Как работает электрический двигатель

Устройство электродвигателя и принцип работы

Июнь 29, 2014

52440 просмотров

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки.

В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе.

Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения.

Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС.

Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности.

Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

Источник: http://jelektro.ru/elektricheskie-terminy/ustrojstvo-rabota-jelektrodvigatelja.html

Принцип действия электродвигателя

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями.

Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла.

Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.

Принцип работы электродвигателя — основные функциональные элементы

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором.

Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой.

Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.

Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа.

Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.

Принцип работы электродвигателя — разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%.

Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом,  они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ.

К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

Источник: https://promplace.ru/printcip-dejstviya-elektrodvigatelya-506.htm

Асинхронный электродвигатель постоянного тока 220В и 380В

Электродвигатель – машина, преобразовывающая энергию электромагнитного поля во вращательное движение (электрический двигатель). Это, пожалуй, наиболее гениальное изобретение, позволившее Человечеству сделать цивилизационный скачок в индустриальное общество. Коэффициент его полезного действия составляет 95-98 процентов. Ни один из механизмов на планете Земля таковым больше не обладает.

Основа принципа действия

В основе принципа действия любого электрического двигателя лежит феномен электромагнитной индукции. Если скрутить любой проводник в кольцо и через него протащить магнит, то в нем возникнет электрический ток, направление течения которого будет противоположно движению магнита. Верно и обратное: прохождение электричества через проводник вызывает индуцирование ЭДС в металлическом стержне.

Этот эффект был открыт в 1832 году английским физиком Майклом Фарадеем, создавшим прибор, состоящий из постоянного магнита и бронзового диска, помещенного между его полюсами.

При вращении диска с подключенных к нему проводов снималось небольшое напряжение и переменный ток большой силы. Поэтому диск Фарадея называют еще и униполярным генератором, который при всей архаичности конструкции до сих пор используется.

Например, в установках ТОКАМАК для разогрева плазмы и рельсотронах – разновидности оружия.

Электрический двигательпостоянного тока

Если к диску Фарадея подключить гальваническую батарею, то он совершит один оборот – до того момента, как совпадут разноименные полюса – ее и магнита. Электродвигатель постоянного тока в своей работе использует эффект отталкивания одноименных полюсов магнита. Чтобы вращение стало непрерывным, на его роторе закреплено особое устройство (коллектор) – кольцо из металла, поделенное на сектора диэлектриком.

Питающее напряжение подводится к коллектору посредством скользящих контактов – щеток. Когда вал машины поворачивается, сектора коллектора меняются местами и полюса остаются разноименными. Поэтому вращение продолжается. Скорость вращения ротора машин постоянного тока зависит от количества обмоток на нем. Каждая из них представляет собой своеобразный диск Фарадея и подключена к своей паре пластин коллектора.

Если ее мощность электрической машины невелика, то статорные магниты делают из природного металла с соответствующими свойствами. В промышленных машинах постоянного тока используются электромагниты – катушки из проводников. Они питаются тем же напряжением, что и катушки ротора.

Двигатели переменного тока

Конструкция электродвигателя переменного потом электроэнергии выглядит как бы вывернутой наизнанку по отношению к машинам постоянного тока. Питающее напряжение в нем подводится к статорным обмоткам, а принцип действия основан не на отталкивании одноименных полюсов магнита, а на притягивании имеющих противоположный знак.

Магнитное поле статора машины переменного тока вращается.

Этот феномен возникает в результате сложения векторов магнитной индукции нескольких переменных токов, фазы синусоид которых сдвинуты друг относительно друга на некоторый угол – 900, если питание двухфазное, и 600 при трехфазном напряжении.

Величины углов объясняются просто: отдельная обмотка генератора переменного тока состоит из двух катушек, а на статоре они расположены диаметрально противоположно. Если поделить 3600 на четыре (две обмотки) или на шесть (три обмотки), то получим исходные значения.

Магнитное поле ротора индуцируется  энергией в статорных обмотках и имеет два свойства:

  1. Оно противоположно статорному по знаку.
  2. Отстает от статорного, поскольку на его индукцию требуется некоторое время, а сам ротор имеет физический вес и по этой причине обладает моментом инерции.

Полюса магнитного поля ротора стремятся притянуться к противоположным полюсам статорного, но эта своеобразная погоня никогда не может закончиться по двум причинам:

  1. линейная скорость ротора ниже из-за разницы в размерах.
  2. Существуют потери энергии в воздушном зазоре между деталями машины.
ЭТО ИНТЕРЕСНО:  Сетевой фильтр что это

Угол рассогласования между ротором и статором достигает 180, из-за его наличия электродвигатели переменного электричества называют асинхронными.

Наиболее распространенной конструкцией является электрическая машина, обмотка ротора которой состоит из нескольких проводников, замкнутых двумя металлическими кольцами. По форме она похожа на так называемое беличье колесо. Таковы все общепромышленные электродвигатели. Они просты, но имеют неустранимый недостаток: большие пусковые токи, которые приводят к перегрузкам в сети и авариям.

Двигатели с фазным ротором запускаются плавно, без перегрузок, но они сложны и дороги. Применяются для обеспечения больших тяговых усилий. Например, в крановом оборудовании или на электротранспорте.

