Что такое электрический двигатель

Какие бывают виды электрических двигателей и чем они отличаются

что такое электрический двигатель
С этой статьи мы начинаем раздел Электродвигатели на сайте Сам Электрик, т.к.

каждый электромонтер и даже домашний мастер хотя бы в общих чертах должен понимать, какие бывают виды и типы электродвигателей постоянного и переменного тока, а также особенности их устройства и применения.

Материал будет построен следующим образом: мы кратко рассмотрим разновидности электрических двигателей и в чем их различия, а для более подробного изучения того или иного варианта исполнения предоставим ссылку на отдельную публикацию.

Как работают двигатели

Принцип работы всех видов электродвигателей состоит во взаимодействии магнитных полей ротора и статора. При этом магнитное поле может создаваться постоянным магнитном или обмоткой (катушка-электромагнит).

В зависимости от мощности и типа мотора обмотки могут быть расположены только на статоре или и на статоре и на роторе. Попытаемся объяснить устройство и принцип работы для чайников в электрике.

Начнем с того, что рассмотрим устройство коллекторных электродвигателей. Например, в маленьких коллекторных двигателях постоянного тока, как для радиомоделей, на статоре расположены постоянные магниты, а в роторе намотаны катушки из медного провода. Ток к катушкам ротора такого электродвигателя подаётся через щеточный узел, состоящий из щеток и коллектора. На коллекторе расположены ламели, к которым присоединены выводы обмоток.

После включения питания ротор (якорь) начинает вращаться, на нём закреплен коллектор, а неподвижные щетки касаются попеременно разных пар ламелей коллектора. Через щетки и ламели к обмоткам ротора подаётся ток то на одну обмотку, то на другую, таким образом создавая изменяющееся магнитное поле, которое взаимодействует с полем магнита. В результате полюса вращающегося и неподвижного электромагнитов притягиваются, из-за чего и происходит вращение.

Если опустить некоторые нюансы, то чем больше ток ротора, тем больше это поле и тем быстрее вращается ротор. Однако это применимо в основном для коллекторных машин постоянного и переменного токов (они универсальны).

Если говорить об асинхронном двигателе (АД) с короткозамкнутым ротором — это электродвигатель переменного тока без щеток. В нем обмотки расположены на статоре (а), а ротор представляет собой стержни (б), замкнутые на коротко кольцами — так называемая беличья клетка.

В этом случае вращающееся магнитное поле статора порождает ток в стержнях ротора, из-за которого также возникает еще одно магнитное поле. А что происходит, когда рядом расположены два магнита?

Они отталкиваются или притягиваются друг к другу. Так как ротор закреплен на концах в подшипниках, то ротор начинает вращаться. АД предназначен только для переменного тока, и скорость вращения вала у него зависит от частоты тока и числа полюсов в обмотках статора, подробнее этот вопрос мы рассмотрим в статье об асинхронных электродвигателях.

Но для начала вращения вала такого двигателя важно либо толкнуть его (придать начальную скорость), либо создать вращающееся магнитное поле. Оно создаётся с помощью расположенных определенным образом обмоток, подключенным к трёхфазной электросети (например, 380В), или с помощью пусковых и рабочих конденсаторов (в т.н. конденсаторных асинхронных двигателях).

Кроме взаимодействия магнитных полей в во вращении вала электродвигателя участвует и сила Ампера.

Поэтому нужно понимать, что момент на валу абстрактного двигателя и число оборотов зависят от конструкции и вида электромашины, а также от силы тока и его частоты. Повторюсь, что в этой статье мы не будем углубляться подробно в особенности устройства каждого из видов и типов электродвигателей, а сделаем отдельные статьи для этого.

Стоит отметить, что асинхронные и универсальные коллекторные двигатели наиболее распространены в быту и на производстве, в приводах строительных машин. Они используются везде, как для движения промышленных механизмов, так и для автомобилей, электротранспорта и используемых в бытовой технике, вплоть до электрической зубной щетки.

Основная классификация

Источник: https://samelectrik.ru/vidy-elektricheskix-dvigatelej-i-ix-razlichiya.html

Виды электродвигателей

что такое электрический двигатель

Электродвигатель — специальное устройство, которое преобразует электрическую энергию в механическую. 

Принципы работы

Любой электрический двигатель работает по принципу электромагнитной индукции, состоящий из двух основных частей ротором  и статором или индуктором. В электрических двигателей небольшой мощностью используют постоянные магниты.

Ротор — это подвижная часть, для синхронных и асинхронных двигателей переменного тока. Может быть короткозамкнутый или с обмоткой (фазный). Роторы с обмоткой применяют для регулировки  вращения и уменьшения пусковых токов асинхронных двигателей (например: крановые электродвигатели).

Статор — это неподвижная часть, для синхронных и асинхронных двигателей переменного тока.

Якорь — это подвижная часть, для двигателей постоянного тока (например: электроинструмент).

Индуктор — это неподвижная часть, в электродвигателях постоянного тока).

Виды электрических двигателей 

Двигатели можно поделить на две основных группы: магнитоэлектрические и гистерезисные. Магнитоэлектрические наиболее распространены, в отличии от гистерезисных и активно применяются в производстве, разделяются на двигатели переменного и постоянного тока. Существуют универсальные двигатели питающие одновременно двумя видами тока. 

