Как работает индуктивный датчик

Индуктивные датчики. Виды. Устройство. Параметры и применение

как работает индуктивный датчик

Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.

Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.

Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.

Индуктивные датчики разделяются по схеме построения на 2 вида:

  1. Одинарные датчики.
  2. Дифференциальные датчики.

Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.

В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.

Индуктивность катушки вычисляется по формуле:  L = WΦ/I

Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением:  I = Hl/W

Где R m = H*L/Ф – магнитное сопротивление

Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.

Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:

L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.

Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмж в сравнении с магнитным сопротивлением зазора воздуха Rмв.

Из недостатков одинарных можно отметить:

  • При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
  • Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
  • Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.

Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).

Дифференциальные датчики классифицируются по форме сердечника:

  • Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
  • Цилиндрические индуктивные датчики с круглым магнитопроводом.

Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.

Для функционирования дифференциального датчика применяют питание от трансформатора (5), который имеет вывод от средней точки. Между этим выводом и общим проводом катушек подключают прибор (4). При этом воздушный промежуток находится в пределах от 0,2 до 0,5 мм.

При расположении якоря в средней позиции при равных промежутках индуктивные сопротивления обмоток (3 и 3′) равны. Значит, значения токов катушек также одинаковы, и общий полученный ток в устройстве равен нулю.

При малом отклонении якоря в любую сторону изменяется значение воздушных промежутков и индуктивностей. Поэтому прибор определяет ток разности I1-I2, который определен функцией перемещения якоря от средней позиции. Разность токов чаще всего определяется магнитоэлектрическим устройством (4), выполненным по типу микроамперметра со схемой выпрямления (В) на входе.

Полярность тока не зависит от изменения общего сопротивления катушек. При применении фазочувствительных схем выпрямления можно определить направление перемещения якоря от средней позиции.

Параметры

  • Одним из параметров индуктивных датчиков является диапазон срабатывания. По этому параметру выбирают датчики, однако он не настолько важен. В инструкции по датчику даны номинальные параметры питания при эксплуатации устройства при температуре +20 градусов. Постоянное напряжение для датчика – 24 В, а переменное 230 В. Обычно датчик работает в совершенно других условиях.

На практике при подборе датчика важны два показателя интервала срабатывания:

— Полезный.
— Эффективный.

Показания первого вычисляются как +10% от 2-го при температуре 25-70 градусов. Показания 2-го отличаются от номинала на 10%. Интервал температуры при этом увеличивается с 18 до 28 градусов. Если при втором параметре применяется номинальное напряжение, то при первом есть разброс 85-110%.

  • Другим параметром является гарантированный предел срабатывания. Он колеблется от нуля до 81% от номинала.
  • Также следует учитывать параметры: повторяемость и гистерезис, который равен расстоянию между конечными позициями работы датчика. Его оптимальная величина равна 20% от эффективного интервала срабатывания.
  • Нагрузочный ток. Изготовители иногда производят датчики специального исполнения на 500 миллиампер.
  • Частота отклика. Этот параметр определяет наибольшую величину возможности переключения в герцах. Основные промышленные датчики имеют частоту отклика 1000 герц.

Методы подключения на схемах

Имеется несколько видов индуктивных датчиков с различным числом проводов для подключения. Рассмотрим основные виды подключений разных индуктивных датчиков.

  • Двухпроводные индуктивные датчики подключаются непосредственно в нагрузочную цепь. Это наиболее простой способ, однако в нем есть особенности. Для такого способа для нагрузки требуется номинальное сопротивление. Если это сопротивление будет больше или меньше, то устройство функционирует некорректно. При включении датчика на постоянный ток нельзя забывать о полярности выводов.
  • Трехпроводные индуктивные датчики наиболее популярны. В них имеется два проводника для подключения питания, а один для нагрузки.
  • Четырехпроводные и пятипроводные индуктивные датчики. У них два провода на питание, другие два на нагрузку, пятый проводник для выбора режима эксплуатации.

Цветовая маркировка

Маркировка проводников цветом является очень удобной для осуществления обслуживания и монтажа датчиков. Их выходные проводники промаркированы определенным цветом:

  • Минус – синий.
  • Плюс – красный.
  • Выход – черный цвет.
  • Второй проводник выхода – белый цвет.

Погрешности

Погрешность преобразования диагностируемого параметра влияет на способность выдачи информации индуктивным датчиком. Суммарная погрешность состоит из множества различных погрешностей.

  • Электромагнитная погрешность является случайной величиной. Она появляется вследствие индуцирования ЭДС в катушке датчика наружными магнитными полями. На производстве возле силовых электрических устройств существуют магнитные поля чаще всего частотой 50 герц.
  • Погрешность от температуры также является случайным значением, так как работа большого количества элементов датчика зависит от температуры и является значительной величиной, учитываемой при проектировании датчиков.
  • Погрешность магнитной упругости. Она появляется от нестабильности деформаций сердечника при сборке прибора, а также из-за изменения деформаций при работе. Влияние нестабильности напряжений в магнитопроводе образует нестабильность сигнала на выходе.
  • Погрешности устройства появляются по причине влияния измеряющей силы на деформации элементов датчика, а также влияния скачка усилия измерения на нестабильность деформации. Также на погрешность влияют люфты и зазоры в подвижных частях конструкции датчика.
  • Тензометрическая погрешность случайная величина и зависит от качества намотки витков провода. При намотке возникают механические напряжения, изменение которых при функционировании датчика приводит к изменению сопротивления обмотки постоянному току, а значит, изменению сигнала на выходе. Чаще всего в качественных датчиках эту погрешность не учитывают.
  • Погрешность старения датчика появляется от износа движущихся частей устройства датчика, а также постоянного изменения электромагнитных свойств магнитопровода. Такую погрешность считают также случайным значением. При определении погрешности износа учитывается кинематика устройства датчика. При проектировании датчика рекомендуется определять его срок эксплуатации в нормальном режиме, за период которого погрешность от износа не превзойдет заданного значения.
  • Погрешность технологии появляется при отклонениях от техпроцесса изготовления датчика, разброса параметров катушек и элементов при сборке, от влияния натягов и зазоров при сопряжении деталей. Оценка погрешности технологии производится простыми механическими измерителями.

Электромагнитные параметры материалов и их свойства со временем меняются. Чаще всего процессы изменения свойств материалов происходят в первые 200 часов после термообработки сердечника магнитопровода. Далее эти свойства остаются теми же, и не влияют на полную погрешность датчика.

Достоинства

  • Большая чувствительность.
  • Повышенная мощность выхода, до нескольких десятков Вт.
  • Возможность подключения к промышленным источникам частоты.
  • Прочное и простое устройство.
  • Нет трущихся контактов.

Недостатки

  • Способны функционировать только на переменном напряжении.
  • Стабильность питания и частота влияют на точность работы датчика.

Сфера использования

  • Медицинские аппараты.
  • Бытовая техника.
  • Автомобильная промышленность.
  • Робототехническое оборудование.
  • Промышленная техника регулирования и измерения.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/induktivnye-datchiki/

Что такое индуктивный датчик и как он работает?

как работает индуктивный датчик

Для обеспечения нормальной работы двигателя используется множество механизмов и контроллеров, предназначенных для выполнения разных функций. Одним из таких девайсов является индуктивный датчик. Что это за контроллер, каков его принцип работы, какие бывают виды устройств? Об этом мы поговорим ниже.

Индуктивный датчик или бесконтактной системы зажигания представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта.

Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле.

Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом.

Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет.

В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»

1. Схема регулятора приближения авто 2. Схема работы индуктивного ДПКВ

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

 

«Как подключить индукционный регулятор?»