как работает Электродвигатель:

Как правильно эксплуатировать электродвигатель

Асинхронный электродвигатель на сегодня является наиболее широко используемым двигателем в промышленности и строительстве. Чтобы устройство было всегда в форме и не пришлось его отправлять на свалку в результате преждевременного износа, хорошие хозяева проявляют заботу о нём и эксплуатируют правильно. В этой статье мы обсудим, как правильно эксплуатировать электродвигатель во избежание возникновения неполадок при его работе.

Условия работы электрического двигателя

Электрический двигатель будет в полной мере соответствовать характеристикам, указанным в паспорте, если его, прежде всего, правильно установить и использовать. Условия обеспечения номинальных параметров двигателем следующие:

  • колебания напряжения питающей сети электрического тока, к которой подключен агрегат, не должны превышать 5% от номинала;
  • максимально допустимая температура воздуха, окружающего конструкцию, должна быть не более +350 С;
  • во избежание перегрузки мотора необходимо следить за показаниями амперметра, не допуская увеличения силы тока более 5% от номинала;
  • корпус устройства надежно следует заземлить и регулярно проверять сопротивления заземления;
  • конструктивные элементы, изготовленные из коррозируемых материалов, необходимо покрыть краской. Коррозия всегда начинается на поверхности металла, а затем распространяется вглубь, ухудшая механические свойства материала;
  • кабельные сети, по которым поступает питающее напряжение, следует надёжно изолировать и защитить от случайных механических повреждений. Подключение выполнить напрямую к контактным зажимам двигателя, находящимся в коробке.

Элементарные правила эксплуатации в отношении своего двигателя

Правильная эксплуатация электродвигателя обеспечивает его надёжную работу в течение всего установленного ресурса. До включения устройства в работу обязательно проверить:

— чистоту и отсутствие ненужных предметов на корпусе и рядом;

— состояние заземления;

— качество крепления статора.

Первый запуск электродвигателя лучше доверить специалисту, который будет обслуживать все движущиеся механизмы.

Рекомендации по эксплуатации асинхронных электродвигателей:

  1. У работающего двигателя основные электрические и механические показатели должны быть следующими:

— температура нагрева статора не более 900 С;

— вибрация в пределах нормы, а именно в соответствии с количеством оборотов двигателя;

— вращение ротора бесшумное, без скачков;

— установленная заводом-изготовителем величина нагрузки;

— отсутствие искрения щёток у коллекторных двигателей.

  1. Защита электрических цепей осуществляется плавкими вставками. Значение тока по номиналу пишется на вставке.

  2. Аварийное отключение электродвигателя производится в следующих случаях:

— появился сильный запах горения, дым, искры, огонь;

— повышенный уровень вибрации, из-за которого возможно разрушение двигателя;

— выход из строя электропривода;

— резкое снижение оборотов и повышенный нагрев.

Владелец также обязан планировать профилактические ремонты, которые повышают надёжность оборудования.

Некоторые двигатели используются крайне редко. Как поступать в этом случае? Рекомендуется постоянно осматривать, проверять сопротивление изоляции и запускать устройства, что позволит при необходимости без промедления их использовать.

Вывод

Конструкция асинхронного электродвигателя простая и надёжная. И, если соблюдать правила эксплуатации, в том числе не превышать основные электрические и механические параметры, установленные изготовителем, то срок его службы можно будет увеличить.

Остались вопросы? Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:

8-800-700-11-54 (8-18, Пн-Вт)

Источник: https://epusk.ru/articles/elektrodvigateli/elektricheskiy-dvigatel/

Особенности электрических двигателей. Статьи компании «Prommetey»

Этот тип оборудования за счет своей универсальности используется повсеместно, поэтому каждый образованный инженер должен представлять, как работает данный тип преобразователей

Задача электрического двигателя заключается в преобразовании механической работы за счет расхода приложенной к нему энергии. В ходе этого процесса работа преобразуется во вращательный момент, которые передается на последующее звено цепи – редуктор. Этот тип оборудования за счет своей универсальности используется повсеместно: в насосном оборудовании, системах вентиляции, в электротранспорте, в промышленности.

Как работает электрический двигатель

В магнитном поле движутся электрические заряды. На них постоянно действует сила, которая стремится отклонить их направление движения в плоскости, находящейся под прямым углом ориентации магнитных силовых линий. Эта сила стремится повернуть каждый проводник с током и всю обмотку в целом.

Во время вращения ротора возникает крутящий момент, мощность которого зависит от механизма устройства, величины приложенной электрической энергии, ее потерь при преобразованиях.

В зависимости от применяемого электрического тока двигатели делятся на:

  • приводы постоянного тока;
  • приводы переменного тока.

Двигатели постоянного тока

Постоянники в современных производственных процессах практически не задействуются. Их активно вытесняют асинхронные двигатели с короткозамкнутым ротором.

Недостатки двигателей постоянного тока

  1. требуется наличие источника постоянного тока. На производстве нечасто можно встретить такой источник, используемый для работы механизмов.

    Поэтому для внедрения постоянника в систему требуется дополнительно устанавливать требуемый источник, что экономически нецелесообразно.

  2. Пусковой момент почти в три раза превышает рабочие показатели.

    Из-за этого приходится предусматривать дополнительные защиты для поддержания корректно работающей системы, что опять же, невыгодно.

Достоинства ДПТ

  1. Механизм обеспечивает стабильную работу при высоких перегрузках.
  2. При пуске выдает высокий пусковой момент.

Такие двигатели востребованы в металлургической и транспортной отрасли.

