Пид регулятор что это

Термоконтролеры с ПИД-регулятором

пид регулятор что это

Термоконтроллеры с ПИД-регулятором разработаны для высокоточного регулирования температуры в автоматических системах управления промышленными процессами.

Модели термоконтроллеров с ПИД-регулятором и их характеристики

Температурные контроллеры с функцией ПИД-регулятора отличаются рядом характеристик:

  • возможностью подключения разнообразных вариантов датчиков температуры, включая отдельные типы термометров сопротивления, термопар и др.;
  • возможностью подключения дополнительных видов датчиков: давления, влажности, тока, расхода и т.д.;
  • наличием различных выходов управления;
  • методом настройки параметров и управления работой.

Контроллеры имеют различные модификации с определенным набором параметров, что позволяет подобрать наиболее подходящий вариант. Основные модели термоконтроллеров с общим описанием характеристик представлены в таблице:

Возможности применения температурных контроллеров с ПИД-регулированием

Широкий модельный ряд с различными рабочими характеристики позволяет практически неограниченно применять контроллеры температуры с ПИД-регулятором в промышленности. Устройства могут интегрироваться в автоматические системы управления, в том числе совместно с ПЛК и ПК.

Термоконтроллеры применяются для управления различными технологическими процессами, связанными с температурной обработкой в энергетике, металлургии, химической промышленности, пищевом производстве и многих других.

Возможность подключения различных термодатчиков позволяет контролировать как высокотемпературные процессы, так и отрицательные значения температур, что позволяет применять термоконтроллеры с ПИД-регулятором не только при производстве, но и для контроля перевозки и хранения продуктов и материалов, а также для контроля микроклимата зданий и помещений.

Термоконтроллеры с ПИД-регулятором: решаемые задачи

Температурные контроллеры с возможностью ПИД-регулирования могут решать несколько задач одновременно:

  • обеспечение обратной связи в системах контроля температуры,
  • индикация текущего уровня контролируемых параметров,
  • регулирование и поддержание температуры и других физических величин в автоматических системах,
  • одновременное управление нагреванием и охлаждением,
  • модульное исполнение для сбора информации от нескольких датчиков температуры и управления несколькими устройствами.

В отдельных моделях могут быть реализованы дополнительные возможности применения для расширения функционала.

Преимущества применения температурных контроллеров с ПИД-регулятором

Пропорционально-интегрально-дифференцирующее регулирование, используемое термоконтроллерами, позволяет более точно управлять уровнем температуры и задавать необходимое значение уставки. Различные варианты исполнения ПИД-регуляторов температуры могут иметь дополнительные преимущества:

  • большой выбор подключаемых датчиков температуры,
  • низкая погрешность работы,
  • наличие индикатора для отображения результатов измерения, значения уставки и рабочих состояний,
  • удобное программное обеспечение для настройки и управления,
  • несколько режимов регулирования, включая возможность автоматического управления работой,
  • различные управляющие выходы,
  • возможность монтажа в шкаф управления и на DIN-рейку и многие другие.

Возможные недостатки работы температурного контроллера с ПИД-регулятором

При использовании пропорционального режима работы ПИД-регулятора термоконтроллера необходимо учитывать появление статистической ошибки, что влияет на стабилизацию значения температуры. Влияние статистической ошибки на работу снижается при использовании других режимов ПИД-регулирования.

Ограничением в использовании отдельных моделей контроллеров температуры с ПИД-регулированием может стать несовместимость с отдельными видами термодатчиков и отсутствие необходимых выходов для подключения оборудования. Это необходимо учитывать при подборе конкретной модели контроллера для работы в конкретных условиях.

Принцип работы термоконтроллеров с ПИД-регулятором

Температурный контроллер с ПИД-регулятором формирует сигнал обратной связи для исполнительного оборудования на основе информации, поступающей от подключенного датчика температуры. Сигнал управления складывается из трех величин: пропорциональной, интегрирующей и дифференцирующей, рассчитываемых на основании входного сигнала.

  1. Пропорциональная величина показывает отклонение текущей величины контролируемой температуры от заданного значения уставки. Чем больше отклонение, тем больше выходной сигнал.
  2. Интегральная величина определяет интеграл изменения отклонения значений по времени.
  3. Дифференцирующая величина показывает скорость изменения отклонения.

Работа ПИД-регулятора в зависимости от термоконтроллера может происходить в разных режимах:

  • ПИД-регулирование, при котором управляющий сигнал складывается из суммы всех трех величин,
  • ПИ-регулирование – сумма пропорциональной и интегрирующей величин,
  • ПД-регулирование – сумма пропорциональной и дифференцирующей величин,
  • П-регулирование, при котором для формирования выходного сигнала рассчитывается только пропорциональная величина.

Регулирование может осуществляться в ручном или автоматическом режимах, а также по заданной программе, если это предусмотрено контроллером.

В качестве исполнительного оборудования используются нагреватель и охладитель, либо устройства для подачи горячего теплоносителя или хладоагента. Многоканальные термконтроллеры могут осуществлять одновременное управление нагревательными и охлаждающими процессами по двум и более выходным каналам управления.

Источник: https://rusautomation.ru/termometriya/termokontrolery-s-pid-regulyatorom

Упрощение процесса настройки ПИД-регулятора

пид регулятор что это

Настройка ПИД-регулятора на первый взгляд кажется простой операцией, ведь требуется определить значения всего трех коэффициентов усиления: пропорциональной, интегральной и дифференциальной составляющих. Но на практике определение набора коэффициентов усиления, обеспечивающих наилучшую работу замкнутой системы, представляет собой сложную задачу.

Традиционно ПИД-регуляторы настраивают вручную или с помощью формализованных итеративных процедур. Ручные методы отнимают много времени, а если они применяются к реальному оборудованию, то возможно его повреждение. Формализованные итеративные процедуры не всегда совместимы с неустойчивыми объектами, объектами высокого порядка, а также с объектами с малой постоянной времени.

При работе с ПИД-регулятором также необходимо решать такие задачи проектирования, как дискретизация по времени и масштабирование для арифметики с фиксированной точкой.

Четырехзвенный шарнирный механизм: синтез системы управления

Четырехзвенный шарнирный механизм (рис. 1) имеет широкий спектр применения. Например, он используется в подвеске автомобилей, исполнительных механизмах роботов и шасси самолетов.
Система управления состоит из двух контуров: контура прямой связи и ПИД-регулятора в контуре управления обратной связи.

Регулятор управления прямой связи инвертирует динамику объекта — он обрабатывает основное движение механизма, учитывая нелинейные характеристики. ПИД-регулятор в контуре обратной связи минимизирует ошибки позиционирования с учетом погрешностей моделирования и внешних возмущений.

В этой статье основное внимание уделяется разработке ПИД-регулятора в контуре управления с обратной связью.

Рис. 1. Четырехзвенный шарнирный механизм (неподвижный нижний рычаг выделен синим цветом)

При наличии расхождения между желаемым и фактическим углом поворота одного из рычагов ПИД-регулятор получает сигнал ошибки и формирует корректирующее управление крутящим моментом (рис. 2).

Это корректирующее управление суммируется с заданием по крутящему моменту, формируемым регулятором прямой связи, и суммарный сигнал используется для управления электродвигателем постоянного тока, который вращает шарнир, соединяющий рычаги. Регулятор должен стабилизировать работу объекта. Он также должен обеспечить малое время отклика и небольшое перерегулирование.

Поскольку регулятор будет реализован в 16-разрядном процессоре для обработки данных в арифметике с фиксированной точкой, необходимо применять дискретизацию по времени, а коэффициенты усиления и рассчитываемые сигналы должны иметь соответствующие диапазоны значений.

Рис. 2. Архитектура регулятора четырехзвенного шарнирного механизма

Синтез замкнутой системы и настройка регулятора

Состоящая из четырех рычагов модель механизма моделируется в SimMechanics, а двигатель постоянного тока моделируется в SimElectronics. Для создания архитектуры регулятора, показанной на рис. 2, следует добавить блок ПИД-регулятора с дискретизацией по времени из библиотеки Simulink Discrete. Теперь, когда система управления с обратной связью создана, можно перейти к настройке регулятора.