Наглядная инструкция на примере подключения регулятора в мотоцикле Юпитер приведена в ролике ниже (автор — Вадим Карамов).

Статья была полезнаПожалуйста, поделитесь информацией с друзьями

Источник: https://avtozam.com/elektronika/sensor/induktivnyj-datchik/

Принцип работы индуктивных датчиков перемещения

как работает индуктивный датчик

Предлагаем Вам ознакомиться с физическими основами работы индуктивных датчиков перемещения производства компании RDP Electronics Ltd (United Kingdom), с их основными параметрами, преимуществами и сферами применения.

Сам термин LVDT (Linear Variable Differential Transformer) — означает линейный дифференциальный трансформатор с переменным коэффициентом передачи.

Рассмотрим принцип работы датчиков на LVDT технологии.

Первичная возбуждающая обмотка
Вторичная обмотка 1
Вторичная обмотка 2
Результирующий сигнал от суммы вторичных обмоток

ЭТО ИНТЕРЕСНО:  Как сделать сварочный аппарат

В принципе имеется две схемы работы — с выходным напряжением и выходным током.

Схема работы с выходным током (4-20мА) Схема работы с выходным напряжением

Рассмотрим более детально сам процесс измерения перемещения.

Датчик перемещения, работающий по технологии LVDT, состоит из трех обмоток трансформатора — одной первичной и двух вторичных. Степень передачи тока между первичной и двумя вторичными обмотками определяется положением подвижного магнитного сердечника, штока. Вторичные обмотки трансформатора соединены в противофазе.

При нахождении штока в середине трансформатора, напряжение на двух вторичных обмотках равны по амплитуде, а т. к. они соединены противофазно, суммарное напряжение на выходе равно нулю — перемещения нет.

Если шток перемещается от серединного положения в какую либо сторону — происходит увеличение напряжения в одной из вторичных обмоток и уменьшение в другой. В результате суммарное напряжение будет не нулевым — датчик будет фиксировать смещение штока.

Соотношение выходной фазы сигнала по сравнению с фазой возбуждающего сигнала дает возможность электронике понять, в какой части обмотки находится в данный момент шток.

Основная особенность принципа работы индуктивных датчиков перемещения состоит в том, что прямой электрический контакт между чувствительным элементом и трансформатором отсутствует (связь осуществляется через магнитное поле), что дает пользователям абсолютные данные по перемещению, теоретически бесконечную точность разрешения и очень долгий срок службы датчика.

Особенности схемы работы с выходным током — т. к. цепь генератор/демодулятор встроена в сам датчик перемещения и питается от выходного тока 4-20 мА, то нет необходимости во внешнем оборудовании для формирования сигнала.

Особенности схемы работы с выходным напряжением — цепь генератор/демодулятор, встроенная в датчик перемещения обеспечивает возбуждение и преобразует сигнал обратной связи в напряжение постоянного тока. При этом так же не требуется внешнее оборудование для формирования сигнала.

Особенности измерения выходного сигнала.
1) Если выходное напряжение измеряется не фазочувствительным (среднеквадратичным) вольтметром, то отклонение штока в любую сторону от центрального положения в трансформаторе датчика будет соответствовать увеличению выходного напряжения.

Заметим, что кривая не касается горизонтальной оси. Это происходит из-за остаточного выходного напряжения.

2) Если используется фазочувствительная демодуляция, то по выходному сигналу можно судить, в какой части трансформатора находится шток в данный момент.

Для формирования сигнала всегда используется фазочувствительная демодуляция, т.к. это исключает влияние на выходной сигнал остаточного выходного напряжения и позволяет пользователю знать положение штока в трансформаторе.

Диапазон линейности индуктивного датчика перемещения.
Если мы рассмотрим выходную кривую вне механического диапазона типичного LVDT датчика, то можно заметить, что на краях диапазона кривая изгибается. Это значит, что механический диапазон существенно шире линейного участка работы.

При калибровке датчика, важно, что электрическая нулевая точка используется в качестве ссылки, и что датчик используется в пределах ± FS (полного диапазона) вокруг электрического нулевом положения.

Если проводить калибровку не беря за основу точку ноля вольт, одно из положений полного диапазона будет за пределами линейного диапазона и, следовательно, может привести к ошибке линейности.

Типы индуктивных датчиков перемещения

Тип 1 — несвязанные преобразователи, которые имеют якорь, который отделен от тела корпуса. Части датчика должны быть установлены таким образом, что якорь не прикасался к внутренней трубке корпуса. Сделав это, можно получить абсолютное отсутствие трения при движении чувствительного элемента датчика.

Тип 2 — монолитные преобразователи, которые имеют тефлоновый подшипник, который направляет якорь (шток) по внутренней трубке.

Тип 3 — монолитные преобразователи с возвратной пружиной, которая толкает якорь (шток) наружу.

Преимущества индуктивных датчиков перемещения LVDT

1. Преимущества над линейными потенциометрами (POTS).

  • Не имеют контакта корпуса и внутренних деталей с чувствительным элементом, что означает, что нет никакого износа при движении штока. POTS датчики имеют контакт с чувствительным элементом и могут быстро изнашиваются, особенно под воздействием вибрации.
  • Можно легко обеспечить защиту от влаги и пыли на требуемом уровне, даже стандартные версии LVDT датчиков обычно имеют гораздо лучший уровень защиты от внешний воздействий, чем POTS.
  • Вибрация не вызывает влияния на пропадание сигнала, в отличие от POTS, где скользящий бегунок может прервать контакт с проводником при вибрации.

2. Преимущества над магнитострикционными датчиками.

  • Не восприимчивы к ударам и вибрации.
  • Менее восприимчивы к паразитным магнитным полям окружающей среды.
  • Система формирования сигнала может быть удалена от чувствительного элемента на некоторое расстояние, что позволяет использовать датчики при работе с высокой температурой и высоким уровнем радиации.
  • Магнитострикционные датчики не имеют короткого штока ±100мм или менее, а это как раз наиболее востребованный диапазон технического применения датчиков перемещения.

3. Преимущества над кодерами (датчиками положения).

  • Имеют лучший аналоговый частотный отклик.
  • Имеют более прочный корпус.
  • Сразу после включения «знают» положение штока, в отличии от кодеров, которым надо указывать постоянную ссылку на известное положение.

4. Преимущества над переменными векторными резистивными преобразователями (VRVT)

  • LVDT датчики как правило более дешевы.
  • Имеют меньший диаметр корпуса.
  • Более прочные и не изнашиваются.
  • Могут использоваться значительно дольше.

5. Преимущества над линейными емкостными датчиками

  • LVDT датчики как правило более дешевы.
  • Менее восприимчивы к внешним условиям эксплуатации.
  • Значительно более прочные.

Особенности индуктивных датчиков перемещения LVDT

  • Максимальная рабочая температура 600°C.
  • Минимальная рабочая температура –220°C (для справки, температура жидкого азота -196°C, температура жидкого гелия -269°С). 
  • Могут работать при уровне радиации 100,000 рад.
  • Могут работать при давлении 200Бар.
  • Могут работать под водой, при этом вода может попадать внутрь датчика не причиняя ему вреда. Существует специальная серия подводных датчиков, которые могут без тех. осмотра работать под водов в течении 10-ти лет, работать под водой на глубине до 2,2км. Кабельные разъемы могут подсоединяться так же под водой.