Электродвигатели асинхронного типа

АД – устройства, которыми комплектуются большинство приводов в агропромышленных комплексах и в различных производственных сферах. Главной отличительной чертой, которая сделала данный тип механизмов сталь «преуспевающим» является высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

Ротор асинхроника производится из легкого материала – алюминия. Помимо того, что это позволяет уменьшить вес оборудования, данный металл стоит относительно недорого и позволяет снизить себестоимость готового продукта.

Асинхронные двигатели применяют в разных промышленных целях:

  • Для лифтов и другого оборудования, которые требуют ступенчатого изменения скорости.
  • При использовании лебедок применяются электродвигатели с электромагнитной тормозной системой.

При выборе асинхронного электродвигателя нужно учитывать основные критерии:

  • вид электрического тока, питающего оборудование;
  • мощность двигателя;
  • режим работы;
  • погодные условия и другие внешние факторы.

Асинхронные электродвигатели серии АИР из-за простоты конструкции, отсутствия подвижных контактов, простой замены запчастей, относительно невысокой цене по сравнению с другими видами электрических двигателей широко применяются во всех отраслях промышленности. Двигатели используются для привода, насосов, подъемников, нагревателей, и прочих машин.

Основные технические характеристики

— привязка мощности и установочных размеров стандарту ГОСТ 31606-2012;

— степень защиты по ГОСТ17494-87;

— изоляция класса нагревостойкости «F» по ГОСТ8865-93;

Специалисты компании «Прометей» проведут бесплатную консультацию по всем вопросам. Для того чтобы уточнить информацию о товаре, звоните по указанному номеру телефона на сайте либо заказывайте обратный звонок. В компании доступные цены и отличное качество товаров. Доставка осуществляется по всей территории Украины любым удобным для вас способом.

Источник: https://prommetey.com/a391802-osobennosti-elektricheskih-dvigatelej.html

Как работает электромотор, строение электромагнитного двигателя автомобиля

Электродвигатель является одним из наиболее распространённых устройств, которое способно превращать даже небольшое количество поглощаемой энергии в сложную механическую работу. Это довольно экономичный, безопасный и практически безвредный для окружающей среды мотор, именно поэтому с каждым годом число авто, основанных на электротяге, только возрастает. В статье подробно рассмотрен основной принцип работы и устройство двигателя, способного работать на электрической энергии.

Как устроен электродвигатель

Сегодня известна не одна модификация электромотора, но несмотря на это, вне зависимости от его сложности и дополнительных узлов, каждый такой агрегат состоит из двух основных частей: статора и ротора.

Статор представляет собой неподвижную несущую часть, на которой установлены магнитопроводы, а в некоторых случаях и индуктор — технический блок, преобразующий переменный ток в постоянный. Основой статора любого автомобиля является литой или сварной корпус из металла (станина) и сердечник.

В сердечнике предусмотрены специальные пазы, в которых установлена статорная обмотка (из медной проволоки). Её роль играют тонкие, параллельно расположенные и изолированные жилы из меди (или медных сплавов).

Под ротором принято подразумевать главный движущий элемент мотора. Наиболее часто он приобретает вид стального вала, по бокам которого закреплены подшипники. Поверх вала располагается медная обмотка, закрытая пластинами-магнитопроводами. Ротор плотно устанавливается во внутреннюю часть статора, при этом между верхней поверхностью ротора и внутренней частью статора устанавливается минимальный зазор, который не препятствует вращению вала во время работы.

Питание такого узла производится при помощи литий-ионного аккумулятора, его основой являются отдельные модули, подключённые в единое целое при помощи последовательной схемы. Это позволяет создать напряжение необходимой мощности и с устойчивыми параметрами. Зачастую на выходе такой батареи формируется около 300 В постоянного тока, но в некоторых моделях автомобилей при чётко устроенном взаимодействии всех узлов показатель может доходить и до 700 В.

Принцип работы электродвигателя

Электромотор можно назвать одним из наиболее простых и эффективных способов конвертирования электрической энергии в механическую. Данное действие реализуется благодаря так называемой магнитной индукции. Под ней подразумевают особое физическое явление, во время которого происходит возникновение электродвижущей силы в замкнутой среде при изменении потока магнитной силы.

В обычных двигателях внутреннего сгорания коленвал приводится в движение при помощи давления газов, как производных сгорания топлива. Электрический двигатель вращает ось благодаря взаимодействию магнитных полей на статоре и роторе. При подаче электроэнергии на медной обмотке этих элементов возникают взаимоотталкивающиеся поля, которые позволяют автоматически двигать ротор относительно неподвижного статора.

Если устроить контролируемый режим подачи питания через проводник, можно добиться стабильного и сбалансированного вращения движущихся частей, а далее — и машины. Такое строение даёт возможность практически отказаться от сложной коробки передач и упростить управление автомобилем. Кроме того, эта конструкция значительно проще, нежели цилиндровый двигатель, поэтому в нормальном режиме эксплуатации её ресурс будет значительно больше.

Принцип действия и устройство электродвигателя постоянного тока

Сейчас невозможно представить нашу жизнь без электродвигателей.

Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне.

Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается.

Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом.

Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию.

Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю.

Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников.

Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно.

Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.

Источник: https://www.szemo.ru/press-tsentr/article/printsip-deystviya-i-ustroystvo-elektrodvigatelya-postoyannogo-toka/

Современный электродвигатель — Экологические автомобили

Для большинства экологичных машин, таких как серийные электромобили, гибриды и автомобили на топливных элементах, главная движущая сила — это электрический двигатель. В основу работы современного электродвигателя положен принцип электромагнитной индукции — явления, связанного с возникновением электродвижущей силы в замкнутом контуре при изменении магнитного потока.