Электродвигатель постоянного тока имеют щеточно-коллекторный узел, обеспечивающий контакт цепей неподвижной и подвижной частях двигателя, бывают бесколлекторные и коллекторные. Также коллекторные двигатели подразделяются на: с самовозбуждением и с независимым возбуждением (постоянных магнитов и электромагнитов).

Бесколлекторные электродвигатели состоят из датчика положения ротором, инвертора (преобразователь силовой полупроводниковый) и преобразователя координат, похожи на синхронные электродвигатели.

Электродвигатели переменного тока

Разделяются на синхронные и асинхронные двигатели. Основное отличие в том, что в синхронных двигателях ротор движется с равной скоростью электромагнитной силой вращения статора, а в асинхронных поле движется быстрее ротора.

Делятся по количествам фаз:

  • однофазные (имеют фазосдвигающую цепь или пусковую обмотку, или запускаются вручную);
  • двухфазные (конденсаторные);
  • трехфазные;
  • многофазные.

Источник: http://www.ural-esk.ru/vidy_elektrodvigateley.html

Принцип действия электродвигателя

что такое электрический двигатель

Электродвигателем называется устройство, принцип действия которого преобразование электрической энергии в механическую. Такое преобразование используется для запуска в работу всевозможных видов техники, начиная от самого простого рабочего оборудования и заканчивая автомобилями.

Однако при всей полезности и продуктивности такого преобразования энергий, в данном свойстве есть небольшой побочный эффект, который проявляется в повышенном выделении тепла.

Именно поэтому электрические двигатели оснащаются дополнительным оборудованием, которое способно охладить его и позволить работать в бесперебойном режиме.

Принцип работы электродвигателя — основные функциональные элементы

Любой электрический двигатель состоит из двух основных элементов, один из которых является неподвижным, такой элемент называется статором. Второй элемент является подвижным, эта часть двигателя называется ротором.

Ротор электрического двигателя может быть выполнен в двух вариантах, а именно может быть короткозамкнутым и с обмоткой.

Хотя последний тип на сегодняшний день является достаточно большой редкостью, поскольку сейчас повсеместно используются такие устройства, как частотные преобразователи.

Принцип действия электродвигателя основана на выполнении следующих этапов работы. Во время включения в сеть, в статоре начинает осуществлять вращение возникшее поле магнитного типа. Оно действует на обмотку статора, в которой при этом возникает ток индукционного типа.

Согласно закону Ампера, ток начинает действовать на ротор, который под этим действием начинает свое вращение. Непосредственно частота вращения ротора напрямую зависит от того, какой силы действия возникает ток, а так же от того, какое количество полюсов при этом возникает.

Принцип работы электродвигателя — разновидности и типы

На сегодняшний день наиболее распространенными считаются двигатели, которые имеют магнитоэлектрический тип. Есть еще тип электродвигателей, которые называют гистерезисные, однако они не являются распространенными. Первый тип электродвигателей, магнитоэлектрического вида, могут подразделяться еще на два подтипа, а именно электродвигатели постоянного тока и двигатели переменного тока.

Первый вид двигателей осуществляет свою работу от постоянного тока, эти типы электродвигателей используются тогда, когда возникает необходимость регулировки скоростей. Данные регулировки осуществляются посредством изменений напряжения в якоре. Однако сейчас существует большой выбор всевозможных преобразователей частот, поэтому такие двигатели стали применяться все реже и реже.

Двигатели переменного тока соответственно работают посредством действия тока переменного типа. Здесь так же имеется своя классификация, и двигатели делятся на синхронные и асинхронные. Их основным различием становится разница во вращении необходимых элементов, в синхронном движущая гармоника магнитов движется с той же скоростью, что и ротор. В асинхронных двигателях наоборот, ток возникает за счет разницы в скоростях движения магнитных элементов и ротора.

Благодаря своим уникальным характеристикам и принципам действия электродвигатели на сегодняшний день распространенны гораздо больше, чем скажем двигатели внутреннего сгорания, поскольку они обладают рядом преимуществ перед ними. Так коэффициент полезного действия электродвигателей является очень высоким, и может достигать почти 98%.

Так же электродвигатели отличаются высоким качеством и очень долгим рабочим ресурсом,  они не издают много шума, и во время работы практически не вибрируют. Большим преимуществом такого типа двигателей является то, что они не нуждаются в топливе, и как результат не выделяют в атмосферу никаких загрязняющих веществ.

К тому их использование является намного более экономичным, по сравнению с двигателями внутреннего сгорания.

Источник: https://promplace.ru/printcip-dejstviya-elektrodvigatelya-506.htm

Электрические двигатели: определение, разновидности, применение

Электрический двигатель – специальная машина (ее еще называют электромеханическим преобразователем), с помощью которой электроэнергия преобразовывается в механическое движение.

Побочный эффект такой конвертации – выделение тепла.

При-этом современные двигатели обладают очень высоким КПД, который достигает 98%, в результате чего их использование экономически более выгодно по сравнению с двигателями внутренного сгорания. Электрические двигатели используются во всех сферах народного хозяйства, начиная от бытового применения, заканчивая военной техникой.