Основные сферы применения LVDT датчиков

Промышленные измерительные системы

  • Регулирующие вентили — везде, где существуют регулирующие вентили индуктивные датчики перемещения могут быть использованы для контроля положения штока вентиля. Особенно, где есть ответственные участки работы, например, в клапанах пара для турбин на электростанциях.
  • Контроль положения шлюзов — погружные датчики перемещения подходят для измерения положения шлюзов в водохозяйственных и канализационных системах.
  • Измерение зазора между валками. Для поддержания равномерной толщины проката зазор между валками часто измеряется на обоих концах.
  • Контроль перемещения штоков вентилей на подводных нефте/газо проводах.
  • Контроль работы гидравлических активаторов — измерение перемещения объекта, который передвигает активатор. Благодаря очен высокой износостойкости, данные LVDT датчики перемещения могут выдерживать миллионы циклов перемещения.
  • Контроль положения/перемещения режущих инструментов, отрезающих рулонные материалы.
  • Измеряет положение/смещение роликов, которые используется для выпрямления полосового проката перед штамповкой.
  • Могут быть использованы для динамического измерения размеров (диаметров) рулонов продукта, например, инициировать сигнал к системе управления, когда рулон достигает максимального/минимального размера при наматывании/сматывании материала.

Станки

  • Могут быть использованы в испытательных приспособлениях для измерения круглости, плоскостности и т.д. частей машин для анализа качества их изготовления.
  • Могут быть использованы для оценки и контроля взаимного расположения компонентов деталей в сборке, когда требуется юстировка/подгонка размеров взаимного расположения деталей.

Авиация/космонавтика

  • Могут быть использованы для оценки реакции привода на действие активатора. Например, преобразователь измеряет положение отклонения закрылков крыла самолета при техническом обслуживании. Тут очень важно измерить скорость срабатывания активатора после подачи на него управляющего сигнала, а так же скорость изменения положения закрылков.
  • Анализ Ротора вертолета Датчики LVDT используются на вертолетах, чтобы измерить угол наклона лопастей ротора.
  • Могут быть использованы для оценки смещения корпуса двигателя при нагревании.
  • Могут быть использованы для измерения смещения (деформации) лопасти турбины при внешнем воздействии.
  • Могут быть использованы для измерения отклонения диафрагмы сопла реактивного двигателя.
  • Могут быть использованы для испытания крыльев самолетов для измерения их отклонения при нагрузке.

Строительство / Проектирование зданий и сооружений

  • Могут быть использованы для измерения вибрации или деформации мостов при изменении трафика движения или порывов ветра.
  • Могут быть использованы для измерения смещения грунта при строительстве, контроля оползней и насыпных дамб.
  • Могут быть использованы при испытании крупногабаритных строительных конструкций, балок, пролетов моста и т. д. на силовую деформацию.

Автомобилестроение

  • Могут быть использованы для контроля смещения корпуса двигателя при его испытаниях.
  • Идеальным применением LVDT датчиков может быть тестирование компонентов подвески автотранспорта.
  • Могут быть использованы для контроля изготовления прецизионных компонентов.
  • Могут быть использованы для настройки компонентов двигателя, таких как дизельные форсунки.
  • Могут быть использованы для тестирования сидений, дверей, педалей и ручек транспортных средств для моделирования продления их срока службы.
  • Могут быть использованы для измерения профиля поверхности заготовки, например стекла или других площадных объектов.

Выработка энергии

  • Могут быть использованы для измерения биения вала турбины.
  • Могут быть использованы для контроля положения главного парового клапана, который регулирует поток пара в турбину. Клапан постоянно корректирует свое положения для поддержания постоянной скорости вращения турбины. LVDT датчики идеально подходят для работы в зоне высоких температур, грязи и постоянной вибрации.
  • Могут быть использованы для контроля положения перепускного клапана. Когда откроется перепускной клапан, датчик может испытать температуру 200°C.

Источник: http://www.ndt-td.ru/katalog/tenzometricheskoe-oborudovanie/tenzometricheskie-datchiki/datchiki-peremescheniya/induktivnie-datchiki-peremescheniya-lvdt/princip-raboty-induktivnyh-datchikov-peremeshcheniya.html

Индуктивные датчики Festo серии SIEN

Описание | Преимущества | Технические характеристики | Выбор
Индуктивные датчики серии SIEN являются генераторами сигналов, которые бесконтактно реагируют на функциональные перемещения рабочих органов машин, роботов, конвейерных систем и т. д., вырабатывая электрические сигналы.

Генераторы сигналов этого типа имеют следующие характеристики:

  • Индуктивные датчики обнаруживают все токопроводящие объекты, которые проходят или остаются в высокочастотном магнитном поле, создаваемым встроенным осциллятором;
  • Индуктивные датчики работают по принципу приближения , т. е. объект не оказывает на них механического воздействия;
  • Индуктивные датчики не нуждаются в механических чувствительных элементах, таких как ролики, кулачки или рычаги;
  • Индуктивные датчики работают без механического электрического контакта, а переключаются электроникой.
Описание | Преимущества | Технические характеристики | Выбор

Преимущества индуктивных датчиков Festo серии SIEN:

  • Нет механического износа и в результате больший ресурс работы;
  • Нет поломок из-за загрязнения или подгорания контактов;
  • Нет дребезга контактов и в результате ошибочных срабатываний;
  • Высокая частота переключения- до 3000 Гц;
  • Стойкость к вибрации;
  • Любое положение монтажа;
  • Полностью герметичные с высокой степенью защиты.

Индуктивные датчики SIE – Дистанции переключения

Номинальная дистанция переключения Sn:Характерное значение учета допусков при производстве или отклонений из-за окружающих условий (напряжение, температура).Реальная дистанция переключения Sr:Реальная дистанция переключения определена при нормальном рабочем напряжении и окружающей температуре 293 К (20 °С). Может отличаться от номинальной максимум на ±10 %.Эффективная дистанция переключения Su: Это дистанция переключения данного датчика при заданном напряжении и температуре. Может отличаться от реальной максимум на ±10 %.Гарантированная дистанция переключения Sa:Это дистанция переключения, на каторой датчик работает во всем диапазоне допустимых условий. Она лежит между 0 и наименьшим значением дистанции переключения.
Описание | Преимущества | Технические характеристики | Выбор

Технические характеристики индуктивных датчиков Festo серии SIEN:

Размер Ø4 M5 Ø6,5 M8 M12 M18 M30
Конструкция
Тип монтажа Заподлицо Заподлицо или выступающий
Номинальная дистанция переключения Sn Заподлицо 0,8 мм 0,8 мм 1,5 мм 1,5 мм 2,0 мм 5,0 мм 10,0 мм
Выступающие 2,5 мм 4,0 мм 8,0 мм 15,0 мм
Гарантированная дистанция переключения Sa Заподлицо 0,64 мм 0,64 мм 1,21 мм 1,21 мм 1,62 мм 4,05 мм 8,1 мм
Выступающие 2,03 мм 3,24 мм 6,48 мм 12,15 мм
Воспроизводимость точки переключения Заподлицо ±0,04 мм ±0,04 мм ±0,075 мм ±0,075 мм ±0,1 мм ±0,15 мм ±0,3 мм
Выступающие ±0,125 мм ±0,2 мм ±0,2 мм ±0,4 мм
Тип монтажа Зажим Гайкой Зажим Гайкой
Момент затяжки 2 Нм 5 Нм 12 Нм 25 Нм 50 Нм
Индикация готовности
Индикация состояния Желтый светодиод
Положение монтажа Любое
Соответствует DIN EN 60947-5-2
Электрические характеристики
Тип переключения на выходе PNP или NPN
Функция переключаемого элемента Нормально замкнутый или нормально разомкнутый контакт
Электрическое присоединение Разъем M8x1, 3-полюсный M12x1, 3-полюсный
Кабель 3-проводной
Длина кабеля 2,5 м
Диапазон рабочего напряжения 1030 В DC 1534 В DC
Остаточная пульсация 10 %
Макс. частота переключения Заподлицо 3000 Гц 3000 Гц 1500 Гц 1500 Гц 1200 Гц 800 Гц 350 Гц
Выступающие 900 Гц 800 Гц 300 Гц 300 Гц
Макс. выходной ток 200 мА при Т ≤70 °С 150 мА при Т ≤85 °С 200 мА при Т ≤50 °С
Падение напряжения ≤2.0 B ≤3.2 B
Холостой ток 10 мА 30 мА
Защита от короткого замыкания Да, пульсирующая
Защита от смены полярности Для всех присоединений
Класс защиты по EN 60 529 IP67
CE символ 89/366/EEC (EMC)