Для этого требуется открыть диалоговое окно блока PID Controller («ПИД-регулятор»), указать период дискретизации и нажать кнопку Tune («Настройка»). Откроется окно PID Tuner (рис. 3).

Рис. 3. Окно настройки PID Tuner, открытое с помощью диалогового окна блока

Интерфейс настройки Simulink Control Design линеаризует объект в текущей рабочей точке и строит линейную модель объекта с постоянными параметрами (LTI), с которой взаимодействует блок ПИД-регулятора в замкнутом контуре управления.

Вычислительная задержка, связанная с дискретизацией сигнала, учитывается автоматически. Используя метод автоматической настройки, интерфейс Simulink Control Design вычисляет первоначальные коэффициенты усиления ПИД-регулятора.

Этот метод не накладывает никаких ограничений на порядок объекта или постоянную времени, причем он работает в областях как непрерывного, так и дискретного времени.

Рис. 4. Первоначальные параметры, рассчитанные PID Tuner

На рис. 4 показана реакция на ступенчатое воздействие в рабочей точке замкнутой системы с первоначальными коэффициентами ПИД-регулятора.

Если регулятор работает удовлетворительно, следует нажать кнопку Apply («Применить»), чтобы обновить значения коэффициентов усиления P, I, D и N в диалоговом окне блока PID Controller («ПИД-регулятор»).

Затем можно проверить работу системы, моделируя нелинейности и контролируя результаты (рис. 5). Также можно произвести настройку в интерактивном режиме с помощью ползунка, увеличивая или понижая быстродействие регулятора (рис. 4).

Рис. 5. Результаты моделирования модели четырехзвенного шарнирного механизма

Подготовка к реализации

Для подготовки к реализации в 16-разрядном микропроцессоре регулятор масштабируют для расчета в арифметике с фиксированной точкой, которая поддерживается процессором.

Источник: https://www.controlengrussia.com/programmnye-sredstva/uproshhenie-protsessa-nastrojki-pid-regulyatora/

ПИД-регулятор: подробно простым языком

пид регулятор что это

ПИД-регулятор — это прибор для управления технологическим процессом, который используется в методе ПИД-регулирования, основанном на трех законах регулирования: пропорциональном, интегральном и дифференциальном.

ПИД-регулятор Обратите внимание на теорию автоматического регулирования и на приборы для регулирования.

Принцип действия ПИД-регулятора

Интегральный сильфон и переменное ограничение позволяет обеспечить интегральное регулирование. Два дифференциальных сильфона и другое переменное ограничение дает возможность регулятору осуществлять дифференциальное регулирование.

Если выход увеличивается, то входной сильфон и нижний дифференциальный сильфон расширяются. Верхний дифференциальный сильфон расширяется позднее из-за переменного ограничения. Балансир поворачивается, и выход немедленно повышается.

Когда входной сигнал полностью перетечет в верхний дифференциальный сильфон, этот сильфон приложит силу, которая уничтожит силу, приложенную нижним дифференциальным сильфоном. На этой точке дифференциальное регулирование прекращается. В то же время, когда это происходит, сильфон обратной связи расширяется в результате изменения выхода.

Изменение выхода подается на интегральный сильфон, который вызывает силу, стремящуюся удержать клапан ближе к соплу. Это действие держит выход на высоком уровне в течение времени, когда переменная процесса не равна уставке. Выход будет продолжать увеличиваться до тех пор, пока переменная процесса не вернется в заданному значению уставки.

Где применяется ПИД-регулятор

ПИД-регулятор будет хорошим выбором для работающей на газе печи для подогрева нефти, потому что последующий процесс, куда поступает подогретая нефть, допускает лишь очень маленькие отклонения температуры нефти от заданного значения, а большие запаздывания в процессе подогрева делают очень трудной задачу определения и устранения отклонений.

Газовая печь для подогрева нефти

Одна из причин запаздывания — емкость. Печь имеет способность сохранять большое количество тепла внутри своих стенок. Накопленная теплота передается к нефти, но передача не происходит мгновенно. Если внутренние стенки нагреты слишком сильно, потребуется некоторое время для понижения их температуры, в течение которого нефть может быть перегрета. Если внутренние стенки не достаточно нагреты, то нефть может не получить достаточно тепла.

Дифференциальная составляющая ПИД-регулятора помогает преодолевать запаздывания посредством выработки эффективных упреждающих воздействий. Интегральная составляющая непрерывно корректирует выходной сигнал при наличии смещения пока регулируемая температура не возвращается к уставке.

Источник: http://kipiavp.ru/pribori/pid-regulyator.html

Что такое ПИД регулятор для чайников?

Дифференциальный пропорционально-интегральный регулятор — устройство, которое устанавливают в автоматизированных системах для поддержания заданного параметра, способного к изменениям.

На первый взгляд все запутанно, но можно объяснить ПИД регулирование и для чайников, т.е. людей, не совсем знакомых с электронными системами и приборами.

Что такое ПИД регулятор?

ПИД регулятор — прибор, встроенный в управляющий контур, с обязательной обратной связью. Он предназначен для поддержания установленных уровней задаваемых величин, например, температуры воздуха.

Устройство подает управляющий или выходной сигнал на устройство регулирования, на основании полученных данных от датчиков или сенсоров. Контроллеры обладают высокими показателями точности переходных процессов и качеством выполнения поставленной задачи.

Три коэффициента ПИД регулятора и принцип работы

Работа ПИД-регулятора заключается в подаче выходного сигнала о силе мощности, необходимой для поддержания регулируемого параметра на заданном уровне. Для вычисления показателя используют сложную математическую формулу, в составе которой есть 3 коэффициента — пропорциональный, интегральный, дифференциальный.

Возьмем в качестве объекта регулирования ёмкость с водой, в которой необходимо поддерживать температуру на заданном уровне с помощью регулирования степени открытия клапана с паром.

Пропорциональная составляющая появляется в момент рассогласования с вводными данными. Простыми словами это звучит так — берется разница между фактической температурой и желаемой, умножается на настраиваемый коэффициент и получается выходной сигнал, который должен подаваться на клапан. Т.е. как только градусы упали, запускается процесс нагрева, поднялись выше желаемой отметки — происходит выключение или даже охлаждение.

Дальше вступает интегральная составляющая, которая предназначена для того, чтобы компенсировать воздействие окружающей среды или других возмущающих воздействий на поддержание нашей температуры на заданном уровне.

Поскольку всегда присутствуют дополнительные факторы, влияющие на управляемые приборы, в момент поступления данных для вычисления пропорциональной составляющей, цифра уже меняется.

И чем больше внешнее воздействие, тем сильнее происходят колебания показателя. Происходят скачки подаваемой мощности.

Источник: https://odinelectric.ru/knowledgebase/chto-takoe-pid-regulyator-dlya-chajnikov

Принцип работы ПИД-регулятора для начинающих

Назад в библиотеку

Как следует из названия, в этой статье мы дадим точное представление о структуре и работе ПИД-контроллера. Однако сначала, давайте познакомимся с ПИД-контроллерами.

ПИД-регуляторы находятся в широком диапазоне применений для управления промышленными процессами. Приблизительно 95% операций с замкнутым контуром в промышленной автоматизации используют ПИД-регуляторы. PID обозначает Пропорционально-интегральная-диференциальная составляющая. Эти три контроллера объединены таким образом, что он создает управляющий сигнал.

В качестве контроллера обратной связи он обеспечивает выход управления на желаемых уровнях. ПИД-регулирование осуществлялось с помощью аналоговых электронных компонентов, перед изобретением микропроцессоров.

Но сегодня все ПИД-контроллеры обрабатываются микропроцессорами. ПрограммируемыеПрограммируемые логические контроллеры также имеют встроенные настройки ПИД-регулятора.