Электрические двигатели и их разновидности

Как известно с базового школьного курса физики, ток бывает переменным и постоянным. В бытовой электросети – переменный ток. Батарейки, аккумуляторы и другие мобильные источники питания предоставляют постоянный ток.

Электродвигатели постоянного тока характеризуются хорошими эксплуатационными и динамическими характеристиками.

 Такие изделия широко используются в подъемных машинах, буровых станках, полимерном оборудовании, в некоторых агрегатах экскаваторов.

По принципу работы электродвигатели переменного тока бывают

  • асинхронными;
  • синхронными.

Подробное сравнение этих видов машин можно почитать тут.

Синхронные двигатели – электрические машины, где скорость вращения ротора полностью идентична частоте магнитного поля. Учитывая эту особенность, такие устройства актуальны там, где необходима стабильная высокая скорость вращения: насосы, крупные вентиляторы, генераторы, компрессоры, стиральные машины, пылесосы, практически все электроинструменты.

Особое внимание среди синхронных устройств, заслуживают шаговые двигатели. Они обладают несколькими обмотками. Такой подход позволяет с высокой точностью изменять скорость вращения таких электродвигателей.

Асинхронными двигателями называют такие машины, в которых скорость ротора отличается от частоты движения магнитного поля.

Нашли свое применение в подавляющем большинстве отраслей народного хозяйства: в приводах дымососов, транспортерах, шаровых мельницах, наждачных, сверлильных станках, в холодильном оборудовании, вентиляторах, кондиционерах, микроприводах.

Максимальная скорость вращения асинхронных установок – 3000 об/мин.

Интересное видео о двигателях смотрите ниже:

Преимущества и недостатки асинхронных двигателей

Асинхронные электродвигатели могут обладать фазным и короткозамкнутым ротором.

Короткозамкнутый ротор более распространен.

Такие двигатели обладают следующими преимуществами:

  • относительно одинаковая скорость вращения при разных уровнях нагрузки;
  • не боятся непродолжительных механических перегрузок;
  • простая конструкция;
  • несложная автоматизация и пуск;
  • высокий КПД (коэффициент полезного действия).

Электродвигатели с короткозамкнутым контуром требуют большой пусковой ток.

Если невозможно реализовать выполнение этого условия, то используют устройства с фазным ротором. Они обладают такими достоинствами:

  • хороший начальный вращающий момент;
  • нечувствительны к кратковременным перегрузкам механической природы;
  • постоянная скорость работы при наличии нагрузок;
  • малый пусковой ток;
  • с такими двигателями применяют автоматические пусковые устройства;
  • могут в небольших пределах изменять скорость вращения.

К основным недостаткам асинхронных двигателей относят то, что изменять их скорость работы можно только посредством изменения частоты электрического тока.

Кроме того, частота вращения – относительна. Она колеблется в небольших пределах. Иногда это недопустимо.

Интересное видео об асинхронных электродвигателях смотрите ниже:

Особенности работы синхронных двигателей

Все синхронные двигатели обладают такими преимуществами:

  1. Они не отдают и не потребляют реактивную энергию в сеть. Это позволяет уменьшить их габариты при сохранении мощности. Типичный синхронный электродвигатель меньше асинхронного.
  2. В сравнении с асинхронными устройствами, менее чувствительны к скачкам напряжения.
  3. Хорошая сопротивляемость перегрузкам.
  4. Такие электрические машины способны поддерживать постоянную скорость вращения, если уровень нагрузок не превышает допустимые пределы.

В любой бочке, есть ложка с дегтем. Синхронным электродвигателям присущи такие недостатки:

  • сложная конструкция;
  • затрудненный пуск в ход;
  • довольно сложно изменять скорость вращения (посредством изменения значения частоты тока).

Сочетание всех этих особенностей делает синхронные двигатели невыгодными при мощностях до 100 Вт. А вот на более высоких уровнях производительности, синхронные машины показывают себя во всей красе.

Источник: https://pue8.ru/elektricheskie-mashiny/650-elektricheskij-dvigatel-opredelenie-raznovidnosti-primenenie.html

Асинхронные двигатели | 0,09 – 315 кВт | Техпривод

  1. /
  2. Каталог /
  3. Электродвигатели

В каталоге представлены асинхронные электродвигатели с короткозамкнутым ротором мощностью 0,06 — 315 кВт. Количество полюсов — от 2 до 8. Номинальная скорость вращения выходного вала — от 750 до 3000 об/мин. Двигатели выпускаются в различных вариантах монтажного исполнения: фланцевые, на лапах, комбо. Класс защиты корпуса — IP54 или IP55.

ЭТО ИНТЕРЕСНО:  Как проверить тестер на работоспособность

Продажа электродвигателей со складов в Москве, Санкт-Петербурге и Ростове-на-Дону. Опт и розница. Гарантия — 1 год. Отгрузка — 1 день. Доставка в любой регион России.

Электродвигатели ABLE

Однофазные и трехфазные электродвигатели бытового и промышленного назначения с классом защиты IP55. Номинальная мощность: 0,06 — 315 кВт. Напряжение питания: 220/380 В. В серии ABLE MSEJ представлены двигатели с дисковым тормозом.