Факторы снижения номинальной дистанции переключения Sn (относительно тестовой пластины):

Размер Ø4 М5 Ø6,5 М8 М12 М18 М30
Монтаж заподлицо
Сталь St 37 1,0
Нерж. Сталь St18/8 0,7 0,7 0,78 0,78 0,7 0,7 0,7
Латунь 0,4 0,4 0,45 0,45 12 0,4 0,4
Алюминий 0,4 0,4 0,38 0,38 0,4 0,4 0,4
Медь 0,3 0,3 0,2 0,2 0,2 0,3 0,3
Монтаж выступающий
Сталь St 37 1,0
Нерж. Сталь St18/8 0,7 0,8 0,7 0,7
Латунь 0,4 0,5 0,4 0,4
Алюминий 0,4 0,5 0,4 0,4
Медь 0,3 0,4 0,3 0,3
Материалы
Корпус Легированная сталь Никелированная латунь
Оплетка кабеля Полиуретан
Примечания по материалам Не содержит меди, тефлона и кремний
Условия рабочей и окружающей среды
Окружающая температура -250 °C -25+85 °C
Описание | Преимущества | Технические характеристики | Выбор

Таблица выбора индуктивных датчиков Festo серии SIEN:

Наименование Код для заказа
SIEN-4B-NS-K-L-P5 F8002603

Источник: http://www.roskip.ru/datchiki/Induktivnye-datchiki-Festo-serii-SIEN

Индуктивные датчики: назначение и принцип работы, устройство индуктивного датчика

Различные промышленные устройства предполагают использование всевозможных датчиков, которые отличаются своими особенностями и принципами работы.

Одним из вариантов, получивших достаточно широкое распространение, является индуктивный датчик, который активно применяется в низовом оборудовании у различных систем, обеспечивающих автоматизированное управление линиями производства.

Встретить такие датчики можно в устройствах, которые отвечают за работу линий пищевой и текстильной промышленности, предприятий машиностроения и многих других.

Этот датчик по своим особенностям работы относится к бесконтактному оборудованию, то есть, ему не требуется наличие физического контакта с объектом, чтобы определить его местоположение в пространстве. Индуктивный датчик обычно применяется в тех случаях, когда необходимо провести работу с металлическими объектами и предметами.

На другие материалы, соответственно, этот прибор не реагирует и пропускает их мимо своего поля деятельности. Основное направление использования этих устройств — всевозможные автоматизированные линии и системы.

У них может присутствовать как замкнутый, так и разомкнутый контакт. Принцип действия у подобных устройств осуществляется за счет присутствия специальной катушки, которая создает магнитное поле, позволяющее взаимодействовать с металлами.

У такой работы есть свои особенности и принципы, которые играют важную роль.

Как действует датчик?

Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.

  1. При начале работы на конечный выключатель подается питание, что способствует образованию магнитного поля. Именно оно влияет на вихревые токи, которые, в свою очередь, меняют амплитуду колебаний у работающего генератора.
  2. Результат всех этих преобразований — получение выходного сигнала, который может варьироваться, в зависимости от расстояния между работающим датчиком и исследуемым предметом. Затем при помощи специального устройства аналоговый сигнал преображается в логический.
  3. Индуктивный датчик также нужен, чтобы распознавать положение металлических предметов. Это может играть важную роль на производстве. Если по линии следуют изделия, на которых металлические детали должны быть расположены в определенном порядке, то датчики проконтролируют правильность этого расположения. В случае обнаружения ошибки устройство подаст сигнал на конвейер, и программа предпримет дальнейшие действия для устранения проблемы.
ЭТО ИНТЕРЕСНО:  Сгорел резистор как определить номинал

Конструкция устройства

Индуктивный датчик положения имеет своеобразное устройство и состоит из нескольких важных узлов, которые обеспечивают полноценную работу этого агрегата.

  1. Важной деталью является генератор, именно он создает электромагнитное поле, которое помогает анализировать металлические предметы и определять их положение. Без этого поля работа была бы невозможной.
  2. Также в работе используется такой специальный элемент, как триггер Шмидта – в его задачу входит преобразование сигнала, чтобы датчики могли взаимодействовать с другими элементами в системе и передавать информацию дальше.
  3. Может использоваться усилитель – он нужен, чтобы получаемый сигнал достиг необходимого уровня для дальнейшей передачи.
  4. В работе датчика применяются индикаторы на светодиодах, они помогают контролировать работу устройства, сигнализируя о том, что оно включилось, а также лампочки могут загораться при выполнении различных настроек системы.
  5. Такое приспособление как компаунд защищает датчик от попадания внутрь воды и всяческих мелких частиц. Поскольку посторонние субстанции могут негативно сказаться на работе прибора и даже привести к его поломке, качественная защита является важным моментом.
  6. Корпус — в нем помещаются все перечисленные внутренние элементы, которые собираются в единое целое. Сам корпус монтируется в нужном месте при помощи специальных креплений, позволяющих расположить его так, как это требуется для правильной и эффективной работы на линии. Кроме того, оболочка защищает детали от механических воздействий и повреждений, которые могут быть получены таким путем. Для этого корпуса датчиков изготавливают из латуни, либо полиамида — они являются достаточно надежными материалами.  

Что следует знать о работе датчика?

Индуктивный датчик положения — это устройство со своей спецификой, поэтому в описании его работы и принципа действия часто используются специализированные определения:

  1. Активная зона означает область, где степень воздействия магнитного поля проявляется в наибольшей степени. Она находится перед чувствительной поверхностью самого датчика, там уровень концентрации является самым высоким. Как правило, по размеру эта зона равна диаметру самого устройства.
  2. Номинальное расстояние переключения. Такой параметр считается теоретическим, поскольку он не учитывает производственных особенностей, режим температуры, уровень напряжения и прочие факторы.
  3. Рабочий зазор. Так обозначается тот диапазон параметров, который гарантирует эффективную и нормальную работу прибора без возникновения каких-либо проблем с его функционированием на производстве.
  4. Поправочный коэффициент. Этот момент связан с тем, из какого материала сделан металлический объект, обследуемый датчиком, поскольку в зависимости от этого может быть скорректировано значение рабочего зазора.

Как и различные другие приборы, эти обладают своими плюсами и минусами, которые становятся заметными в эксплуатации. Датчики стали довольно популярными благодаря тому, что у них есть несколько важных преимуществ.

  1. Конструкция этих агрегатов достаточно простая, она не содержит каких-то сложных элементов, требующих особой настройки. За счет этого датчики обладают высокой прочностью и надежностью, нечасто ломаются и могут постоянно использоваться на производстве. Также удобно, что у них не имеется скользящих контактов.
  2. Особенности устройства позволяют подключать приборы к промышленной системе напряжения без всяких проблем.
  3. Обладают хорошей чувствительностью, поэтому их можно использовать при работе с различными металлическими объектами.