Благодаря гибкости и надежности ПИД-регуляторов, они традиционно используются в системах управления технологическим процессом.

Работа ПИД-регулятора

При использовании недорогого простого контроллера возможны только два состояния управления, например, полностью ВКЛ или полностью ВЫКЛ. Он используется для настроек с ограничением контроля, в котором эти два состояния управления достаточно для целей управления. Однако характер этого контроля ограничивает его использование и, следовательно, заменяется ПИД-контроллерами.

ПИД-регулятор поддерживает выход таким образом, что между переменной процесса и заданной точкой / желаемым выходом с помощью операций замкнутого контура имеется нулевая ошибка. ПИД использует три основных поведения управления, которые объясняются ниже.

П-контроллер:

Пропорциональный или П-регулятор дает выход, который пропорционален текущей ошибке e (t). Он сравнивает желаемую или заданную точку с фактическим значением или значением процесса обратной связи. Полученная ошибка умножается на пропорциональную константу, чтобы получить выход. Если значение ошибки равно нулю, то выход этого контроллера равен нулю.

ЭТО ИНТЕРЕСНО:  Как работает транзистор для начинающих

Этот контроллер требует смещения или ручной сброс при использовании отдельно. Это происходит потому, что он никогда не достигает состояния устойчивого состояния. Он обеспечивает стабильную работу, но всегда поддерживает постоянную ошибку. Скорость реакции возрастает при увеличении пропорциональной константы Kр.

И-контроллер

Из-за ограничения П-контроллера, где всегда существует смещение между переменной процесса и заданным значением, необходим И-контроллер, который обеспечивает необходимые действия для устранения ошибки установившегося состояния. Он интегрирует ошибку в течение периода времени, пока значение ошибки не достигнет нуля. Он содержит значение для конечного устройства управления, при котором ошибка становится равной нулю.

Интегральное управление уменьшает его выход, когда происходит отрицательная ошибка. Он ограничивает скорость реакции и влияет на стабильность системы. Скорость реакции увеличивается за счет уменьшения интегрального усиления Ki.

На приведенном выше рисунке, когда коэффициент усиления И-контроллера уменьшается, ошибка установившегося режима также продолжает уменьшаться. В большинстве случаев контроллер ПИ используется, в частности, когда требуется высокая скорость ответа.

При использовании ПИ-регулятора выход И-контроллера ограничен некоторым диапазоном для преодоления интегральных условий, когда интегральный выход растет даже при нулевом состоянии ошибки из-за нелинейности на установке.

Д-контроллер

И-контроллер не может предсказать будущее поведение ошибки. Поэтому он реагирует нормально после изменения заданного значения. Д-контроллер преодолевает эту проблему, ожидая будущего поведения ошибки. Его выход зависит от скорости изменения погрешности за время, умноженное на постоянную производной. Это дает начало запуска для выхода, тем самым увеличивая системный отклик.

На приведенном выше рисунке ответ контроллера Д больше, по сравнению с контроллером ПИ, а также время установления выходного сигнала уменьшается. Это улучшает стабильность системы за счет компенсации фазового запаздывания, вызванного И-контроллером. Увеличение производного усиления увеличивает скорость реакции..

Итак, наконец, мы заметили, что, объединив эти три контроллера, мы получим желаемый ответ для системы. Различные производители разрабатывают различные алгоритмы ПИД.

Методы настройки ПИД-регулятора

Перед началом работы ПИД-регулятора он должен быть настроен на динамику контролируемого процесса.

Дизайнеры дают значения по умолчанию для параметров П, И, Д, и эти значения не могут дать желаемую производительность, а иногда приводят к нестабильности и медленным характеристикам управления.

Разработаны различные методы настройки для настройки ПИД-регуляторов и требуют от оператора большого внимания для выбора наилучших значений пропорциональных, интегральных и диференциальных коэффициентов. Некоторые из них приведены ниже.

Метод проб и ошибок: это простой способ настройки ПИД-регулятора. Пока система или контроллер работают, мы можем настроить контроллер. В этом методе сначала нужно установить значения Ki и Kd в нуль и увеличить пропорциональный коэффициент (Kp), пока система не достигнет колебательного поведения. Как только он осциллирует, отрегулируйте Ki (интегральный термин), чтобы колебания остановились и, наконец, отрегулировали Д, чтобы получить быстрый отклик.

Технологическая кривая технологического процесса: это метод настройки с открытым циклом. Он производит ответ, когда к системе применяется шаг ввода. Первоначально мы должны вручную вводить некоторые данные управления в систему и записывать кривую ответа.

После этого нам нужно рассчитать наклон, неподвижное время, время нарастания кривой и, наконец, подставить эти значения в уравнениях П, И и Д, чтобы получить значения коэффициента усиления ПИД.

Метод Zeigler-Nichols: Zeigler-Nichols предложил методы замкнутого контура для настройки ПИД-регулятора. Это метод непрерывного циклирования и метод демпфирования колебаний. Процедуры для обоих методов одинаковы, но поведение колебаний различно. При этом сначала нужно установить постоянную p-контроллера, Kp на определенное значение, а значения Ki и Kd равны нулю. Пропорциональный коэффициент усиления увеличивается до тех пор, пока система не будет колебаться с постоянной амплитудой.

Усиление, при котором система производит постоянные колебания, называется конечным усилением (Ku), а период колебаний называется предельным периодом (Pc). Как только это достигнуто, мы можем ввести значения P, I и D в ПИД-контроллере по таблице Zeigler-Nichols, зависит от контроллера, используемого как P, PI или PID, как показано ниже.

Структура ПИД-регулятора

ПИД-регулятор состоит из трех членов, а именно пропорционального, интегрального и диференциального. Объединенная работа этих трех контроллеров дает стратегию управления процессом контроля. ПИД-регулятор управляет переменными процесса, такими как давление, скорость, температура, расход и т. д. В некоторых приложениях используются ПИД-регуляторы в каскадных схемах, где для достижения контроля используются два или более ПИД.

На приведенном выше рисунке показана структура ПИД-регулятора. Он состоит из блока PID, который дает свой вывод для обработки блока. Процесс / установка состоит из конечных устройств управления, таких как исполнительные механизмы, регулирующие клапаны и другие управляющие устройства для управления различными процессами промышленности / установки.

Сигнал обратной связи от технологической установки сравнивается с уставкой или сигналом u (t), и соответствующий сигнал ошибки e (t) подается на алгоритм ПИД-регулирования. Согласно пропорциональным, интегральным и диференциальным расчетам в алгоритме, контроллер производит комбинированный ответ или управляемый выход, который применяется к устройствам управления установкой.

Все управляющие приложения не нуждаются во всех трех элементах управления. Комбинации, такие как элементы управления PI и PD, очень часто используются в практических приложениях.

Источник: http://masters.donntu.org/2017/fkita/biryucheva/library/article1.htm

Как настроить ПИД-регулятор для гоночного робота?

Что такое ПИД-регулятор? Как сделать расчет рассогласования и обратную связь для движущегося по линии робота? Как не перерегулировать? Рассказывает Вячеслав Нефедов (GoodLancer.com).

Абсолютное большинство современных роботов для гонок по линии высокого класса как основу алгоритма движения по линии используют ПИД-регулятор (он же ПИД-контроллер). В то же время для многих юных поклонников робогонок ПИД-регулятор остается сложным и малопонятным механизмом. Давайте попробуем вместе разобраться что такое ПИД-регулятор и как он работает.

Что такое «регулятор»?

Само понятие ПИД-регулятор пришло из теории автоматического управления. Кто читает по-английски, то там эта дисциплина называется control theory. Эта наука занимается исследованием систем автоматического управления, а такие системы мы встречаем на каждом шагу.

Автопилоты, системы наведения торпед и ракет, системы управления температурой в химическом производстве, регуляторы положения поглощающих стержней в атомном реакторе, система регулирования температуры в кондиционерах, поплавковый клапан в сливном бачке унитаза — это всё системы автоматического управления.