ABLE MLABLE MSABLE Y2ABLE MSEJABLE MY

Электродвигатели XINRUI

Трехфазные асинхронные двигатели китайского производства мощностью до 315 кВт. Агрегаты производятся во влагозащищенных корпусах из чугуна или алюминия. Электродвигатели отличаются высокой энергоэффективностью и рассчитаны на эксплуатацию в продолжительном режиме работы.

XINRUI MSXINRUI Y2XINRUI MSEJ

Электродвигатели Beide

Асинхронные короткозамкнутые двигатели Beide китайского производства развивают мощность 0,55 — 315 кВт. Скорость вращения вала — от 750 до 3000 об/мин. Материал корпуса — чугун. Класс защиты — IP55. Двигатели доступны только в составе мотор-редукторов.

Моторная плита SMA

Моторные плиты для монтажа электродвигателей с возможностью оперативной регулировки натяжения ременной или цепной передачи. Плиты SMA рассчитаны на двигатели типоразмеров 63/80 — 160/180.

Электровентиляторы охлаждения

Вентиляторы принудительного охлаждения электродвигателей. Мощность: 23 — 550 Вт. Частота вращения: 1500 — 3000 об/мин. Напряжение питания: 230/400 В.

Асинхронные (индукционные) электродвигатели практически полностью вытеснили другие типы двигателей (синхронные, шаговые) благодаря дешевизне, простоте конструкции и большому ресурсу работы.

При использовании частотных преобразователей асинхронные электродвигатели способны обеспечить нужное время разгона и торможения, а также работу в широком диапазоне скоростей.

При векторном управлении, когда используется энкодер, двигатель может точно поддерживать заданную скорость и даже фазу поворота ротора независимо от нагрузки. Таким образом устраняется основной недостаток данного типа приводов – скольжение.

Кроме того, в асинхронных двигателях нет щеток, которые требуют регулярной чистки и замены.

Выпускаемые электродвигатели имеют широкий ряд мощностей – от десятков Вт до десятков МВт, а также несколько вариантов по исполнению, напряжению и скоростям вращения. Привод можно подключать напрямую через контактор либо через электронные устройства – электронный пускатель, устройство плавного пуска, преобразователь частоты.

Справочная информация:
Подбор электродвигателя. Расчет мощности и пускового тока

Источник: https://tehprivod.su/katalog/elektrodvigateli

Асинхронный электродвигатель постоянного тока 220В и 380В

Электродвигатель – машина, преобразовывающая энергию электромагнитного поля во вращательное движение (электрический двигатель). Это, пожалуй, наиболее гениальное изобретение, позволившее Человечеству сделать цивилизационный скачок в индустриальное общество. Коэффициент его полезного действия составляет 95-98 процентов. Ни один из механизмов на планете Земля таковым больше не обладает.

Основа принципа действия

В основе принципа действия любого электрического двигателя лежит феномен электромагнитной индукции. Если скрутить любой проводник в кольцо и через него протащить магнит, то в нем возникнет электрический ток, направление течения которого будет противоположно движению магнита. Верно и обратное: прохождение электричества через проводник вызывает индуцирование ЭДС в металлическом стержне.

Этот эффект был открыт в 1832 году английским физиком Майклом Фарадеем, создавшим прибор, состоящий из постоянного магнита и бронзового диска, помещенного между его полюсами.

При вращении диска с подключенных к нему проводов снималось небольшое напряжение и переменный ток большой силы. Поэтому диск Фарадея называют еще и униполярным генератором, который при всей архаичности конструкции до сих пор используется.

Например, в установках ТОКАМАК для разогрева плазмы и рельсотронах – разновидности оружия.

Электрический двигательпостоянного тока

Если к диску Фарадея подключить гальваническую батарею, то он совершит один оборот – до того момента, как совпадут разноименные полюса – ее и магнита. Электродвигатель постоянного тока в своей работе использует эффект отталкивания одноименных полюсов магнита. Чтобы вращение стало непрерывным, на его роторе закреплено особое устройство (коллектор) – кольцо из металла, поделенное на сектора диэлектриком.

Питающее напряжение подводится к коллектору посредством скользящих контактов – щеток. Когда вал машины поворачивается, сектора коллектора меняются местами и полюса остаются разноименными. Поэтому вращение продолжается. Скорость вращения ротора машин постоянного тока зависит от количества обмоток на нем. Каждая из них представляет собой своеобразный диск Фарадея и подключена к своей паре пластин коллектора.

Если ее мощность электрической машины невелика, то статорные магниты делают из природного металла с соответствующими свойствами. В промышленных машинах постоянного тока используются электромагниты – катушки из проводников. Они питаются тем же напряжением, что и катушки ротора.

Двигатели переменного тока

Конструкция электродвигателя переменного потом электроэнергии выглядит как бы вывернутой наизнанку по отношению к машинам постоянного тока. Питающее напряжение в нем подводится к статорным обмоткам, а принцип действия основан не на отталкивании одноименных полюсов магнита, а на притягивании имеющих противоположный знак.

Магнитное поле статора машины переменного тока вращается.

Этот феномен возникает в результате сложения векторов магнитной индукции нескольких переменных токов, фазы синусоид которых сдвинуты друг относительно друга на некоторый угол – 900, если питание двухфазное, и 600 при трехфазном напряжении.