К минусам можно отнести то, что при работе датчики могут выдавать погрешности из-за наличия различных факторов. На них может влиять температура, а также воздействие других полей похожего типа. Поэтому для качественной работы нужно обеспечить подходящие условия, которые не мешали бы датчикам правильно функционировать.

Назад к списку статей и получай оповещения об акциях, скидках и новых коллекциях

Источник: https://techtrends.ru/resources/articles/induktivnye-datchiki/

Индуктивные датчики и их виды

УСТРОЙСТВО
ПРИМЕНЕНИЕ
БРЕНДЫ

Индуктивный датчик — устройство для измерения каких либо физических величин, преобразующий информацию в электрический сигнал. Основан на принципе изменения магнитного поля, генерируемого внутри, под воздействием металлического или ферромагнитного материала.

Используя различные электромеханические схемы, можно получить элементы контроля любых технических параметров — скорости, положения, перемещения, давления, частоты, уровня жидкости, много другого.

Индуктивные датчики — это бесконтактные устройства в герметическом корпусе, что позволяет их использовать во взрывопожароопасных средах, помещениях повышенной влажности, уличных условиях эксплуатации. Отсутствие движущихся частей и контактов, многократно увеличивает ресурс работы, надежность, по отношению к механическим аналогам.

Универсальность индуктивных элементов, простота монтажа и подключения, доступная стоимость дают возможность их применения во всех сферах жизни:

  • промышленность и производство — автоматизация, контроль;
  • техника — датчики давления, скорости, частоты, положения;
  • безопасность — системы защитного отключения, блокировки, сигнализации;
  • быт — приспособления контроля водоснабжения, освещения, открытия-закрытия дверей, элементы «умного дома».

УСТРОЙСТВО, ХАРАКТЕРИСТИКИ, ПРИНЦИП ДЕЙСТВИЯ

Индуктивные (или бесконтактные) датчики, несмотря на различную специфику, имеют схожее внутреннее устройство. Металлический либо пластиковый корпус залитый компаундом (электроизоляционный состав на основе эпоксидных смол, полимеров, битума), внутри располагаются генератор ЭМП, триггер (в аналоговых устройствах детектор), индикатор состояния (светодиод), усилитель сигнала.

Генератор состоит из полупроводникового элемента, производящего ток определенной частоты, который через катушку индуктивности, с ферритовым сердечником, создает переменное магнитное поле.

При вхождении в зону чувствительности датчика, токопроводящего материала (металлического сигнального флажка или другого исполнительного элемента), индуктивность системы меняется, в свою очередь, воздействую на амплитуду тока генератора. По достижении значений срабатывания, на триггере, формируется управляющий сигнал.

Усилитель увеличивает мощность импульса до необходимых значений, после чего, в зависимости от назначения прибора, он подается на коммутационный блок (размыкает — замыкает цепь) или далее, на средство измерения или АСУ.

По устройству датчики подразделяют на:

  • одинарные — с одним магнитопроводом, ветвью измерения. Схема реализована в бесконтактных выключателях;
  • дифференциальные — с двумя магнитопроводами ш-образной формы, взаимно компенсирующим воздействие на сердечник, что повышает чувствительность и точность измерений. По сути, представляют собой систему двух одинарных датчиков, с общим якорем;
  • трансформаторные — коэффициент трансформации изменяется при перемещении якоря, генерируя определенное напряжение на выходе вторичной обмотки. Принцип используется в элементах фиксации угловых, небольших линейных перемещений.

Индуктивные датчики работают как на постоянном токе (напряжение 12, 24, 42, 60 В), так и на переменном (до 220 В).

Характеризуются следующими параметрами:

  • максимальный ток;
  • частота переключений — для большинства моделей до 1-5 кГц;
  • предел срабатывания — минимальное значение физической величины вызывающее отклик;
  • скорость срабатывания (в микросекундах);
  • климатическое исполнение — диапазон температур при которых устройство гарантированно работает (от -400С до +600С).

Преимуществами индуктивных элементов, перед аналогичными устройствами других принципов действия, являются:

  • надежность конструкции — отсутствие движущихся элементов, контактов, полная герметичность, прочность;
  • ресурс работы до 10 лет, не требуют какого либо обслуживания;
  • высокая чувствительность, скорость и частота срабатывания;
  • мощность выходного сигнала до 100 Вт и выше;
  • доступность, широкий выбор типов и производителей.

Недостатки:

  • требовательны к «чистоте» и постоянству питающего тока;
  • чувствительны к воздействию внешних магнитных полей, возможно искажение выходного сигнала.

Применение и специфика

В промышленности и технике, индуктивные элементы постепенно вытесняют механические концевые выключатели. Индуктивный бесконтактный датчик замыкает-размыкает управляемую цепь при попадании металла в зону чувствительности.

Различные кинематические схемы позволяют использовать устройство для контроля состояния дверей, створок, люков, положения деталей, ограничения хода подвижных элементов, системах защитного отключения, блокировки включения.

Индуктивный датчик положения позволяет фиксировать перемещение объекта расстоянием от нескольких микрометров до сантиметров. По устройству, в большинстве случаев, это дифференциальный трансформатор. Ток со вторичной обмотки подается на систему автоматизированного управления, которая контролирует работу всего агрегата, линии, машины. По такому же принципу устроены элементы измерения углов поворота.

Индуктивный датчик давления имеет электромеханическую конструкцию. Основой является элемент фиксирующий перемещение, якорь которого соединен с поршнем или мембраной. Сила, возникающая в результате воздействия давления жидкости или газа, уравновешивается пружиной, вынуждает занимать якорь определенное положение. Информация переводится в форму электронного сигнала, передается на КИП или АСУ.

Подобным образом устроены приборы измерения расхода жидкостей (давление снимается после дросселя определенного диаметра и пропускной способности), уровня.

Индуктивный датчик скорости отличается от бесконтактных выключателей наличием блока измерения частоты импульсов. Зубчатое колесо, вращаясь, периодически воздействует на зону чувствительности, генерируя импульсы определенной частоты, зависящие от скорости движения. Частота сравнивается блоком измерений, передается далее на КИП, АСУ, либо коммутирующий элемент.

По аналогичному принципу работают приборы измерения частоты, направления вращения, положения коленчатого вала.

По типу подключения, количеству выходов, промышленность выпускает датчики:

  • двухпроводные — включаемые непосредственно в управляемую сеть. Бесконтактные выключатели, элементы сигнализации, защиты.
  • трехпроводные — питание выделено отдельно (как правило это синий и красный выводы), нагрузка — сигнал, третий (черный) проводник;
  • четырехпроводные — имеют два выхода для передачи информации;
  • пятипроводные — пятый, вход, используется для управления режимами работы.

Производители и бренды

Российский рынок средств КИП представлен сотнями отечественных и зарубежных марок. Европейские производители, традиционно позиционируются как поставщики наиболее качественной, но и более дорогой продукции.

Наиболее известные IFM Electronic, Balluff, Turck.

IFM Electronic — немецкая корпорация выпускающая средства измерения, автоматики с 1969 года. Товарооборот превышает миллиард евро. Реализует «всю линейку» датчиков индуктивности, системы управления, идентификации.

Balluff — один из мировых лидеров по электротехнической продукции. Компания основана в 1929 году, немецким инженером Гебхардом Баллуфом. Сегодня, это международная корпорация представленная в 30 странах планеты. Производство организовано на территории США, Бразилии, Швейцарии, Японии, Венгрии.