Общая схема системы автоматического управления нарисована ниже, а основными понятиями такой системы будут следующие:

  1. Объект управления — это то, чем управляет система. В случае гоночного робота это сам робот, а точнее, положение робота относительно линии;
  2. Уставка (цель, целевое значение) — это то условие, за соблюдением которого «смотрит» автомат. Для нашего случая целью является то, чтобы робот не отклонялся от линии;
  3. Рассогласование (ошибка, ошибка управления) — это отклонение текущего состояния от желаемого. В нашем случае это отклонение робота от линии;
  4. Датчики — то, чем мы определяем рассогласование. Для гоночного робота это обычно «линейка» — система из датчиков серого (пара светодиод/фототранзистор);
  5. Обратная связь — сигнал с датчиков, ориентируясь на который автомат принимает решение об управляющем воздействии;
  6. Регулятор. Ключевой элемент системы. Именно регулятор «принимает решение» о том что сделать, чтобы система вернулась к цели. В сливном бачке это механическая система, в случае гоночного робота это часть программы, реализующая ПИД-алгоритм;
  7. Управление (управляющее воздействие, корректировка) — это действия, которые принимает система, чтобы вернуться к цели. В нашем случае это изменение скорости моторов робота;
  8. Привод. Это та часть системы, которая реализует управляющее воздействие. В нашем случае это моторы.

Для демонстрации работы ПИД-контроллера дальше мы используем робота нашего клиента Марка из Казахстана.

Расчет рассогласования

Первый расчетный блок в этом перечне — расчет рассогласования. Как пример расчета согласования можно взять такой: считаем, что в нашей линейке датчиков каждый датчик даёт выходной сигнал, например, 200 на белом поле и 1000 на черной линии. В этом случае мы можем считать, что если датчик показывает больше, чем 600, то он находится над линией. Меньше или равно 600 — над белым полем.

Этот алгоритм для системы из восьми датчиков линии на Arduino будет выглядеть примерно так:

Источник: http://edurobots.ru/2019/01/pid/

Тау для самых маленьких: пример реализации пид-регулятора в unity3d

Системы автоматического управления (САУ) предназначены для автоматического изменения одного или нескольких параметров объекта управления с целью установления требуемого режима его работы. САУ обеспечивает поддержание постоянства заданных значений регулируемых параметров или их изменение по заданному закону либо оптимизирует определенные критерии качества управления. Например, к таким системам относятся:

  • системы стабилизации,
  • системы программного управления,
  • следящие системы

Это достаточно широкий класс систем, которые можно найти где угодно.

Но какое это отношение имеет к Unity3D и вероятно к играм в частности? В принципе прямое: в любой игре так или иначе использующей симуляцию как элемент геймплея реализуются САУ, к таким играм относятся, например, Kerbal Space Programm, Digital Combat Simulator (бывший Lock On), Strike Suit Zero и т.д. (кто знает еще примеры — пишите в комментариях).

В принципе любая игра, моделирующая реальные физические процессы, в том числе и просто кинематику с динамикой движения, может реализовывать те или иные САУ — этот подход проще, естественнее, а у разработчика уже есть есть набор готовых инструментов, предоставленных всякими Вышнеградскими, Ляпуновыми, Калманами, Чебышевами и прочими Коломогоровами, поэтому можно обойтись без изобретения велосипеда, т.к. его уже изобрели, да так, что получилась отдельная наука: Теория автоматического управления. Главное тут не переусердствовать. Одна тут только проблема: рассказывают про ТАУ не везде, не всем, зачастую мало и не очень понятно.

Немножко теории

Классическая система автоматического управления представленная на следующем рисунке:

Ключевым элементом любой САУ является регулятор представляющий из себя устройство, которое следит за состоянием объекта управления и обеспечивает требуемый закон управления.

Процесс управления включает в себя: вычисление ошибки управления или сигнала рассогласования e(t) как разницы между желаемой уставкой (set point или SP) и текущей величиной процесса (process value илиPV), после чего регулятор вырабатывает управляющие сигналы (manipulated value или MV).

Одной из разновидностью регуляторов является пропорционально-интегрально-дифференцирующий (ПИД) регулятор, который формирует управляющий сигнал, являющийся суммой трёх слагаемых: пропорционального, интегрального и дифференциального.

Где, ошибка рассогласования, а также, — пропорциональная, — интегральная, — дифференциальная составляющие (термы) закона управления, который в итоговом виде описывается следующими формулами

Пропорциональная составляющая P — отвечает за т.н. пропорциональное управление, смысл которого в том, что выходной сигнал регулятора, противодействует отклонению регулируемой величины (ошибки рассогласования или еще это называют невязкой) от заданного значения. Чем больше ошибка рассогласования, тем больше командное отклонение регулятора.

Это самый простой и очевидный закон управления. Недостаток пропорционального закона управления заключается в том, что регулятор никогда не стабилизируется в заданном значении, а увеличение коэффициента пропорциональности всегда приводит к автоколебаниям.

Именно поэтому в довесок к пропорциональному закону управления приходиться использовать интегральный и дифференциальный.

Интегральная составляющая I накапливает (интегрирует) ошибку регулирования, что позволяет ПИД-регулятору устранять статическую ошибку (установившуюся ошибку, остаточное рассогласование).

Или другими словами: интегральное звено всегда вносит некоторое смещение и если система подвержена некоторыми постоянным ошибкам, то оно их компенсирует (за счет своего смещения). А вот если же этих ошибок нет или они пренебрежительно малы, то эффект будет обратным — интегральная составляющая сама будет вносить ошибку смещения.

Именно по этой причине её не используют, например, в задачах сверхточного позиционирования. Ключевым недостатком интегрального закона управления является эффект насыщения интегратора (Integrator windup).

Дифференциальная составляющая D пропорциональна темпу изменения отклонения регулируемой величины и предназначена для противодействия отклонениям от целевого значения, которые прогнозируются в будущем.

Примечательно то, что дифференциальная компонента устраняет затухающие колебания. Дифференциальное регулирование особенно эффективно для процессов, которые имеют большие запаздывания.

Недостатком дифференциального закона управления является его неустойчивость к воздействую шумов (Differentiation noise).

Таким образом, в зависимости от ситуации могут применятся П-, ПД-, ПИ- и ПИД-регуляторы, но основным законом управления в основном является пропорциональный (хотя в некоторых специфических задачах и могут использоваться исключительно только звенья дифференциаторов и интеграторов).

Казалось бы, вопрос реализации ПИД-регуляторов уже давно избит и здесь на Хабре есть парочка неплохих статей на эту тему в том числе и на Unity3D, также есть неплохая статья PID Without a PhD (перевод) и цикл статей в журнале «Современные технологии автоматизации» в двух частях: первая и вторая. Также к вашим услугам статья на Википедии (наиболее полную читайте в английском варианте). А на форумах коммьюнити Unity3D нет-нет, да и всплывет PID controller как и на gamedev.stackexchange

При вопрос по реализации ПИД-регуляторов несколько глубже чем и кажется. Настолько, что юных самоделкиных, решивших, реализовать такую схему регулирования ждет немало открытий чудных, а тема актуальная. Так что надеюсь сей опус, кому-нибудь да пригодиться, поэтому приступим.

Попытка номер раз

В качестве примера попытаемся реализовать схему регулирования на примере управления поворотом в простенькой космической 2D-аркаде, по шагам, начиная с самого начала (не забыли, что это туториал?).

Почему не 3D? Потому что реализация не измениться, за исключением того, что придется воротить ПИД-регулятор для контроля тангажа, рысканья и крена. Хотя вопрос корректного применения ПИД-регулирования вместе с кватернионами действительно интересный, возможно в будущем его и освящу, но даже в NASA предпочитают углы Эйлера вместо кватернионов, так что обойдемся простенькой моделью на двухмерной плоскости.