Величины углов объясняются просто: отдельная обмотка генератора переменного тока состоит из двух катушек, а на статоре они расположены диаметрально противоположно. Если поделить 3600 на четыре (две обмотки) или на шесть (три обмотки), то получим исходные значения.

Магнитное поле ротора индуцируется  энергией в статорных обмотках и имеет два свойства:

  1. Оно противоположно статорному по знаку.
  2. Отстает от статорного, поскольку на его индукцию требуется некоторое время, а сам ротор имеет физический вес и по этой причине обладает моментом инерции.

Полюса магнитного поля ротора стремятся притянуться к противоположным полюсам статорного, но эта своеобразная погоня никогда не может закончиться по двум причинам:

  1. линейная скорость ротора ниже из-за разницы в размерах.
  2. Существуют потери энергии в воздушном зазоре между деталями машины.

Угол рассогласования между ротором и статором достигает 180, из-за его наличия электродвигатели переменного электричества называют асинхронными.

Наиболее распространенной конструкцией является электрическая машина, обмотка ротора которой состоит из нескольких проводников, замкнутых двумя металлическими кольцами. По форме она похожа на так называемое беличье колесо. Таковы все общепромышленные электродвигатели. Они просты, но имеют неустранимый недостаток: большие пусковые токи, которые приводят к перегрузкам в сети и авариям.

Двигатели с фазным ротором запускаются плавно, без перегрузок, но они сложны и дороги. Применяются для обеспечения больших тяговых усилий. Например, в крановом оборудовании или на электротранспорте.

как работает Электродвигатель:

Как правильно эксплуатировать электродвигатель

Асинхронный электродвигатель на сегодня является наиболее широко используемым двигателем в промышленности и строительстве. Чтобы устройство было всегда в форме и не пришлось его отправлять на свалку в результате преждевременного износа, хорошие хозяева проявляют заботу о нём и эксплуатируют правильно. В этой статье мы обсудим, как правильно эксплуатировать электродвигатель во избежание возникновения неполадок при его работе.

Условия работы электрического двигателя

Электрический двигатель будет в полной мере соответствовать характеристикам, указанным в паспорте, если его, прежде всего, правильно установить и использовать. Условия обеспечения номинальных параметров двигателем следующие:

  • колебания напряжения питающей сети электрического тока, к которой подключен агрегат, не должны превышать 5% от номинала;
  • максимально допустимая температура воздуха, окружающего конструкцию, должна быть не более +350 С;
  • во избежание перегрузки мотора необходимо следить за показаниями амперметра, не допуская увеличения силы тока более 5% от номинала;
  • корпус устройства надежно следует заземлить и регулярно проверять сопротивления заземления;
  • конструктивные элементы, изготовленные из коррозируемых материалов, необходимо покрыть краской. Коррозия всегда начинается на поверхности металла, а затем распространяется вглубь, ухудшая механические свойства материала;
  • кабельные сети, по которым поступает питающее напряжение, следует надёжно изолировать и защитить от случайных механических повреждений. Подключение выполнить напрямую к контактным зажимам двигателя, находящимся в коробке.

Элементарные правила эксплуатации в отношении своего двигателя

Правильная эксплуатация электродвигателя обеспечивает его надёжную работу в течение всего установленного ресурса. До включения устройства в работу обязательно проверить:

— чистоту и отсутствие ненужных предметов на корпусе и рядом;

— состояние заземления;

— качество крепления статора.

Первый запуск электродвигателя лучше доверить специалисту, который будет обслуживать все движущиеся механизмы.

Рекомендации по эксплуатации асинхронных электродвигателей:

  1. У работающего двигателя основные электрические и механические показатели должны быть следующими:

— температура нагрева статора не более 900 С;

— вибрация в пределах нормы, а именно в соответствии с количеством оборотов двигателя;

— вращение ротора бесшумное, без скачков;

— установленная заводом-изготовителем величина нагрузки;

— отсутствие искрения щёток у коллекторных двигателей.

  1. Защита электрических цепей осуществляется плавкими вставками. Значение тока по номиналу пишется на вставке.

  2. Аварийное отключение электродвигателя производится в следующих случаях:

— появился сильный запах горения, дым, искры, огонь;

— повышенный уровень вибрации, из-за которого возможно разрушение двигателя;

— выход из строя электропривода;

— резкое снижение оборотов и повышенный нагрев.

Владелец также обязан планировать профилактические ремонты, которые повышают надёжность оборудования.

Некоторые двигатели используются крайне редко. Как поступать в этом случае? Рекомендуется постоянно осматривать, проверять сопротивление изоляции и запускать устройства, что позволит при необходимости без промедления их использовать.

Вывод

Конструкция асинхронного электродвигателя простая и надёжная. И, если соблюдать правила эксплуатации, в том числе не превышать основные электрические и механические параметры, установленные изготовителем, то срок его службы можно будет увеличить.