Тесная взаимосвязь между магнитными и электрическими явлениями открыла перед учеными новые возможности. История электрического транспорта и всего электромашиностроения в целом начинается с закона электромагнитной индукции, открытого М. Фарадеем в 1831 году, и правила Э. Ленца, согласно которому индукционный ток всегда направлен таким образом, чтобы противодействовать причине, его вызывающей.

Труды Фарадея и Ленца легли в основу создания первого электродвигателя Бориса Якоби.

Современные электродвигатели, хоть и основаны на одном и том же законе, что и электромеханический преобразователь Якоби, но существенно от него отличаются. Со временем электрические моторы стали мощнее, компактнее, кроме того, их КПД значительно вырос. Коэффициент полезного действия современного тягового электродвигателя может составлять 85-95 %. Для сравнения, максимальный КПД двигателя внутреннего сгорания без вспомогательных систем едва ли дотягивает до 45 %.

Виды современных электродвигателей

Электрические двигатели различаются по роду питающего напряжения:

  • Двигатель переменного тока
  • Двигатель постоянного тока

по числу фаз питающей сети:

  • Однофазный электродвигатель. С одной рабочей обмоткой, подключается к однофазной сети переменного тока;
  • Двухфазный электродвигатель. Имеет две обмотки, сдвинутые в пространстве на 90 градусов;
  • Трехфазный электродвигатель. Подключается к трехфазной сети переменного тока, имеет 3 обмотки, магнитные поля которых расположены через 120 градусов.

по конструктивному исполнению:

  • Коллекторный. Переключателем тока в обмотках и датчиком положения ротора является тоже самое устройство — щёточноколлекторный узел. Работает преимущественно на постоянном токе, однако современные электродвигатели, так называемые универсальные коллекторные двигатели, могут одновременно работать на постоянном и переменном токе;
  • Бесколлекторный. Вентильные двигатели постоянного тока выполнены в виде замкнутой системы с датчиком положения ротора, инвертором и преобразователем координат.

по принципу работы:

  • Синхронный электродвигатель. Электромеханическая машина, в которой ротор вращается синхронно с магнитным полем переменного тока;
  • Асинхронный электродвигатель. Частота вращения ротора асинхронного двигателя переменного тока не совпадает с частотой вращения магнитного поля, которое создается током обмотки статора.

и по способу возбуждения:

  • с возбуждением от постоянных магнитов;
  • с параллельным возбуждением;
  • с последовательным возбуждением;
  • с последовательно-параллельным.

Тяговый электродвигатель для электромобиля

Электрический двигатель для современного электромобиля может быть как постоянного, так и переменного тока. Его основная задача — передача крутящего момента на движитель электромобиля.

Основные отличия современного тягового электродвигателя от традиционной электромеханической машины являются большая мощность и компактные размеры, вызванные ограниченностью используемого пространства.

В качестве характеристик тягового электромотора, кроме мощности и максимального крутящего момента, учитываются напряжение, ток, а также частота вращения.

Мотор-колесо

В последнее время в качестве двигателя для электромобиля инженеры используют систему мотор-колесо, правда, все чаще на концепт-карах. Исключением стал Volage – спортивный электромобиль, построенный силами Venturi и Michelin, который скоро поступит в продажу.

Технология Active Wheel имеет ряд преимуществ. Все активные системы безопасности, такие как ABS, ESP, Brake Assist и Traction Control можно прошить в управляющий софт, после чего они смогут воздействовать на каждое колесо в отдельности.

Добавим к этому мобильность системы и способность регенерировать энергию торможения.

Конечно, есть и недостатки. Попробуйте впихнуть кучу механизмов внутрь маленького обода. Если это и получится, то вес колеса увеличится, а это плохо скажется на управляемости, повысится износ подвески, увеличится передача вибрации на кузов. Идеальный вес автомобильного колеса должен составлять 10-30 кг. Инженерам Michelin удалось вписаться в эти рамки – тяговый электродвигатель Active Wheel весит всего 7 кг, а остальная механика системы укладывается в 11 кг.

Преимущества и недостатки электродвигателя

Преимуществ перед ДВС у электродвигателя много:

  • Малый вес и достаточно компактные размеры. К примеру инженеры Yasa Motors разработали мотор весом 25 кг, который может выдавать до 650 Нм.
  • Долговечность, простая эксплуатация.
  • Экологичность.
  • Максимальный крутящий момент доступен уже с 0 об/мин.
  • Высокий КПД.
  • Нет необходимости в коробки передач. Хотя, по мнению специалистов, электромобилю она не помешает.
  • Возможность рекуперации.

Существенных недостатков у самого электродвигателя нет. Но есть большие сложности в его питании. Несовершенство источников тока не дают пока что массово использовать электродвигатели в автомобилестроении. Но, как мы знаем, человеческий ум не любит преграды

Источник: http://ecoconceptcars.ru/2011/01/blog-post_11.html

Неисправности электродвигателей

Неисправности электродвигателей возникают в результате износа деталей и старения материалов, а также при нарушении правил технической эксплуатации. Причины возникновения неисправностей и повреждений электродвигателей различны. Нередко одни и те же неисправности вызываются действиями различных причин, а иногда — и совместным их действием. Успех ремонта во многом зависит от правильного установления причин всех неисправностей и повреждений поступающего в ре-мот электродвигателя.