Для начала создадим сам объект игровой объект космического корабля, который будет состоять из собственно самого объекта корабля на верхнем уровне иерархии, прикрепим к нему дочерний объект Engine (чисто спецэффектов ради). Вот как это выглядит у меня:

А на сам объект космического корабля накидаем в инспекторе всяческих компонент. Забегая вперед, приведу скрин того, как он будет выглядеть в конце:

Но это потом, а пока в нем еще нет никаких скриптов, только стандартный джентльменский набор: Sprite Render, RigidBody2D, Polygon Collider, Audio Source (зачем?).

Собственно физика у нас сейчас самое главное и управление будет осуществляться исключительно через неё, в противном случае, применение ПИД-регулятора потеряло бы смысл. Масса нашего космического корабля оставим также в 1 кг, а все коэффициенты трения и гравитации равны нулю — в космосе же.

ЭТО ИНТЕРЕСНО:  Как проверить плотность аккумулятора в домашних условиях

Т.к. помимо самого космического корабля есть куча других, менее умных космических объектов, то сначала опишем родительский класс BaseBody, который в себе будет содержать ссылки на на наши компоненты, методы инициализации и уничтожения, а также ряд дополнительных полей и методов, например для реализации небесной механики:

BaseBody.cs

Источник: https://habr.com/ru/post/345972/

Регуляторы

Автоматическое регулирование – это автоматическое обеспечение заданных значений параметров, определяющих требуемое протекание управляемого процесса в соответствии с установленной программой.
Параметры управляемого процесса, подлежащие заданным изменениям или стабилизации — называют регулируемыми параметрами.

Устройство, обеспечивающее автоматическое поддержание заданного значения — регулируемого параметра в управляемом объекте или его изменения по определенному закону, называют регулятором.Всякий технологический процесс характеризуется определенными физическими величинами.

Для обеспечения требуемого режима работы эти величины необходимо поддерживать постоянными или изменять по тому или иному закону.

Физические величины, определяющие ход технологического процесса — называются параметрами технологического процесса.

Так параметрами технологического процесса могут быть давление, температура, уровень жидкости, концентрация вещества, расход вещества или энергии, скорость изменения какой-либо величины и т.п.

Параметр технологического процесса, который необходимо поддерживать постоянным или изменять по определенному закону — называется регулируемой величиной или регулируемым параметром.

Аппарат, машина, агрегат или процесс в котором регулируются те или иные параметры технологического процесса — называются объектом регулирования или регулируемым объектом.
Значение регулируемой величины, которое оператор стремится получить в установившемся режиме от находящейся в равновесии системы регулирования при заранее заданных режимах ее работы — называется заданным значением.
Значение же регулируемой величины в рассматриваемый момент времени — называется ее мгновенным или истинным значением.

Регулятор, как часть системы автоматического регулирования САР

Рисунок 1.

Задатчик — устройство, предназначенное для задания значения регулируемой величины.
Чувствительный элемент (датчик) – устройство, реагирующее на изменение регулируемой величины и предназначенное для преобразования значения регулируемого параметра (температура, давление, расход, уровень) в сигнал понятный регулятору (ток, напряжение, пневмосигнал линейное перемещение).

Регулирующий орган – устройство, с помощью которого регулятор может влиять на изменение величины регулируемого параметра (клапана, шибера, пускатели, реле и т.п.). Регулирующий орган изменяет количество вещества или энергии, подводимых к объекту или отводимых от него
Внешние возмущающие воздействие — это внешние воздействия на систему, т.е.

причины, вызывающие отклонения регулируемой величины от заданного значения.

Примеры внешних возмущающих воздействий:

Расход продукта в трубе (F) зависит от разности давлений P1 и P2. Если изменится хотя бы одно давление, то изменится и расход.

При смешении продуктов температура t зависит от температур t1 и t2 и количества Q1 и Q2 смешиваемых продуктов. При изменении одного из этих параметров приведет к изменению температуры продукта t.На регулятор приходит два сигнала: заданное значение (от задатчика) и истинное значение (от датчика) регулируемого параметра.

Разность этих сигналов называется рассогласованием или отклонением (ε). Регулятор определяет величину рассогласования и в соответствии с заложенным в него алгоритмом (см. Алгоритмы работы регуляторов) вырабатывает управляющее воздействие на регулирующий орган.

Регулирующий орган влияет на значение регулируемого параметра (приоткрывая или прикрывая регулирующий клапан, увеличивает или уменьшает значение регулируемого параметра). Кроме этого на значение регулируемого параметра влияют также внешние возмущающие воздействия.

Очевидно, необходимость в регулировании возникает вследствие появления внешних возмущающих воздействий, так как при их отсутствии регулируемая величина не изменялась бы.

Следовательно, задача регулирования сводится к устранению отклонения регулируемой величины от требуемого значения при любых внешних возмущениях.

Алгоритмы работы регуляторов

Алгоритм работы любого регулятора может быть основан на законах регулирования:
— пропорциональный (П)
— интегральный (И)
— пропорционально — интегральный (ПИ)
— пропорционально — дифференциальный (ПД)
— пропорционально – интегрально – дифференциальный (ПИД)

Пропорциональные регуляторы (П-регуляторы) воздействуют на регулирующий орган пропорционально отклонению регулируемой величины от заданного значения

y=kx,

где y – управляющее воздействие регулятора; x – регулируемая величина; k – коэффициент пропорциональности (передачи).

Интегральные регуляторы (И-регуляторы) воздействуют на регулирующий орган пропорционально интегралу от отклонения регулируемой величины

где kp, — коэффициент передачи регулятора по скорости.В И-регуляторе скорость перемещения исполнительного механизма (скорость воздействия на регулирующий орган) пропорциональна отклонению регулируемой величины.Коэффициент передачи регулятора kp численно равен скорости перемещения исполнительного механизма при отклонении регулируемой величины на единицу ее измерения.

Так как интегральный регулятор может иметь два органа настройки (например, скорости перемещения собственно интегрирующего исполнительного механизма и коэффициента механической передачи между исполнительным механизмом и регулирующим органом), то уравнение закона регулирования интегрального регулятора запишется также в виде

Величина k называется коэффициентом пропорциональности, Ти постоянная времени интегрирования.

Пропорционально – интегральный регулятор (ПИ – регулятор) представляет собой совокупность пропорционального и интегрального регуляторов

Постоянная времени Ти определяет величину составляющей регулирующего воздействия, пропорциональной интегралу от отклонения регулируемой величины x , и численно равна времени удвоения регулятора kx0, т.е. времени, в течении которого первоначальное значение выходной величины регулятора равное , удваивается в следствии действия одной только его интегральной части (рисунок 2)

Скорость перемещения исполнительного механизма в ПИ – регуляторе пропорциональна как скорости изменения регулируемой величины, так и самому изменению регулируемой величины.

Если при настройке ПИ – регулятора установить очень большую величину постоянной времени Ти, то он превратится в П – регулятор.

Если при настройке регулятора установить очень малые значения k и Ти, но при этом так, чтобы их отношение k/Ти имело существенную величину, получим И – регулятор с коэффициентом передачи по скорости k/Ти .Закон регулирования ПИ – регулятора представлен на рисунке 2.

Параметрами настройки ПИ – регулятора являются коэффициент пропорциональности k и постоянная времени интегрирования Ти.

Пропорционально – дифференциальные регуляторы (ПД — регуляторы) оказывают воздействие на регулирующий орган пропорционально отклонению регулируемой величины и скорости ее отклонения

Постоянная времени Тд называется постоянной времени дифференцирования. Она определяет величину составляющей регулирующего воздействия по скорости.

Пропорционально – интегрально – дифференциальные регуляторы (ПИД – регуляторы) воздействуют на регулирующий орган пропорционально отклонению x регулируемой величины, интегралу этого отклонения и скорости изменения регулируемой величины

При скачкообразном изменении регулируемой величины идеальный ПИД – регулятор в начальный момент времени оказывает мгновенное бесконечно большое воздействие на регулирующий орган; затем величина воздействия мгновенно падает до значения, определяемого пропорциональной частью регулятора, после чего, как и в ПИ – регуляторе, постепенно начинает оказывать свое влияние интегральная составляющая регулятора.