Остались вопросы? Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:

8-800-700-11-54 (8-18, Пн-Вт)

Источник: https://epusk.ru/articles/elektrodvigateli/elektricheskiy-dvigatel/

Электродвигатель. Виды и применение. Работа и устройство

Электродвигатель представляет электромашину, перестраивающую электрическую энергию в механическую. Обычно электрическая машина реализует механическую работу благодаря потреблению приложенной к ней электроэнергии, преобразовывающейся во вращательное движение. Ещё в технике есть линейные двигатели, способные создавать сразу поступательное движение рабочего органа.

Особенности конструкции и принцип действия

Не важно какое конструктивное исполнение, но устройство любых электродвигателей однотипное. Ротор и статор находятся внутри цилиндрической проточки. Вращение ротора возбуждают магнитное поле, отталкивающее его полюса от статора (неподвижной обмотки). Сохранять постоянное отталкивание можно путём перекоммутации обмоток ротора, или образовав вращающееся магнитное поле непосредственно в статоре. Первый способ присущий коллекторным электродвигателям, а второй — асинхронным трехфазным.

Корпус любых электродвигателей обычно чугунный или выполнен из сплава алюминия. Однотипные двигатели, не смотря на конструкцию корпуса производятся с одинаковыми установочными размерами и электрическими параметрами.

Работа электродвигателя базируется на принципах электромагнитной индукции. Магнитная и электрическая энергия создают электродвижущуюся силу в замкнутом контуре, проводящем ток. Это свойство заложено в работу любой электромашины.

На движущийся электроток в середине магнитного поля постоянно воздействует механическая сила, стремительно пытающаяся отклонить направление зарядов в перпендикулярной силовым магнитным линиям плоскости. Во время прохождения электротока по металлическому проводнику либо катушке, механическая сила норовит подвинуть или развернуть всю обмотку и каждый проводник тока.

Назначение и применение электродвигателей

Электрические машины имеют много функций, они способны усиливать мощность электрических сигналов, преобразовывать величины напряжения либо переменный ток в постоянный и др. Для выполнения таких разных действий существуют многообразные типы электромашин. Двигатель представлят тип электрических машин, рассчитанных для преобразования энергии. А именно, этот вид устройств превращает электроэнергию в двигательную силу или механическую работу.

Он пользуется большим спросом во многих отраслях. Их широко используется в промышленности, на станках различного предназначения и в других установках. В машиностроении, к примеру, землеройных, грузоподъёмных машинах. Также они распространены в сферах народного хозяйства и бытовых приборах.

Электродвигатель, является разновидностью электромашин по:

  • Специфике, создающегося вращательного момента: — гистерезисные;— магнитоэлектрические.
  • Строению крепления: — с горизонтальным расположением вала;— с вертикальным размещением вала.
  • Защите от действий внешней среды: — защищённые; — закрытые;— взрывонепроницаемые.

В гистерезисных устройствах вращающий момент образуется путём перемагничивания ротора или гистерезиса (насыщения). Эти двигатели мало эксплуатируются в промышленности и не считаются традиционными. Востребованными являются магнитоэлектрические двигатели. Существует много модификаций этих двигателей.

Их разделяют на большие группы по типу протекающего тока:

  • Постоянного тока.
  • Переменного тока.
  • Универсальные двигатели (работают на постоянном переменном токе).

Особенности магнитоэлектрических двигателей постоянного тока

С помощью двигателей постоянного тока создают регулируемые электрические приводы с высокими эксплуатационными и динамическими показателями.

Типы электродвигателей:

  • С электромагнитами.
  • С постоянными магнитами.

Группа электродвигателей, питание которых выполняется постоянным током, подразделяется на подвиды:

  • Коллекторные. В этих электроприборах присутствует щёточно-коллекторный узел, обеспечивающий электрическое соединение неподвижной и вращающейся части двигателя. Устройства бывают с самовозбуждением и независимым возбуждением от постоянных магнитов и электромагнитов.
  • Выделяют следующие виды самовозбуждения двигателей: — параллельное; — последовательное;— смешанное.
  • Коллекторные устройства имеют несколько минусов: — низкая надёжность приборов;— щёточно-коллекторный узел довольно сложная в обслуживании составляющая часть магнитоэлектрического двигателя.
  • Безколлекторные (вентильные). Это двигатели с замкнутой системой, работающие по аналогичному принципу работы синхронных устройств. Оснащены датчиком положения ротора, преобразователем координат, а также инвертором силовым полупроводниковым преобразователем.
ЭТО ИНТЕРЕСНО:  Как сделать тестер своими руками

Эти машины выпускаются различных размеров от самых маленьких низковольтных до громадных размеров (в основном до мегаватта). Миниатюрными электродвигателями оснащены компьютеры, телефоны, игрушки, аккумуляторные электроинструменты и т.п.

Применение, плюсы и минусы электродвигателей постоянного тока

Электромашины постоянного тока применяют в разных областях. Ими комплектуют подъёмно-транспортные, красочно-отделочные производственные машины, а также полимерное, бумажное производственное оборудование и т.д. Часто электрический двигатель этого типа встраивают в буровые установки, вспомогательные агрегаты экскаваторов и другие виды электротранспорта.

Преимущества электрических двигателей:

  • Лёгкость в управлении и регулировании частоты вращения.
  • Простота конструкции.
  • Отменные пусковые свойства.
  • Компактность.
  • Возможность эксплуатации в разных режимах (двигательном и генераторном).