Повреждения электродвигателей по месту их возникновения и характеру происхождения делят на электрические и механические. К электрическим относят повреждения изоляции или токопроводящих частей обмоток, коллекторов, контактных колец и листов сердечников. Механическими повреждениями считают ослабление крепежных соединительных резьб, посадок, нарушения формы и поверхности деталей, перекосы и поломки. Повреждения обычно имеют очевидные признаки или легко устанавливаются измерениями.

Неисправности часто можно установить лишь по косвенным признакам. При этом приходится не только проводить измерения, но и сопоставлять обнаруженные факты с известными из опыта и делать соответствующие выводы.

Предремонтные испытания

Для электродвигателей, поступающих в ремонт, когда это возможно, следует проводить предремонтные испытания.

Объем испытаний устанавливают в каждом случае в зависимости от вида ремонта, результатов анализа карт осмотра и внешнего состояния электродвигателя. Работа по предметному выявлению неисправностей машин называется дефектацией.

Перед испытаниями электродвигатель подготавливают к работе с соблюдением всех требований правил технической документации; измеряют размеры зазоров в подшипниках и воздушные зазоры, осматривают доступные узлы и детали и оценивают возможность их использования при испытаниях.

Непригодные детали по возможности заменяют исправными (без разборки).

В асинхронных двигателях на холостом ходу измеряют ток холостого хода, контролируют его симметрию и оценивают визуально или с помощью инструментов все параметры, подлежащие контролю при эксплуатации.

В электродвигателях с фазным ротором и двигателях постоянного тока оценивают работу контактных колец, коллекторов, щеточного аппарата. Нагружая электродвигатель в допустимой мере оценивают влияние нагрузки на работу его основных узлов, контролируют равномерность нагрева доступных частей, вибрацию, определяют неисправности и устанавливают возможные их причины.

Признаки и причины неисправностей асинхронных электродвигателей

Типичные признаки и причины неисправностей асинхронных электродвигателей при номинальных параметрах питающей сети и правильном включении обмоток электродвигателя приведены в таблице ниже.

Неисправности электрических двигателей и возможные причины их возникновения
Признаки неисправности Причины неисправности Способ ремонта
Электродвигатели переменного тока
Двигатель при включении в сеть не развивает номинальной частоты вращения, издает ненормальный шум. при проворачивании вала от руки работает неравномерно Возможен обрыв фазы при соединении обмоток статора звездой или двух фаз при соединении треугольником Наиболее вероятное место повреждений — межкатушечные соединения или окисления контактных поверхностей замыкающих колец (у двигателей с фазным ротором). Производят ремонт соединения, зачистку контактов, ремонт обмотки
Ротор двигателя не вращается, сильно гудит, быстро нагревается до выше допустимых температур Обрыв фазы обмотки статора
Двигатель сильно гудит (особенно при пуске), ротор вращается медленно и работает устойчиво Обрыв в фазе ротора
Двигатель устойчиво работает при номинальной нагрузке на валу, с частотой вращения, меньше номинальной, ток в одной фазе статора увеличен Обрыв в одной фазе статора при соединении обмоток треугольником
При работе электродвигателя на холостом ходу наблюдаются местные перегревы активной стали статора Замкнуты между собой листы сердечника статора из-за порчи межлистовой изоляции или выгорания зубцов при повреждениях обмотки Удалить заусенцы, обработав места замыкания острым напильником, разъединить листы и покрыть их лаком. При сильном выгорании листов — вырубить поврежденные места, между листами проложить тонкий электрокартон и пролакировать
Перегрев обмотки статора в отдельных местах при несимметрии токов в фазах: двигатель гудит и не развивает номинального момента Витковое замыкание одной фазы в обмотке статора; междуфазное замыкание в обмотках статора Найти место повреждения обмотки и устранить замыкание. В случае необходимости — перемотать поврежденную часть обмотки
Равномерный перегрев всего электродвигателя Неисправен вентилятор (система вентиляции) Снять защитный кожух и отремонтировать вентилятор
Перегрев подшипников скольжения с кольцевой смазкой Одностороннее притяжение роторов из-за чрезмерной выработки вкладыша; плохое прилегание вала к вкладышу Перезалить подшипники скольжения
Перегрев подшипника качения, сопровождающийся ненормальным шумом Загрязнение смазки, чрезмерный износ тел качения и дорожек; неточная центровка валов в агрегате Удалить старую смазку, промыть подшипник и заложить новую смазку. Заменить подшипник качения. Проверить установку подшипников и центровку машины с агрегатом
Стук в подшипнике скольжения Большой износ вкладыша Перезалить подшипник
Стук в подшипнике качения Разрушение дорожек или тел качения Заменить подшипник
Повышенная вибрация при работе Нарушение балансировки ротора шкивами или муфтами; неточная центровка валов агрегата; перекос соединительных полумуфт Дополнительно отбалансировать ротор, шкивы или полумуфты; произвести центровку двигателя и машины; снять и вновь правильно установить полумуфту Найти место обрыва или плохого контакта и исправить повреждение
Электродвигатели постоянного тока
Якорь машины не вращается под нагрузкой; если вал развернуть усилием извне, двигатель идет «вразнос» Обрыв или плохой контакт в цепи возбуждения; короткие или межвитковые замыкания в обмотке независимого возбуждения Чаще всего неисправность бывает в регуляторе возбуждения
Частота вращения якоря меньше или больше номинальной при номинальных значениях напряжения сети и тока возбуждения Щетки сдвинуты с нейтрали соответственно в направлении вращения или против направления вращения вала Установить щетки коллектора на нейтраль
Щетки одного знака искрят сильнее щеток другого знака Неодинаковы расстояния между рядами щеток по окружности коллектора; междувитковые замыкания в обмотках одного из главных или добавочных полюсов Обрыв чаше происходит в катушке, находящейся между почерневшими пластинами коллектора. Найти место повреждения и отремонтировать
Щетки искрят; образуется почернение пластин коллектора, расположенных на определенном расстоянии друг от друга; после чистки чернеют те же пластины Плохой контакт или короткое замыкание в обмотке якоря; обрыв в катушке якоря, присоединенной к почерневшим пластинам Проверить пайку всех соединений между обмоткой якоря и почерневшими пластинами коллектора. Обнаруженные неисправности соединения — пропаять
Чернеют каждые вторая-третья пластины коллектора Ослабла прессовка коллектора или выступает миканит дорожек изоляции Затянуть пластины коллектора и проточить его поверхность
При нормальном нагреве двигателя и совершенно исправных щеточном аппарате и поверхности коллектора щетки искрят Недопустимый износ коллектора Двигатель капитально ремонтируют или заменяют на новый
Повышенное искрение щеток от вибрации, перегрев коллектора и щеток, потемнение большей части коллектора Выступают дорожки изоляции коллектора; коллектор «бьет» Проточить и прошлифовать коллектор
При вращении якоря двигателя в разных направлениях щетки искрят с различной интенсивностью Щетки смещены с централи Проверить положение щеток и установить их по заводским меткам, расположенным на траверсе
Повышенное искрение щеток на коллекторе Недостаточное прилегание щеток к коллектору; дефект рабочей поверхности щеток; неодинаковое давление щеток на коллектор; заклинивание щеток в обоймах щеткодержателя Проверить и при необходимости укоротить нажимную пружину щеткодержателей или заменить их новой Отшлифовать поверхности щеток. Установить щетки в соответствии с рекомендациями завода-изготовителя, применив щетки одной марки