Параметрами настройки регулятора являются:коэффициент пропорциональности регулятора k,постоянная времени интегрирования Ти,

постоянная времени дифференцирования Тд.

Этот регулятор по возможности настройки является более универсальным по сравнению с другими регуляторами. С его помощью можно осуществлять различные законы регулирования.
Так при Тд=0 и бесконечно большой величине Ти , получаем П – регулятор.

 При Тд=0, устанавливая достаточно малые значения k и Ти , но так, чтобы отношение значения k /Ти имело существенную величину, получаем И – регулятор. Так при Тд=0 и конечных значениях k и Ти имеем ПИ – регулятор.

При бесконечно большой величине Ти и конечных значениях k иТд получаем ПД – регулятор.

Приборы — регуляторы

Регуляторы по роду используемого сигнала бывают механическими, пневматическими, гидравлическими, электронными.

Механические регуляторы

В механических регуляторах схемы выполнены на рычагах, пружинах и т.п. В большинстве случаев механический регулятор содержит помимо схемы регулятора еще и датчик, и регулирующий орган.

Механические регуляторы являются специализированными – предназначены для регулирования только определенного технологического параметра. Так, например регулятором давления нельзя регулировать расход.

Механические регуляторы не имеют информационных выходных каналов, поэтому результаты их работы нельзя вывести на компьютер оператора.Преимущества механических регуляторов

Механические регуляторы не требуют настройки. Механические регуляторы просты в использовании, необходимо только задать необходимое значение технологического параметра, с помощью задатчика (рычажка, вращающейся рукоятки и т.п.). Механические регуляторы достаточно надежны в эксплуатации.

Пневматические регуляторы

В пневматических регуляторах схемы сделаны из мембран, сильфонов и пневматических элементов логики (УСЭППА). Носителем сигнала в пневматических регуляторах является давление воздуха от 0,2 до 1 кгс/см2 .

Конструктивно пневматический регулятор представляет из себя устройство имеющее входы для подключения датчика и выход для подключения регулирующего органа.

Эти регуляторы так же, как и механические, не имеют информационных выходных каналов и результаты их работы нельзя вывести на компьютер оператора.Гидравлические регуляторы

Гидравлические регуляторы по принципу работы идентичны пневматическим, только в качестве сигнала используется давление жидкости.

Электронные регуляторы

Электронный регулятор представляют собой законченное устройство, выполненное на полупроводниковых элементах. Информация в электронном регуляторе представлена в виде ого электрического сигнала (тока или напряжения).

Поэтому стало возможным вынести из электронного регулятора датчик и регулирующий орган, а в корпусе регулятора оставить только схемы регулирования. Кроме того в большинстве случаев сигналы от датчика к регулятору и от регулятора к исполнительному органу являются унифицированными (0 — 5 мА, 0 — 20 мА, 4 — 20 мА).

Исходя из этого к электронным регуляторам можно подключать датчики, измеряющие разные технологические параметры и имеющие разные шкалы. Кроме этого к электронным регуляторам можно подключать регулирующие органы, имеющие разное конструктивное исполнение. Это делает электронные регулятор более универсальными в отличии от механических.

В настоящее время электронные регуляторы оснащены информационными каналами, с помощью которых можно отслеживать их работу с помощью компьютера оператора.Электронные регуляторы могут быть реализованы двумя способами:

— реализующие алгоритм управления схемотехническим путем (схемные)

— реализующие алгоритм управления программным путем (программные)

Алгоритм регулирования схемных регуляторов закладывается в них при создании на заводе и не может быть изменен в ходе эксплуатации.

С методикой настройки регуляторов вы можете ознакомиться здесь и здесь

Источник: http://kipia-portal.ru/2016/02/23/regulyatory/

Как купить регулятор? Цены, оплата, доставка

Мы предлагаем регуляторы наиболее известных на российском рынке производителей ОВЕН и МЗТА. Перейдя по ссылкам ниже вы найдете модификации предлагаемых регуляторов, подробные описания и цены:

Минимальная цена на регулятор из предлагаемых на нашем сайте — всего 1700 рублей.

Как настроить ПИД регулятор?

Компания ИнСАТ предлагает курсы практической настройки регуляторов.

В рамках курса мы научим слушателей ставить задачу на настройку (наладку) систем автоматического регулирования,  формировать требования  к качеству регулирования, разберем структуру  и особенности систем автоматического регулирования, дадим методологию познания объекта регулирования и  системы регулирования, пройдем путь от начальных настроек до наилучших, дадим свой взгляд на особенности текущей эксплуатации.

Мы не преподаем Теорию Автоматического Управления. Мы даем методологию практической наладки

Регуляторы и системы автоматического регулирования

Для классификации регуляторов используется ряд параметров. Рассмотрим их детально.

Используемый закон регулирования (ПИД регулятор, ШИМ регулятор)

В системах автоматического регулирования чаще всего используются П, ПИ, ПИД и позиционный законы регулирования. Часто отдельно выделяют ШИМ регуляторы, но это ПДД регулятор, выход которого преобразуется в один или два дискретных сигнала с помощью широтноимпульсной модуляции. Кроме того, сейчас появляется все больше регуляторов, реализующих законы управления на базе нечеткой логики нечеткий регулятор.

Тип выходного сигнала управления ПИД регулятора в системах автоматического регулирования

Исполнительные механизмы систем автоматического регулирования могут иметь различные типы входных сигналов. Так, некоторые управляются унифицированным аналоговым сигналом 4-20 мА (0-10В), некоторые для регулирования используют 1 дискретный вход (например, регулятор температуры в печи), а некоторые — два дискретных входа (например, регулятор давления пара в аппарате управляет задвижкой: используются два сигнала — один на открытие, а другой на закрытие задвижки).

Соотетственно ирегуляторы могут иметь для управления либо аналоговый выходной сигнал, либо один или два дискретных сигнала для реализации ШИМ управления (ШИМ регулятор), либо дискретный выход реализующий фазоимпульсное управление мощностью.

Номенклатура приборов, которые мы предлагаем для создания систем автоматического регулирования, включает в себя регуляторы как с аналоговым выходом, так и с дискретными выходами, реализующими широтноимпульсноую модуляцию управляющего сигнала.

Наличие ретрансляционного выхода

Часто в системах автоматического регулирования величиной технологического параметра надо не только управлять, а так же ее надо регистрировать. Для этого многие регуляторы имеют дополнительный аналоговый выход. На него подается в заданном масштабе величина регулируемого параметра. Этот выход может быть заведен на вход регистрирующего прибора.

Дискретные выходы и возможность их программирования

При наличии аналогового управляющего сигнала регулятор может иметь один или два дискретных сигнала для реализации функций сигнализации, защиты или других. Так, например, ПИД регулятор температуры может формировать сигналы тревог при выходе регулируемого параметра за указанные границы.

Наличие программного задатчика (регулятор температуры)

Часто в системах автоматического регулирования циклических процессов требуется по определенной программе менять величину задания регулятора. Для этого используется программный задатчик.

Параметрами оценки таких регуляторов являются число шагов программы, максимальная и минимальная длинна шага программы, возможность плавного изменения задания на шаге.

Так например ПИД регулятор температуры и ПИД регулятор давления в системе автоматического регулирования установки выращивания кристаллов имеют сложные программы изменения их заданий.

Число входных сигналов системы регулирования, участвующих в формировании управляющего сигнала

Часто надо регулировать какой-либо параметр с коррекцией управляющего сигнала по величине другого параметра (например, регулятор расхода газа с коррекцией по температуре). Другим примером может быть реализация каскадного регулирования.