Минусы двигателей:

  • Коллекторные двигатели требуют трудное профилактическое обслуживание щёточно-коллекторных узлов.
  • Дороговизна производства.
  • Коллекторные устройства имеют не большой срок службы из-за изнашивания самого коллектора.

Электродвигатель переменного тока

В электродвигателях переменного тока электроток описывается по синусоидальному гармоническому закону, периодично меняющему свой знак (направление).

Статор этих устройств изготавливают из ферромагнитных пластинок, имеющих пазы для помещения в них витков обмотки с конфигурацией катушки.

Электродвигатели по принципу работы бывают синхронными и асинхронными. Главным их отличием является то, что скорость магнитодвижущей силы статора в синхронных приборах равна скорости вращения ротора, а в асинхронных двигателях эти скорости не совпадают, обычно ротор вращается медленнее поля.

Из-за одинакового (синхронного) вращения ротора с магнитным полем, аппараты именуют синхронными электродвигателями. Их подразделяют на подвиды:

  • Реактивный.
  • Шаговый.
  • Реактивно-гистерезисный.
  • С постоянными магнитами.
  • С обмотками возбуждения.
  • Вентильный реактивный.
  • Гибридно-реактивный синхронный двигатель.

Большая часть компьютерной техники оснащена шаговыми электродвигателями. Преобразование энергии в этих устройствах основано на дискретно угловом передвижении ротора. Шаговый  электродвигатель имеет высокую продуктивность, независящую от их мизерных размеров.

Достоинства синхронных двигателей:

  • Стабильность частоты вращения, что не зависит от механических нагрузок на валу.
  • Низкая чувствительность к скачкам напряжения.
  • Могут выступать в роли генератора мощности.
  • Снижают потребление мощности, предоставляемой электростанциями.

Недостатки в синхронных устройствах:

  • Сложности с запуском.
  • Сложность конструкции.
  • Затруднения в регулировки частоты вращения.

Недостатки синхронного двигателя, делают более выгодным для использования электродвигатель асинхронного типа. Тем не менее, большинство синхронных двигателей из-за их работы с постоянной скоростью востребованы для установок в компрессоры, генераторы, насосы, а также крупные вентиляторы и пр. оборудование.

Асинхронный электродвигатель

Статор асинхронных двигателей представляет распределённую двухфазную, трехфазную, реже многофазную обмотку. Ротор выполняют в виде цилиндра, используя медь, алюминий либо металл. В его пазы залиты либо запрессованные токопроводящие жилы к оси вращения под определённым углом. Они соединяются в одно целое на торцах ротора. Противоток возбуждается в роторе от переменного магнитного поля статора.

По конструктивным особенностям выделяют два вида асинхронных двигателей:

  • С фазным ротором.
  • С короткозамкнутым ротором.

В остальном конструкция приборов не имеет отличий, статор у них абсолютно одинаковый. по числу обмоток выделяют такие электродвигатели:

  • Однофазные. Этот тип двигателей самостоятельно не запускается, ему требуется стартовый толчок. Для этого применяется пусковая обмотка либо фазосдвигающая цепь. Также приборы запускаются вручную.
  • Двухфазные. В этих устройствах присутствуют две обмотки со смещёнными на угол фазами. В приборе возникает вращающееся магнитное поле, напряженность которого в полюсах одной обмотки нарастает и синхронно спадает в другой. Двухфазный электродвигатель может самостоятельно запускаться, но с реверсом присутствуют сложности. Часто этот тип устройств подключают к однофазным сетям, включая вторую фазу через конденсатор.
  • Трехфазные. Достоинством этих типов электродвигателей является легкий реверс. Основные части двигателя – это статор с тремя обмотками и ротор. Позволяет плавно регулировать скорость ротора. Эти приборы довольно востребованы в промышленности и технике.
  • Многофазные. Состоят эти устройства из встроенной многофазной обмотки в пазах статора на его внутренней поверхности. Эти двигатели гарантируют высокую надёжность при эксплуатации и считаются усовершенствованными моделями двигателей.

Асинхронные электрические двигатели значительно облегчают работу людей, поэтому они незаменимы во многих сферах.

Достоинствами этих приборов, которые сыграли роль в их популярности, являются следующие моменты:

  • Простота производства.
  • Высокая надёжность.
  • Не нуждаются в преобразователях для включения в сеть.
  • Небольшие расходы при эксплуатации.

Ко всему этому, можно добавить относительную стоимость асинхронных приборов. Но они также имеют и недостатки:

  • Невысокий коэффициент мощности.
  • Трудность в точной регулировке скорости.
  • Маленький пусковой момент.
  • Зависимость от напряжения сети.

Но благодаря питанию электродвигателя с помощью частотного преобразователя, некоторые недостатки устройств устраняются.

Поэтому потребность асинхронных моторов не падает. Их применяют в приводах разных станков в областях металлообработки, деревообработки и пр.

В них нуждаются ткацкие, швейные, землеройные, грузоподъёмные и другие виды машин, а также вентиляторы, насосы, центрифуги, разные электроинструменты и бытовые приборы.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/elektrodvigatel/

Электрический двигатель

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения

В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.