AECO — итальянский бренд специализирующийся на выпуске датчиков, средств КИП, автоматики. Работают уже более 50 лет.

Отечественная продукция может не уступать по качеству и стоит на 20-30% дешевле западных аналогов. Известные марки ТЕКО, Сенсор.

НПК «Теко» — завод, более 25 лет, выпускающий электроавтоматику. Помимо индуктивных приборов известен оптическими, емкостными, сенсорными устройствами.

ЗАО «Сенсор» — екатеринбургская торгово производственная компания. Производит бесконтактные выключатели для работы в северной климатической зоне (до -600С ).

Нижний ценовой диапазон занимают товары Китайской Народной Республики.

  *  *  *

2014-2020 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник: https://video-praktik.ru/avtomatika_datchik_induktivnyj.html

Датчик положения коленвала: основа работы современного двигателя

В любом современном силовом агрегате обязательно присутствует датчик положения коленчатого вала, на основе которого строятся системы зажигания и впрыска топлива. Все о датчиках положения коленвала, их типах, конструкции и работе, а также о верном выборе и замене данных устройств — читайте в статье.

Назначение и место датчика положения коленчатого вала в моторе

Датчик положения коленчатого вала (ДПКВ, датчик синхронизации, датчик начала отсчета) — компонент электронной системы управления ДВС; датчик, отслеживающий рабочие характеристики коленвала (положения, частоты вращения), и обеспечивающий функционирование основных систем силового агрегата (зажигания, питания, газораспределения и иных).

Современные ДВС всех типов в массе своей оснащаются электронными системами управления, которые полностью берут на себя обеспечение функционирования агрегата на всех режимах. Важнейшее место в таких системах занимают датчики — специальные устройства, отслеживающие те или иные характеристики мотора, и передающие данные на электронный блок управления (ЭБУ). Некоторые датчики критически важны для работы силового агрегата, в их число входит и датчик положения коленвала.

ДПКВ измеряет один параметр — положение коленчатого вала в каждый момент времени. На основе полученных данных определяются частота вращения вала и его угловая скорость. Получая эту информацию, ЭБУ решает широкий круг задач:

  • Определение момента прохождения ВМТ (или НМТ) поршней первого и/или четвертого цилиндров;
  • Управление системой впрыска топлива — определение момента впрыска и продолжительности работы форсунок;
  • Управление системой зажигания — определение момента зажигания в каждом цилиндре;
  • Управление системой изменения фаз газораспределения;
  • Управление работой компонентов системы улавливания паров топлива;
  • Контроль и коррекция работы иных связанных с двигателем систем.

Таким образом, ДПКВ обеспечивает нормальное функционирование силового агрегата, полностью определяя работу его двух основных систем — зажигания (только в бензиновых моторах) и впрыска топлива (в инжекторах и дизелях).

Также датчик оказался удобным для управления другими системами мотора, работа которых прямо или косвенно синхронизирована с положением и частотой вращения вала. Неисправный датчик может полностью нарушить работу двигателя, поэтому он подлежит замене.

Но прежде, чем покупать новый ДПКВ, необходимо разобраться в типах данных устройств, их конструкции и работе.

Типы, конструкция и принцип работы ДПКВ

Датчик положения коленвала на разных двигателях

Независимо от типа и конструкции, датчики положения коленвала состоят из двух деталей:

  • Датчик положения;
  • Задающий диск (диск синхронизации, синхродиск).

ДПКВ помещен в пластиковый или алюминиевый корпус, который посредством кронштейна монтируется рядом с задающим диском. На датчике предусмотрен стандартный электрический разъем для подключения к электросистеме автомобиля, разъем может располагаться как на корпусе датчика, так и на собственном кабеле небольшой длины. Датчик фиксируется на блоке двигателя или на специальном кронштейне, он располагается напротив задающего диска и в процессе работы осуществляет отсчет его зубцов.

Задающий диск — это шкив или колесо, по периферии которого расположены зубцы квадратного профиля. Диск жестко закреплен на шкиве коленвала или непосредственно на его носке, что обеспечивает вращение обеих деталей с одинаковой частотой.

В основе работы датчика могут лежать различные физические явления и эффекты, наиболее широкое распространение получили устройства трех видов:

  • Индуктивные (или магнитные);
  • На основе эффекта Холла;
  • Оптические (световые).

Каждый из типов датчиков имеет свои конструктивные особенности и принцип работы.

Индуктивный датчик положения коленчатого вала

Индуктивный (магнитный) ДПКВ. В основе устройства лежит магнитный сердечник, помещенный в обмотку (катушку). Работа датчика основана на эффекте электромагнитной индукции. В состоянии покоя магнитное поле в датчике постоянно и в его обмотке нет тока.

При прохождении рядом с магнитным сердечником металлического зубца задающего диска магнитное поле вокруг сердечника скачкообразно изменяется, что приводит к индукции тока в обмотке.

При вращении диска на выходе датчика возникает переменный ток той или иной частоты, который используется ЭБУ для определения частоты вращения коленвала и его положения.

Это наиболее простой по конструкции датчик, он находит самое широкое применение на всех типах двигателей. Достоинством устройств этого типа является их работа без подачи питания — это дает возможность подключать их всего одной парой проводов непосредственно к блоку управления.

Датчик на основе эффекта Холла. В основе датчика лежит эффект, открытый американским физиком Эдвином Холлом почти полтора столетия назад: при пропускании тока через две противоположные стороны тонкой металлической пластины, помещенной в постоянное магнитное поле, на двух других ее сторонах появляется напряжение.

Современные датчики этого типа построены на специализированных микросхемах Холла, помещенных в корпус с магнитопроводами, а задающие диски для них имеют намагниченные зубцы. Работает датчик просто: в состоянии покоя на выходе датчика имеется нулевое напряжение, при прохождении намагниченного зубца на выходе появляется напряжение.

Как и в предыдущем случае, при вращении задающего диска на выходе ДПКВ возникает переменный ток, который поступает на ЭБУ.

ЭТО ИНТЕРЕСНО:  Как нарисовать электрическую схему

Это более сложный по конструкции датчик, который, однако, обеспечивает высокую точность измерения во всем диапазоне оборотов коленвала. Также датчик Холла требует для работы отдельного питания, поэтому его подключение выполняется тремя или четырьмя проводами.

Оптические датчики. Основу датчика составляет пара из источника и приемника света (светодиода и фотодиода), в зазоре между которыми проходят зубцы или отверстия задающего диска. Работает датчик просто: диск при вращении с той или иной периодичностью затмевает светодиод, в результате чего на выходе фотодиода образуется импульсный ток — он и используется электронным блоком для измерения.

В настоящее время оптические датчики получили ограниченное применение, что обусловлено сложными условиями их работы в двигателе — высокая запыленность, возможность задымления, загрязнения жидкостями, дорожной грязью и т.д.

Для работы с датчиками используются стандартизированные задающие диски.

Такой диск разделен на 60 зубцов, расположенных через каждые 6 градусов, при этом в одном месте диска отсутствуют два зуба (синхродиск типа 60-2) — этот пропуск является началом отсчета оборота коленчатого вала и обеспечивает синхронизацию датчика, ЭБУ и связанных систем.

Обычно первый после пропуска зубец совпадает с положением поршня первого или последнего цилиндра в ВМТ или НМТ. Также существуют диски с двумя пропусками зубцов, расположенными под углом 180 градусов друг к другу (синхродиск типа 60-2-2), такие диски находят применение на некоторых типах дизельных силовых агрегатов.