Тип регулируемого параметра

Существуют универсальные регуляторы — им на вход можно подать любой тип сигнала. С их помощью можно делать системы регулирования любых технологических параметров. Однако часто тип регулируемого параметра жестко ограничен: регулятор давления, регулятор температуры, регулятор уровня, регулятор расхода и т.п. Это связано с тем, что для измерения различных типов сигналов могут использоваться различные алгоритмы обработки.

Так регулятор температуры предполагает при получении сигналов от термопар компенсацию температуры холодных спаев и преобразование величины контролируемой термо ЭДС в значение температуры. В регуляторе расхода часто надо уточнить величину измеренного расхода по значению давления и температуры контролируемой среды. Поэтому, чтобы упростить программу, зашитую в регулятор, и удешевить изделие производители разделяют их по назначению.

Точность регулирования

По этому параметру можно выделить общепромышленные и прецизионные регуляторы. В качестве примера можно привести прецизионный регулятор температуры ПРОТЕРМ.

Наличие интерфейса связи с другим оборудованием

Современные системы регулирования обычно являются частью крупных систем управления. Чтобы интегрировать регуляторы с остальным оборудованием или реализовать удобный интерфейс пользователя на операторской станции они должен иметь интерфейс связи.

ЭТО ИНТЕРЕСНО:  Как работает датчик влажности

Самые простые регуляторы не имеют средств подключения. Наиболее распространенными интерфейсами для связи с верхним уровнем являются RS-232 и RS-485.

Многие производители реализуют свой протокол обмена с регуляторами, но наиболее распространенным, можно сказать стандартным, стала поддержка протокола MODBUS RTU.

Наличие и качество алгоритмов автонастройки параметров системы регулирования

Это очень важная функция для создания системы автоматического регулирования на объекта, чьи динамические характеристики заранее не известны или сильно меняются во времени.

Число обслуживаемых контуров регулирования

Наиболее распространены регуляторы на один контур. Но в настоящее время все больше появляется многоконтурных регуляторов. Такие регуляторы часто позволяют реализовать взаимосвязанное регулирование параметров.

Питание регуляторов

Важным параметром является необходимость использования внешнего источника питания на 24В постоянного тока и наличие встроенного питания  измерительных цепей.

КонтрАвт Регуляторы температуры / терморегуляторы рассчитаны на работу с термопарами и термосопротивлениями, а также с унифицированными сигналами тока и напряжения. Регуляторы — измерители температуры имеют высокую точность измерения (класс точности не ниже 0.1). Регуляторы температуры серии МЕТАКОН поддерживают интерфейс RS-485, поэтому они широко используются в качестве измерителей, сигнализаторов и регуляторов в распределенных SCADA-системах.

МЗТА

В данном разделе представлена продукция Московского завода тепловой автоматики (ОАО «МЗТА»). Наоболее популярными на рынке регуляторов являются следующие линейки продукции завода

  • МИНИТЕРМ 500, 450, 400, 300, У4, У2 — универсальные регуляторы широкого применения;
  • РС29 — многоканальные регуляторы для автоматизации котлов и других объектов теплоэнергетики;
  • ПРОТАР — программируемые многоканальные регуляторы;
  • ПРОТЕРМ — прецизионные регуляторы температуры

Источник: https://insat.ru/products/?category=886

П-, ПИ-, ПД-, ПИД — регуляторы

В данном разделе приведены описания алгоритмов работы и законы регулирования непрерывных П-, ПИ-, ПД-, ПИД-регуляторов с различными структурами выходного сигнала — аналоговым выходом, дискретным (импульсным) выходом или ШИМ-выходом (широтно импульсным модулированным сигналом).

Классификация систем автоматического регулирования (САР) приведена в таблице 1 в «Классификация систем автоматического регулирования».

Типовые регуляторы и регулировочные характеристики

Для регулирования объектами управления, как правило, используют типовые регуляторы, названия которых соответствуют названиям типовых звеньев (описание типовых звеньев представлено в разделе 2.4):

    1. П-регулятор, пропорциональный регулятор
      Передаточная функция П-регулятора: Wп(s) = K1. Принцип действия заключается в том, что регулятор вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка Е, тем больше управляющее воздействие Y).
    2. И-регулятор, интегрирующий регулятор
      Передаточная функция И-регулятора: Wи(s) = К0/s. Управляющее воздействие пропорционально интегралу от ошибки.
    3. Д-регулятор, дифференцирующий регулятор
      ПередаточнаяфункцияД-регулятора: Wд(s) = К2*s. Д-регуляторгенерирует управляющее воздействие только при изменении регулируемой веричины: Y= K2 * dE/dt.

      На практике данные простейшие П, И, Д регуляторы комбинируются в регуляторы вида ПИ, ПД, ПИД (см. рис.1):

Рисунок 1 — Виды непрерывных регуляторов

В зависимости от выбранного вида регулятор может иметь пропорциональную характеристику (П), пропорционально-интегральную характеристику (ПИ), пропорционально-дифференциальную характеристику (ПД) или пропорционально-интегральную (изодромную) характеристику с воздействием по производной (ПИД-регулятор).

  1. ПИ-регулятор, пропорционально-интегральный регулятор (см. рис.3.18.а)
    ПИ-регулятор представляет собой сочетание П- и И-регуляторов. Передаточная функция ПИ-регулятора: Wпи(s) = K1 + K0/s.
  2. ПД-регулятор, пропорционально-дифференциальный регулятор (см. рис.3.18.б)
    ПД-регулятор представляет собой сочетание П- и Д-регуляторов. Передаточная функция ПД-регулятора: Wпд(s) = K1 + K2 s.
  3. ПИД-регулятор, пропорционально-интегрально-дифференциальный регулятор (см. рис.3.18.в)

ПИД-регулятор представляет собой сочетание П-, И- и Д-регуляторов. Передаточная функция ПИД-регулятора: Wпид(s) = K1 + K0 / s + K2 s.

Наиболее часто используется ПИД-регулятор, поскольку он сочетает в себе достоинства всех трех типовых регуляторов.

Структурные схемы непрерывных регуляторов

В данном разделе приведены структурные схемы непрерывных регуляторов с аналоговым выходом -рис.2, с импульсным выходом — рис.3 и с ШИМ (широтно импульсным модулированным) выходом -рис.4.

В процессе работы система автоматического регулирования АР (регулятор) сравнивает текущее значение измеряемого параметра Х, полученного от датчика Д, с заданным значением (заданием SP) и устраняет рассогласование регулирования E (B=SP-PV). Внешние возмущающие воздействия Z также устраняются регулятором. Работа приведенных структурных схем отличается методом формирования выходного управляющего сигнала регулятора.

Непрерывный регулятор с аналоговым выходом

Структурная схема непрерывного регулятора с аналоговым выходом приведена на рис.2.

Выход Y регулятора АР (например, сигнал 0-20мА, 4-20мА, 0-5мА или 0-10В) воздействует через электропневматический преобразователь Е/Р сигналов (например, с выходным сигналом 20-100кПа) или электропневматический позиционный регулятор на исполнительный элемент К (регулирующий орган).

Рисунок 2 — Структурная схема регулятора с аналоговым выходом

где:АР — непрерывный ПИД-регулятор с аналоговым выходом,SP — узел формирования заданной точки,PV=X- регулируемый технологический параметр,Е — рассогласование регулятора,Д — датчик,

НП — нормирующий преобразователь (в современных регуляторах является входным устройством)

Y — выходной аналоговый управляющий сигнал Е/Р — электропневматический преобразователь,
К — клапан регулирующий (регулирующий орган).

Непрерывный регулятор с импульсным выходом

Структурная схема непрерывного регулятора с импульсным выходом приведена на рис.3.

Выходные управляющие сигналы регулятора — сигналы Больше и Меньше (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Рисунок 3 — Структурная схема регулятора с импульсным выходом

где:АР — непрерывный ПИД-регулятор с импульсным выходом,SP — узел формирования заданной точки,PV=X- регулируемый технологический параметр,Е — рассогласование регулятора,Д — датчик,НП — нормирующий преобразователь (в современных регуляторах является входным устройством) ИМП — импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100. Сигналы Больше и Меньше — управляющие воздействия,П — пускатель контактный или бесконтактный,

К — клапан регулирующий (регулирующий орган).

