволяют не допустить образование конденсата;
  • Периодический контроль помогает предотвратить появление грибка, плесени на стенах здания или в складе.

Схема подключения датчика измерения влажности воздуха, его настройка и установка

В большинстве случаев такие датчики монтируются на твердую поверхность. Корпус может закрепляться на стене винтами (он твердый, прочный и выполнен из огнеупорного пластика). Внутри корпуса гигрометра расположен клеммник с контактами, который используется для подключения (задействуется схема, предоставленная производителем).

Подключение производится кабелем через кабельный ввод, при этом соответствующую гайку обязательно затягивают до упора, чтобы сохранить герметичность корпуса (в большинстве моделей он соответствует классу защиты от внешних воздействий IP65). Также можно использовать экранированный кабель, если предполагается, что устройство будет работать в зоне с высоким уровнем электромагнитных помех. Настройка и калибровка производятся после подключения в «рабочих» условиях.

В компании «Измеркон» можно приобрести датчики влажности, преобразователи температуры и влажности с релейными выходами, с цифровым интерфейсом, с внешними зондами, а также WEB-датчики. Есть модели гигрометров с подключением по Wi-Fi, способные передавать данные через интернет.

Источник: https://izmerkon.ru/podderzhka/publikaczii/datchik-izmereniya-vlajnosti-vozduha.html

Датчик уровня влажности почвы и автоматический полив на Arduino

Хотели бы вы, чтобы ваши растения сообщали о том, что их надо полить? Или просто держали вас в курсе уровня влажности почвы?

В этой статье мы рассмотрим проект автоматизированного полива с использованием датчика уровня влажности почвы:

Обзор датчика уровня влажности почвы

Подобные датчики подключаются достаточно просто. Два из трех коннекторов — это питание (VCC) и земля (GND). При использовании датчик желательно периодически отключать от источника питания, чтобы избежать возможного окисления. Третий выход — сигнал (sig), с которого мы и будем снимать показания.

Два контакта датчика работают по принципу переменного резистора — чем больше влаги в почве, тем лучше контакты проводят электричество, падает сопротивление, сигнал на контакте SIG растет.

Аналоговые значения могут отличаться в зависимости от напряжения питания и разрешающей способности ваших аналоговых пинов микроконтроллера.

Для подключения датчика можно использовать несколько вариантов. Коннектор, приведенный на рисунке ниже:

Второй вариант более гибкий:

Ну и конечно можно напрямую запаять контакты на датчик.

Если вы планируете использовать датчик за пределами квартиры, стоит дополнительно задуматься о защите контактов от грязи и прямого попадания солнечных лучей. Возможно, стоит подумать о корпусе или нанесении защитного покрытия непосредственно на контакты датчика уровня влажности и проводники (смотрите на рисунок ниже).

Датчик уровня влажности почвы с нанесенным защитным покрытием на контактах и изолированными проводниками для подключения:

Проблема недолговечности датчика уровня влажности почвы

Один из недостатков датчиков подобного типа — недолговечность их чувствительных элементов. К примеру, компания Sparkfun решает эту проблему, используя дополнительное покрытие (Electroless Nickel Immersion Gold).

Второй вариант продления срока действия сенсора — подавать на него питание непосредственно при снятии показаний. При использовании Arduino, все ограничивается подачей сигнала HIGH на пин, к которому подключен датчик.

Если вы хотите запитать датчик большим напряжением чем предоставляет Arduino, всегда можно использовать дополнительный транзистор.

Контроль уровня влажности почвы — пример проекта

В приведенном ниже проекте использованы датчик уровня влажности, аналог платы Arduino — RedBoard и LCD дисплей, на котором выводятся данные про уровень влажности почвы.

В приведенном ниже проекте использованы датчик уровня влажности, аналог платы Arduino — RedBoard и LCD дисплей, на котором выводятся данные про уровень влажности почвы.

Датчик уровня влажности почвы компании SparkFun:

Красный проводник (VCC) подключается к 5 В на Arduino, черный — к земле (GND), зеленый — сигнал — к аналоговому пину 0 (A0). Если вы используете другой аналоговый пин на Arduino, не забудьте внести соответствующие изменения в скетч для микроконтроллера, представленный ниже.

LCD дисплей подключен к 5 В, земле и цифровому пину 2 (также можно изменить и внести изменения в код) для обмена данными с микроконтроллером по серийному протоколу связи.

Стоит отметить, что если вы хотите продлить срок службы вашего сенсора, можно подключить его питание к цифровому пину и питать его только при считывании данных, а после — отключать. Если запитывать датчик постоянно, его чувствительные элементы вскоре начнут ржаветь. Чем больше влажность почвы, тем быстрее будет проходить коррозия. Еще один вариант – нанести гипс на датчик. В результате влага будет поступать, но коррозия значительно замедляется.

Программа для Arduino

Скетч достаточно простой. Для передачи данных на LCD дисплей вам необходимо подключить библиотеку Software Serial library. Если у вас в ее нет, скачать можно здесь: Arduino GitHub

Дополнительные пояснения приведены в комментариях к коду:

// Пример использования датчика уровня влажности почвы с LCD дисплеем.

// В скетче считываются данные с датчика и отображается уровень влажности почвы

// Для работы с дисплеем используется библиотека softwareserial library

#include

// Подключите пин для обмена данными с использованием LCD дисплея по серийному протоколу RX к цифровому пину 2 Arduino

Источник: http://arduino-diy.com/arduino-datchik-urovnya-vlazhnosti-pochvy-i-avtomaticheskiy-poliv

Какие существуют датчики влажности воздуха в помещении?

Датчик влажности имеет еще одно название — гигрометр. Он представляет собой прибор для измерения уровня влажности. Последний показатель является важным как для повседневной жизни, так и для производственных процессов.

В быту от влажности зависит самочувствие обитателей дома. Что касается производственных процессов, то некоторым приборам важен уровень влажности, под него даже проводят их настройку.

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]