Источник: http://www.ess-ltd.ru/maintenance-repair/20/1018/

Электродвигатели для электротележек и электропогрузчиков

ПН, МТ, ДПН сертификат 
Декларация ПТ6,3, МТ6,3
Декларация ПТ3,6
Декларация МТ3,6
Декларация ПН6,5
Декларация ПН10

Электродвигатели реверсивные с последовательным возбуждением МТ-4; МТ-6; МТ-6-1; МТ-4ЭПМ; МТ-4,6 – закрытого типа, брызгозащищенные) предназначены для работы в электроприводах механизмов передвижения электротележек, электропогрузчиков (ПТ-3,6; ПТ-6,3 – электротележек и электропогрузчиков болгарского производства), самоходных трапов в электропортах, технологических линиях и т.п.

Технические характеристики  Параметры/ТипМТ-4МТ-4ЭПМ-У2МТ-8МТ-4,6МТ-6-1МТ-6-У2МТ-3,6МТ-6,3ПТ-3,6ПТ-6,3
Напряжение питания, В 36 40/48 48 40 45 40/48 75 75 75 75
Мощность на валу, кВт 1,6 3,5/4,1 6,0 4,6 3,9 3,5/3,9 5,3 6,3 3,6 6,3
Потребляемый ток, А, не более 75 115 165 150 125 115 88 115 63 115
Частота вращения, мин-1 1350 1450/1750 1700 1350 1000 1450/1750 1350 1400 1400 1400
КПД, %, не менее 75 75 75 75 75 75 75 75 75 75
Габаритные размеры, мм 285х436х486 479х285х365 ø268х526 ø295х490 285х390х435 Ø285х370 ø285х385 ø285х385 ø252х473 ø270х473
Исполнение на лапах фланцевое фланцевое на лапах фланцевое
Конфигурация вала с двумя коническими вылетами вала с цилиндрическим вылетом вала с внутренними шлицами в валу ЭВ.20Х1,25Х16S4 с коническим вылетом вала
Масса, кг, не более 87 90 80 85 100 90 72 74 72 74
Основной объект применения ЭК-202, ЭК-202Б,трапы ЭП-103КО ЭП-1616, ЭП-2016, ЭТ-2054, ленточные конвейеры ЭП-2014, ЭТ-2001,ЭТ-3002 Электровоз АК-2у, ленточные конвейеры ЕТ-2012 ЕТ-2013 ЕТ-3013 ЕВ-687 ЕП-006ЕП-011 ЕВ-717
АО СЭГЗ ОАО МЗиК, г. Екатеринбург ОАО КЗЭП, г. Канаш Кутаиси, Грузия АО СЭГЗ г. Сарапул Болгария

Электродвигатели привода механизма подъема

Электродвигатели левого направления вращения со смешанным возбуждением, предназначены для использования в качестве привода гидронасоса типа НШ.

Двигатели ПН-3,5; ПН-7,5-2с; ПН-5,5 предназначены для механизма подъема груза, двигатель ДПН-1,0 для усилителя рулевого управления.

Двигатели имеют фланцевое крепление и вал с внутренними прямобочными шлицами D-6х21Н12х25Н9х6 двигатели ПН-6,5, ПН-10 имеют вал с внутренними треугольными шлицами.