Ротор может быть:

  • короткозамкнутым;
  • фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТКН которые повсеместно используются в крановых установках.

Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте).

По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление.

Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.

Принцип действия трехфазного асинхронного электродвигателя 

При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.

Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется cкольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.

Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.

Асинхронные двигатели нашли широкое применение во всех отраслях техники.

Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода.

Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.

Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.

Рис. 1Трёхфазный двухполюсный асинхронный двигатель.

На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.

Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока:

При частоте 50 Гц получаем для= 1, 2, 3 (двух-, четырех- и шести-полюсных машин) синхронные частоты вращения поля= 3000, 1500 и 1000 об/мин.

Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).

В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.

У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу.

При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки).

После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.

Классификация электродвигателей 

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные имагнитоэлектрические. У двигателей первой группы вращающий момент создается вследствиегистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока(также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока 

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатель постоянного тока — электрический двигатель, питание которого осуществляетсяпостоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узлаподразделяется на:

  1. Коллекторные двигатели;
  2. Бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.

По типу возбуждения коллекторные двигатели можно разделить на:

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
  2. Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
  3. Двигатели смешанного возбуждения (обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря).

Бесколлекторные двигатели(вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.

Двигатели переменного тока 

Трехфазные асинхронные двигатели

Двигатель переменного тока — электрический двигатель, питание которого осуществляетсяпеременным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели.

Принципиальное различие состоит в том, что в синхронных машинах первая гармоникамагнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном.

Для переменного тока номинальные напряжения 127, 220 В, для постоянного 110, 220 В. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 Гц не позволяют получить частоту вращения выше 3000 об/мин.

Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы).

При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока. Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети.

ЭТО ИНТЕРЕСНО:  Как научиться ремонтировать бытовую технику

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Синхронный электродвигатель возвратно-поступательного движения

Принцип его работы заключается в том, что подвижная часть двигателя представляет собой постоянные магниты, закреплённые на штоке. Через неподвижные обмотки пропускается переменный ток и постоянные магниты под действием магнитного поля, создаваемого обмотками, перемещают шток возвратно-поступательным образом.

Источник: http://www.promenergo-nn.ru/elektricheskij-dvigatel/

Электродвигатели постоянного тока

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/jelektrodvigateli_vidy.html

Виды и типы электродвигателей

  • 3 августа 2016 г. в 13:52
  • 2408

Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:

  • Неподвижную часть (статор или индуктор).
  • Подвижную часть (ротор или якорь).

В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.

Двигатели постоянного тока

Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:

  • Коллекторные.
  • Бесколлекторные.

В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:

  • Самовозбуждающиеся.
  • С возбуждением от электромагнитов постоянного действия.

Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:

  • Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
  • Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
  • Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.

Двигатели переменного тока

Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.

Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью.

Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора.

При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.

Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.

В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:

  • 1-нофазные;
  • 2-хфазные;
  • 3-хфазные;
  • многофазные.

Категория размещения и климатическое исполнение

Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

  • Для помещений с высоким уровнем влажности.
  • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
  • В условиях открытого пространства.
  • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
  • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

  • Все возможные макроклиматические районы (В).
  • Холодный (ХЛ).
  • Все морские районы (ОМ).
  • Сухой тропический (ТС).
  • Общий (О).
  • Умеренный (У).
  • Умеренный морской (М).
  • Влажный тропический (ТВ).

Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

Степень защиты корпуса

Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:

  • Высокий уровень защиты от пыли — IP65, IP66.
  • Защищенные — не ниже IP21, IP22.
  • С защитой от влаги — IP55, IP5.
  • С защитой от брызг и капель — IP23, IP24.
  • Закрытое исполнение — IP44 — IP54.
  • Герметичные — IP67, IP68.

При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.

Общие требования безопасности при монтаже и эксплуатации

При монтаже электрического двигателя необходимо придерживаться следующих требований:

  • Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
  • Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
  • При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
  • Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
  • Строго запрещен монтаж электропривода под напряжением.

В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:

  • Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
  • Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
  • При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
  • Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
  • Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.

Крановые электродвигатели

Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.

В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:

  • Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
  • Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
  • Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
  • Класс нагревостойкости изоляционных материалов не менее F.
  • У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
  • С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
  • Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.

Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:

  • Частые пуски, реверсы и торможения.
  • Регулирование частоты вращения в широком диапазоне значений.
  • Повышенная вибрация и тряски.
  • Повторно-кратковременный режим работы.
  • Воздействие высокой температуры, газа, пыли и пара.
  • Значительная перегрузка во время работы.

Общепромышленные электрические двигатели

Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам.

Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором.

Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:

  • Простая конструкция с отсутствием подвижных контактов.
  • Низкая стоимость в сравнении с электрическими машинами других типов.
  • Высокая ремонтопригодность всех главных узлов и рабочих элементов.
  • Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
  • Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.

Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др.

Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала.

В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.

Электрические двигатели с электромагнитным тормозом

Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время.

К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя.

Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.

Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:

  1. Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
  2. Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
  3. При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
  4. После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.

В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:

  • С горизонтальным валом.
  • С вертикальным валом.

Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.

Источник: https://www.elec.ru/articles/o-elektrodvigateljakh/

Понравилась статья? Поделиться с друзьями:
220 вольт
Что такое импульсное реле

Закрыть