Установка ДПКВ индуктивного типа и задающего диска

Задающие диски для индуктивных датчиков изготавливаются из стали, иногда заодно со шкивом коленвала. Диски для датчиков Холла чаще изготавливаются из пластика, а в их зубцах располагаются постоянные магниты.

В завершении отметим, что часто ДПКВ используется как на коленчатом, так и на распределительном валу, в последнем случае с его помощью отслеживается положение и скорость распредвала и вносятся коррективы в работу газораспределительного механизма.

Как верно выбрать и заменить датчик коленвала

ДПКВ играет ключевую роль в моторе, неисправности датчика приводят к резкому ухудшению работы двигателя (затрудненный пуск, неустойчивая работа, снижение мощностных характеристик, детонация и т.д.). А в отдельных случаях при отказе ДПКВ двигатель становится полностью неработоспособным (о чем говорит сигнал Check Engine). Если возникли описанные проблемы с работой двигателя, то следует проверить датчик коленвала, и в случае его неисправности — выполнить замену.

Сначала необходимо осмотреть датчик, проверить целостность его корпуса, разъема и проводов. Индуктивный датчик можно проверить тестером — достаточно измерить сопротивление обмотки, которое у рабочего датчика лежит в пределах 0,6-1,0 кОм. Датчик Холла так проверить нельзя, его диагностика может выполняться только на специальном оборудовании. Но проще всего установить новый датчик, и если двигатель заработает, то проблема была именно в неисправности старого ДПКВ.

На замену следует выбирать датчик только того типа, что был установлен на автомобиле и рекомендован автопроизводителем. Датчики другой модели могут не встать на штатное место или вносить значительные погрешности в измерения, и, как следствие, нарушать работу мотора. Менять ДПКВ следует в соответствии с инструкцией по ремонту транспортного средства.

Обычно для этого достаточно отсоединить электрический разъем, выкрутить один или два винта/болта, вынуть датчик и вместо него установить новый. Новый датчик должен располагаться на расстоянии 0,5-1,5 мм от торца задающего диска (точное расстояние указывается в инструкции), это расстояние можно регулировать шайбами или иным способом.

При верном выборе ДПКВ и его замене двигатель сразу начнет работать, лишь в некоторых случаях придется провести калибровку датчика и сбросить коды ошибок.

Еще в этом разделе

Источник: http://www.autoopt.ru/articles/products/39478569/

Индуктивный датчик. Принцип работы и подключение

Индуктивный датчик (inductive sensor) – это датчик бесконтактного типа, предназначенный для контроля положения объектов из металла.

Принцип работы

Работа индуктивного датчика основана на взаимодействии магнитного поля катушки, расположенной внутри датчика, и металла, из которого состоит объект.

При приближении металлического объекта (5) к катушке (3), магнитное поле (4) изменяется, что в свою очередь заставляет компаратор (2) сформировать сигнал, который впоследствии поступит на усилитель (1) и далее в цепь управления.

Параметры

Напряжение питания – диапазон напряжения, при котором датчик работает корректно. 

Максимальный ток переключения — количество непрерывного тока, которое пропускаясь через датчик, не вызывает повреждение датчика.

Минимальный ток переключения — минимальное значение тока, которое должно протекать через датчик, чтобы гарантировать работу.

Рабочее расстояние (Sn) – максимальное расстояние от поверхности датчика, до квадратного куска железа толщиной 1 мм в осевом направлении. Расстояние будет уменьшаться для других материалов, зависимость Sn от материала представлена в таблице.

 
 Железо 1 x Sn
Нержавеющая сталь 0,9 х Sn
Латунь — бронза 0,5 x Sn
Алюминий 0,4 x Sn
Медь 0,4 x Sn

Частота переключения — максимальное количество переключений датчика в секунду.

Способ подключения

Способ подключения зависит от типа индуктивного датчика.

Трехпроводные – два вывода отвечают за питание датчика, а третий подключается к нагрузке. В зависимости от структуры (NPN или PNP) нагрузка подключается к положительному (NPN) или отрицательному (PNP) полюсу источника постоянного напряжения.

Четырехпроводные – два вывода питания, два вывода подключаются к нагрузке.

Существуют также двух и пятипроводные датчики, но используются они реже из-за особенностей подключения.

Индуктивный датчик LJ12A3-4-Z/BX

Рассмотрим стандартный датчик, который наиболее часто используется в ЧПУ-станках или 3d-принтерах в качестве концевого выключателя. Датчик имеет 3 вывода и NPN структуру. Размеры датчика 12×50мм, расстояние обнаружения  4мм. Напряжение питания 6-36 В.

На реальном примере продемонстрируем работу датчика. В качестве нагрузки подключаем светодиод с токоограничивающим резистором, а затем подносим металлическую пластину к датчику.

На расстоянии менее 4 мм от пластины, датчик срабатывает и подает напряжение на нагрузку через нормально разомкнутый контакт (NO).

1 1 1 1 1 1 1 1 1 1 2.88 (4 Голоса)

Источник: https://electroandi.ru/elektronika/induktivnyj-datchik-printsip-raboty-i-podklyuchenie.html

Индуктивные датчики положения и приближения

Индуктивные датчики применяются для контроля перемещения объектов из металла, их положения в пространстве и приближения к точке контроля.

Варианты исполнения современных индуктивных выключателей

Современные производители предлагают большое количество разнообразных вариантов индуктивных датчиков положения и приближения. Основные отличия:

  • конструкция и размеры корпуса: прямоугольные или цилиндрические датчики, также выпускаются специфические конструкции для специализированного применения;
  • диаметр чувствительного элемента;
  • расстояние срабатывания датчика;
  • вариант монтажа датчика: встраиваемый (заподлицо) или невстраиваемый (незаподлицо);
  • совместимое напряжение питания;
  • выход управления;
  • способ подключения.

Возможность применения индуктивных датчиков положения

Бесконтактные индуктивные выключатели предназначены для работы с металлическими объектами. Благодаря этому устройства могут активно применяться в различных видах машин, станков и механизмов для контроля положения отдельных элементов. Датчики идеально подойдут для автоматических процессов управления и автоматизации производства.

Помимо этого, индуктивные датчики могут применяться для работы с отдельными металлическими объектами в различных отраслях промышленности:

  • машиностроение;
  • металлургия;
  • производство станков и оборудования;
  • деревообработка;
  • пищевая промышленность;
  • транспортная отрасль;
  • сельское хозяйство и многие другие.

Ряд производителей предлагает также специальные исполнения, например, для взрывобезопасного применения, повышенного давления и температуры, а также для других нестандартных условий.

Назначение индуктивных выключателей приближения

Датчики индуктивного типа применяются для решения различных задач в промышленности:

  • бесконтактный контроль положения объектов в пространстве;
  • контроль положения элементов и частей машин и механизмов;
  • контроль перемещения объектов;
  • контроль скорости движения объекта;
  • сортировка металлических объектов;
  • контроль целостности объектов;
  • контроль заполнения;
  • контроль угла поворота и многие другие.

Преимущества выбора индуктивных бесконтактных датчиков положения

По сравнению с другими устройствами индуктивные датчики имеют ряд отличительных преимуществ:

  • высокая прочность и простота конструкции;
  • простота монтажа и эксплуатации;
  • совместимость с промышленными сетями питания;
  • высокая чувствительность;
  • быстрота срабатывания;
  • долгий срок службы;
  • низкая цена по сравнению с аналогичными приборами.

Благодаря своим преимуществам индуктивные выключатели положения могут широко применяться в промышленности.