Технические характеристики Параметры/ТипПН-3,5ПН-7,5-2сПН-5,5ПН-6,5ПН-10ДПН-1,0
Напряжение питания, В 40/48 40/48 40 75 75 48
Мощность на валу, кВт 3,5/4,1 7,5/9,0 5,5 6,5 10 0,98
Потребляемый ток, А, не более 115 250 175 115 165 35
Частота вращения, мин-1 2650/3050 2200/2600 1650 3000 2800 2400
КПД, %, не менее 75 75 80 75 80 65
Габаритные размеры, мм, не более ø190Х340 ø250Х385 ø250Х408 ø206Х333 ø226Х333 Ø150х276
Масса, кг, не более 35 65 75 42 49 20
Основной объект применения ЭП-103КО ЭП-1616, ЭП-2016 ЭП-2014 ЕВ-687 ЕВ-717ЕВ-735 ЭП-2016
ОАО МЗиК ОАО КЗЭП Болгария ОАО МЗиК

Специалисты по продажам

в РФ:  тел. (34147) 97-994, 97-170  e-mail: [email protected]

на  экспорт:  тел. (34147) 97-1-93  e-mail:  [email protected]

Полезная информация:

Электродвигатели переменного и постоянного тока

Электродвигатели

Электродвигатель работает по принципу электромагнитной индукции. Основными частями электродвигателя являются статор и ротор. Эти две части и создают вращательное движение в электромагнитном поле.

Электродвигатели постоянного и переменного тока используются в самых различных механизмах. Наше предприятие – это производитель электродвигателей. На нем налажено производство электродвигателей переменного тока и постоянного тока. Продажа электродвигателей переменного тока и постоянного тока производится непосредственно нашим предприятием. Купить электродвигатель переменного тока или постоянного тока вы можете, связавшись с нами любым удобным способом. 

АО СЭГЗ производит электродвигатели постоянного тока для электротележек и электропогрузчиков, переменного тока для лифтовых лебедок и взрывозащищенные.

( МТ-4; МТ-4ЭПМ; МТ-4,6; МТ-6; МТ-6–1; МТ-3,6; МТ-6,3; МТ-5Н;
МТ-8, ПТ-3,6; ПТ-6,3, ПТ-125Л/70)

АО «Сарапульский электрогенераторный завод» в 1954 году стал первым в СССР производителем тяговых электродвигателей. Тяговые двигатели применялись на электрокаре ЭК-2 собственного производства.

В настоящее время тяговые электродвигатели, выпускаемые предприятием, применяются для установки не только на электротележки собственного производства, но и на погрузчики и электротележки всех российских производителей.

Для работы в электроприводах механизмов передвижения электротележек, электропогрузчиков, самоходных трапов в аэропортах, технологических линий, была освоена широкая гамма тяговых электродвигателей серии МТ.

В последние годы появился рыночный спрос на комплектующие к ранее закупленным болгарским погрузчикам и электротележкам, ресурс которых к настоящему времени в основном выработан. АО «СЭГЗ» освоило производство электродвигателей для погрузчиков и тележек фирмы «Балканкар».

Электродвигатели реверсивные с последовательным возбуждением для электротележек серий ЭК и ЕТ, производимых АО «СЭГЗ» и электропогрузчиков ЭП-1616, ЭП-2016, ЭТ-2054 производства ОАО «МЗиК», г. Екатеринбург (МТ-5Н — с независимым (шунтовым) возбуждением; МТ-4; МТ-6; МТ-6–1; МТ-4ЭПМ; МТ-4,6 — закрытого типа (брызгозащищённые), предназначены для работы в электроприводах механизмов передвижения электротележек, электропогрузчиков (ПТ-3,6; ПТ-6,3 — электротележек и электропогрузчиков болгарского производства), самоходных трапов в аэропортах, технологических линиях и т.п; ПТ-125П/70 — в составе электромобилей.

Для электропогрузчиков типа ЭП-2014 производства ОАО «КЗЭП», г. Канаш, было освоено производство тяговых реверсивных двигателей МТ-4,6 — аналогов электродвигателей серии РТ-2,7, ранее производимых Рижским электромеханическим заводом (Латвия).

Электродвигатели привода механизма подъёма

(ПН-3,5; ПН-7,5–2с; ПН-5,6; ПН-6,5; ПН-10; ДПН-1,0)

Электродвигатели серии ПН — двигатели с левым направлением вращения, предназначены для привода гидронасоса механизма подъема вил электропогрузчиков типа ЭП-2014 (ОАО «КЗЭП») и ЭП-1616; ЭП-2016; ЭП-103К (ОАО «МЗиК»). Электродвигатель привода гидроусилителя руля ДПН-1,0 для электропогрузчиков ЭП-1616, ЭП-2016, производимых ОАО «МЗиК», г.

Екатеринбург, были запущены в производство взамен двигателей серии ЭД-0,1 производства ОАО МТЗ «Трансмаш», г. Москва, при этом двигатель ДПН-1,0 обладает мощностью превышающей мощность ЭД-0,1 почти в 2 раза. Двигатель ДПН-1,0 — усилителя рулевого управления.

Двигатели имеет фланцевое крепление и вал с внутренними прямобочными шлицами D-6x21H12x25H9x6, двигатели ПН-6,5, ПН-10 имеют вал с внутренними треугольными шлицами.

Электродвигатели ПН-3,5; ПН — 7,5–2с; ПН-5,5 левого направления вращения со смешанным возбуждением предназначены для использования в качестве привода гидронасоса типа НШ.

Электродвигатели производства АО «СЭГЗ»

Расширяя номенклатуру выпускаемых электродвигателей, АО «СЭГЗ», сохраняет требования к качеству производимой продукции. Основными преимуществами электродвигателей производимых на предприятии являются меньший вес по сравнению с аналогами, устойчивость к ударам, меньшая вибрация в рабочем режиме.

За полувековой период производства электротележек Сарапульский завод освоил выпуск двигателей постоянного тока, в начале для напольного электротранспорта собственного изготовления, а позже и для подъёмно-транспортной техники других производителей, в том числе для «МЗиК» (г. Екатеринбург) и КЗЭП (г. Канаш).

В 90-е годы, с появлением рыночной ниши по восстановлению изношенной болгарской техники, завод освоил производство тяговых электродвигателей для тележек и погрузчиков болгарской фирмы «Балканкар».
Основное конкурентное преимущество двигателей Сарапульского электрогенераторного завода — высокое качество и надёжность.

Статор и ротор — основа любой электрической машины — изготавливаются в тех же цехах и на том же оборудовании, что и электрические машины бортовых авиационных систем генерирования и преобразования электроэнергии — основной продукции предприятия.

Предприятие имеет сертификат системы менеджмента качества на соответствие требованиям ISO 9001:2000. Вся продукция сертифицирована на соответствие российских стандартов.

Источник: http://segz.ru/grazhdanskaya-produkciya/elektrodvigateli-dlya-elektrotelezhek-i-elektropogruzchikov

Принцип действия электродвигателя постоянного тока

Электрический двигатель – неоценимое изобретение человека. Благодаря этому устройству наша цивилизация за последние сотни лет ушла далеко вперёд. Это настолько важно, что принцип работы электродвигателя изучают ещё со школьной скамьи.

Круговое вращение электроприводного вала легко трансформируется во все остальные виды движения. Поэтому любой станок, созданный для облегчения труда и сокращения времени на изготовление продукции, можно приспособить под выполнение множества задач.

Каков же принцип действия электродвигателя, как он работает и каково его устройство – обо всём этом понятным языком рассказывается в представленной статье.

Как работает двигатель постоянного тока

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу.

Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается.

То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток.

Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю.

Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Принцип действия современных электродвигателей

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий.

Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо.

Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение.

Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы.

Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля.

Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора.

То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно.

На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать.

Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку.

При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

 • Скачать лекцию: двигатели постоянного тока 

Свежие записи:

Источник: https://ukrlot.com/princip_deystviya_elektrodvigatelya.html

Двигатели с тормозом

Таблица тормозов с питанием от постоянного тока
                  [Нм] М56 М63 М71 М80 М90 М100 М112 М132 М160

Максимальный

воздушный зазор

Уменьшенный крутящий момент 1 2 2 6 10 20 50 70 130 2,5 x Тном
Номинальный крутящий момент 1,8 4 4 8 16 35 75 100 180 2 х Тном
Увеличенный крутящий момент 3 6 6 12 22 50 95 120 200 1,5 х Тном

 Тном — номинальный воздушный зазор

Таблица промежуточных зазоров в тормозах с питанием от постоянного тока
                  [Нм] М56 М63 М71 М80 М90 М100 М112 М132 М160
Номинальный воздушный зазор 0,15 0,2 0,2 0,2 0,2 0,25 0,25 0,3 0,3

Тормоз с питанием от постоянного тока

Постоянным током тормоз может питаться напрямую от фазы электродвигателя, а также — отдельно. Переменный ток выпрямляется с помощью двухполупериодного выпрямителя, который располагается внутри клеммной панели.

Коробка с выпрямителем сделана из ABS, его элементы залиты эпоксидной смолой. ПОдача напряжения: 205В. По запросу возможно различное напряжение. ЛЮбые тормоза подвержены износу, поэтому необходимо проводить регулярное техническое обслуживание.

Рекомендуется делать это раз в полгода. Период проверки отличается в зависимости от эксплуатации.

Ручка ручного растормаживания

Механическая рукоятка ручного растормаживания работает путем движения в сторону задней части электродвигателя (сторона вентилятора). Типоразмеры электродвигателя от М63 до М90 с тормозом имеют стандартную комплектацию ручным растормаживанием со стороны клеммной коробки. Для всех остальных — комплектуется по запросу, требуется как правило для электродвигателей специального исполнения.

Тормозной момент

Самотормозящийся двигатель комплектуется тормозом, проверенном при тормозном моменте примерно на 20% меньше, чем при опытном испытании. По запросу тормозной момент может быть увеличен или уменьшен. При заказе электродвигателей с регулятором частоты, необходимо уточнить крутящий момент тормоза.

Тормоз DC с обратным подключением (по требованию)

Стандартный тормоз работает следующим образом: при отсутсвии подачи питания электродвигатель заторможен. По запросу возможна установка обратного тормоза: торможение осуществляется, когда на катушку тормоза подается питание.

Повышенные степени защиты тормоза По запросу возможны две дополнительные степени защиты Первый уровень IP54 включает в себя кольцо, которое защищает от пыли. Рекомендован для пыльных или слегка влажных условий эксплуатации. Второй уровень IP55 использует дополнительное кольцо из нержавеющей стали совместно с кольцом, защищающим от пыли. Рекомендуется применять в условиях высокой влажности или маслосодержащей среде (Например в пищевом оборудовании, автомобилях)

Источник: http://www.servomh.ru/elektrodvigateli/s-tormozom

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]