Возможные недостатки индуктивных выключателей

Главным ограничением в применение индуктивных датчиков приближения является совместимость только с металлическими и магниточувствительными материалами. Это значительно сужает область применения приборов. При необходимости работы с неметаллическими материалами рекомендуется использовать в качестве концевых выключателей – датчики емкостного типа.

Существенным недостатком является необходимость стабильного напряжения в сети питания. Точность срабатывания индуктивного выключателя может быть снижена при нестабильном питании. Также не рекомендуется применять датчики вблизи промышленного оборудования, генерирующего мощные магнитные поля или электрические помехи. Соответственно при работе с индуктивными приборами необходимо тщательно подходить к организации рабочего пространства и рабочей сети питания.

Принцип работы индуктивного выключателя

Индуктивные датчики положения и приближения работают на принципе изменения магнитного поля при сближении с объектом контроля. Благодаря этому выключатель реагирует только на определенные материалы:

  • металлические;
  • магнитные;
  • ферро-магнитные;
  • аморфные металлы.

Встроенный в индуктивный датчик генератор создаёт магнитное поле. Контролируемый объект из совместимого материала попадает в зону действия поля датчика. Это приводит к изменению амплитуды колебания генератора. В результате происходит срабатывание индуктивного датчика и формирование сигнала на выходе.

По типу выходного сигнала, индуктивный выключатель является дискретным датчиком. Выходной сигнал формируется только в момент сближения с объектом.

Источник: https://rusautomation.ru/promavtomatika/induktivnye-datchiki-priblizheniya

Бесконтактные датчики

Бесконтактные датчики – это такие датчики, которые работают без физического и механического контакта. Они работают через электрическое и магнитное поле,  а также широко используются  и оптические датчики.

В этой статье мы с вами  разберем все три типа датчиков: оптические, емкостные и индуктивные, а также в конце проделаем опыт с индуктивным датчиком.

  Кстати,  в народе бесконтактные датчики называют также и бесконтактными выключателями, так что не бойтесь, если увидите такое название ;-).

Оптический датчик

Итак, пару слов об оптических датчиках Принцип срабатывания оптических датчиков показан  на рисунке ниже

Барьерный

Помните какие-нибудь кадры из фильмов, где главным героям приходилось пройти через оптические лучи и не задеть ни один из них? Если луч задевался какой-либо частью тела, срабатывала сигнализация.

Луч излучается посредством какого-либо источника.  А также есть  “лучеприемник”, то есть та штучка, которая принимает  луч. Как только  луча не будет на лучепримнике, то сразу же в нем включится или выключится контакт, который будет уже непосредственно управлять сигнализацией или еще чем-нибудь по вашему усмотрению. В основном источник  луча и лучеприемник, называется лучеприемник  правильно “фотоприемник”, идут в паре.

Очень большой популярностью в России пользуются оптические датчики перемещений фирмы СКБ ИС

В этих типах датчиков есть и источник света и фотоприемник. Они находятся прямо в  корпусе этих датчиков. Каждый тип датчиков представляет из себя законченную конструкцию и используется в ряде станков, где нужна повышенная точность обработки, вплоть до 1 микрометра.

В основном это станки с системой Числового Программного Управления (ЧПУ), которые  работают по программе и требуют минимального вмешательства человека.

Эти бесконтактные датчики построены по такому принципу

Такие типы датчиков обозначаются буквой “T ”  и называются барьерными.  Как только оптический луч прервался, датчик сработал.

Плюсы:

  • дальность действия может достигать до 150 метров
  • высокая надежность и помехозащищенность

Минусы:

  • при больших расстояниях срабатывания требуется точная настройка фотоприемника на  оптический луч.

Рефлекторный

Рефлекторный тип датчиков обозначается буквой R . В этих типах датчиков излучатель и приемник расположены в одном корпусе.

Принцип действия можно увидеть на рисунке ниже

Свет от излучателя отражается от какого-либо светоотражателя (рефлектора) и попадает в приемник. Как только луч прерывается каким-либо объектом, то датчик срабатывает.  Очень удобен этот датчик на конвейерных линиях при подсчете продукции.

Диффузионный

И последний тип оптических датчиков – диффузионные  – обозначаются буквой D. Выглядеть могут по разному:

Принцип работы такой же, как и у рефлекторного, но здесь свет уже отражается от предметов. Такие датчики рассчитаны на маленькое расстояние срабатывания и неприхотливы в своей работе.

Емкостные и индуктивные датчики

Оптика оптикой, но самые неприхотливые в своей работе и очень надежные считаются индуктивные и емкостные датчики. Примерно вот так они выглядят

Они очень похожи друг на друга.  Принцип их работы связан с изменением магнитного и электрического поля. Индуктивные датчики срабатывают при поднесении к ним какого-либо металла. На другие материалы они  не “клюют”.  Емкостные же  срабатывают почти на любые вещества.

Как работает индуктивный датчик

Как говорится, лучше один раз увидеть, чем  сто раз услышать, поэтому проведем небольшой опыт с индуктивным датчиком.

Итак, у нас в гостях индуктивный датчик российского производства

Читаем, что на нем написано

Марка датчика ВБИ бла бла бла бла, S – расстояние срабатывания, здесь оно составляет 2 мм, У1 – исполнение для умеренного климата, IP – 67 – уровень защиты (короче уровень защиты здесь очень крутой), Ub – напряжение,  при котором работает датчик, здесь напряжение может быть в диапазоне от 10 и до 30 Вольт, Iнагр – ток нагрузки, этот датчик может выдать в   нагрузку силу тока до 200 миллиампер, думаю, это прилично.

На развороте бирки схема подключения этого датчика.

Ну что, заценим работу датчика? Для этого цепляем нагрузку. Нагрузкой у нас будет  светодиод, соединенный последовательно с резистором с номиналом в 1 кОм. Зачем нам резистор?  Светодиод в момент включения начинает бешено жрать ток и сгорает. Для того чтобы это предотвратить, в цепь ставится последовательно со светодиодом резистор.

На коричневый провод датчика  подаем плюс от Блок питания, а на синий  – минус. Напряжение я взял  15 Вольт.

Наступает момент истины Подносим  к рабочей зоне датчика металлический предмет, и датчик у нас тут же срабатывает, о чем говорит нам светодиод, встроенный в датчик, а также наш подопытный светодиод.

На другие материалы, кроме металлов, датчик не реагирует. Баночка канифоли для него ничего не значит :-).

Вместо светодиода может использоваться вход логической схемы, то есть датчик при срабатывании выдает сигнал логической единицы, которая может использоваться в цифровых устройствах.

Заключение

В мире электроники эти три  типа датчиков находят все более широкое применение. С каждым годом производство этих датчиков растет и растет. Они используются абсолютно в разных областях промышленности. Автоматизация и роботизация без этих датчиков была бы невозможна.

В этой статье я разобрал только простейшие датчики, которые выдают нам только сигнал “включен-выключен” или, если сказать на профессиональном языке, один бит и нформации.

Более навороченные типы датчиков могут выдавать различные параметры и даже могут соединяться с компьютерами и другими устройствами напрямую.

Купить индуктивный датчик

В нашем радиомагазине индуктивные датчики стоят в 5 раз дороже, чем если бы их заказывать с Китая с Алиэкспресса.

Вот здесь можете глянуть разнообразие индуктивных датчиков.

Источник: https://www.ruselectronic.com/beskontaktnye-datchiki/

Понравилась статья? Поделиться с друзьями:
220 вольт
Как подключить диммер к светодиодной ленте

Закрыть