Непрерывный регулятор с ШИМ (широтно импульсным модулированным) выходом

Структурная схема непрерывного регулятора с ШИМ (широтно импульсным модулированным) выходом приведена на рис.4.

Выходной управляющий сигнал регулятора (транзистор, реле, симистор) через контактные или бесконтактные управляющие устройства (П) воздействуют на исполнительный элемент К (регулирующий орган).

Непрерывные регуляторы с ШИМ выходом широко применяются в системах регулирования температуры, где выходной управляющий симисторный элемент (или твердотельное реле, пускатель) воздействуют на термоэлектрический нагреватель ТЭН, или вентилятор.

Рисунок 4 — Структурная схема регулятора с ШИМ выходом

АР — непрерывный ПИД-регулятор с импульсным ШИМ выходом,SP — узел формирования заданной точки,PV=X- регулируемый технологический параметр,Е — рассогласование регулятора,Д — датчик,НП — нормирующий преобразователь (в современных регуляторах является входным устройством) ШИМ — импульсный ШИМ модулятор, преобразующий выходной сигнал Y в последовательность импульсов со скважностью, пропорциональной выходному сигналу: Q=\Y\/100.П — пускатель контактный или бесконтактный,

К — клапан регулирующий (регулирующий орган).

Согласование выходных устройств непрерывных регуляторов

Выходной сигнал регулятора должен быть согласован с исполнительным механизмом и исполнительным устройством.

В соответствии с видом привода и исполнительным механизмом необходимо использовать выходное устройство непрерывного регулятора соответствующего типа, см. таблицу 1.

Таблица 1 — Согласование выходных устройств непрерывных регуляторов

Выходное устройство непрерывного регулятора Тип выходного устройства Закон регулирования Исполнительный механизм или устройство Вид привода Регулирующий орган
Аналоговый выход ЦАП с выходом 0-5мА, 0-20мА, 4-20мА, 0-10В П-, ПИ-,ПД-, ПИД-закон Преобразователи и позиционные регуляторы электро-пневматические и гидравлические Пневматические исполнительные приводы (с сжатым воздухом в качестве вспомогательной энергии) и электропневматические преобразователи сигналов или электропневматические позиционные регуляторы, электрические (частотные привода)
Импульсный выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Электрические приводы (с редуктором), в т. ч. реверсивные
ШИМ выход Транзистор, реле, симистор П-, ПИ-, ПД-, ПИД-закон Контактные (реле) и бесконтактные (симисторные) пускатели Термоэлектрический нагреватель(ТЭН) и др.

Реакция регулятора на единичное ступенчатое воздействие

Одной из динамических характеристик обьекта управления является его переходная характеристика -реакция обьекта на единичное ступенчатое воздействие (см. Динамические характеристики), например, изменение заданной точки регулятора.

В данном разделе приведены переходные процессы системы управления при единичном ступенчатом изменении заданной точки при использовании регуляторов с различным законом регулирования.

Если на вход регулятора подается скачкообразная функция изменения заданной точки — см. рис. 5, то на выходе регулятора возникает реакция на единичное ступенчатое воздействие в соответствии с характеристикой регулятора в функции времени.

Рисунок 5 — Единичное ступенчатое воздействие скачкообразная функция изменения заданной точки регулятора

Параметрами П-регулятора являются коэффициент усиления Кр и рабочая точка Y0. Рабочая точка Y0 определяется как значение выходного сигнала, при котором рассогласование регулируемой величины равно нулю. При влиянии возмущающих воздействий возникает, в зависимости от Y0, отклонение регулирования.

Рисунок 6 — П-регулятор. Реакция на единичное ступенчатое воздействие

ПИ-регулятор, реакция на единичное ступенчатое воздействие

В отличие от П-регулятора у ПИ-регулятора, благодаря интегральной составляющей, исключается отклонение регулирования.

Параметром интегральной составляющей является время интегрирования Ти.

Рисунок 7 — ПИ-регулятор. Реакция на единичное ступенчатое воздействие

У ПД-регуляторов пропорциональная составляющая накладывается на затухающую дифференциальную составляющую.

Д-составляющая определяется через усиление упреждения Уд и время дифференцирования Тд.

Рисунок 8 — ПД-регулятор. Реакция на единичное ступенчатое воздействие

Б лагодаря дополнительному подключению Д-составляющей ПИД-регулятор достигает улучшения динамического качества регулирования.

См. ПИ-регулятор, ПД-регулятор.

Рисунок 9 — ПИД-регулятор. Реакция на единичное ступенчатое воздействие

Источник: https://automation-system.ru/main/15-regulyator/type-of-control/90-408-p-pi-pid.html

ПИД-регулятор для автоматизации процессов

Что же такое ПИД-регулятор? Прежде всего это алгоритм, который может быть реализован как программно, так и аппаратно. Сегодня мы рассмотрим ПИД-регулятор как законченное устройство, которое может быть использовано для построения систем управления и автоматики. В качестве примера возьмём устройство компании «ОВЕН»  ТРМ210. Но для начала немного теории

Что такое ПИД-регулятор?

ПИД-регулятор относится к регуляторам непрерывного типа. Аббревиатура «ПИД» расшифровывается как «пропорционально-интегрально-дифференциальный» (регулятор) — эти три слова полностью описывают принцип его действия. Общая структурная схема управления выглядит так:

На вход регулятора подаётся измеренная датчиком физическая величина (температура, влажность и т.д.), регулятор в соответствии со своим алгоритмом (реализующим функцию преобразования) выдаёт управляющее воздействие. Это вызывает изменение регулируемой величины (например, температуры или влажности).

На следующем шаге регулятор снова делает замер регулируемого параметра и сравнивает эту величину с заданной, вычисляя ошибку регулирования. Новое управляющее воздействие формируется с учётом ошибки регулирования на каждом шаге. Значение величины, которое нужно поддерживать, задаётся пользователем.

Функция преобразования ПИД-регулятора выглядит следующим образом:

,где E — ошибка регулирования (разница между заданным значением регулируемой величины и фактическим)

В этой формуле, как вы уже догадались, есь три составляющие: интегральная пропорциональная и дифференциальная. Каждая из них имеет соответствующий коэффициент (Кп, Ки, Кд). Чем больше коэффициент, тем больший вклад данная составляющая вносит в работу регулятора. Теперь разберёмся за что отвечает каждая из них.

Пропорциональная:  «Чем больше — тем больше, чем меньше  — тем меньше»

Тут всё просто. Пропорциональная составляющая просто умножает величину ошибки на свой коэффициент. Например, чем больше заданная температура по сравнению с текущей, тем большую мощность регулятор установит на обогревателе.

Интегральная:  «Учтём предыдущий опыт»

Интегральная составляющая необходима, чтобы учитывать предыдущий опыт работы регулятора и делать управление всё точнее и точнее со временем. Как известно, интеграл — это сумма. Регулятор суммирует все предыдущие значения ошибки регулирования и делает на них поправку.

Как только система выйдет на заданный режим (например, достигнет заданной температуры) ошибка регулирования будет близка к нулю и интегральная часть со временем будет всё меньше влиять на работу регулятора.

Говоря простым языком, интегральная составляющая стремиться исправить ошибки регулирования за предыдущий период.

Дифферинциальная:  «Учтём скорость изменения»

Эта составляющая берёт производную от измеряемой величины. Физический смысл производной- это скорость изменения физической величины. Например, чем быстрее растёт (или падает) температура в системе, тем больше будет соответствующая производная. Дифферинциальная составляющая позволяет регулятору по-разному реагировать на резкие и плавные изменения регулируемой величины в системе, тем самым избегая «раскачивания» этой величины.

ТРМ210: Функциональная схема прибора

Краткий экскурс в теорию закончен, вернёмся к практике и рассмотрим прибор ТРМ210, реализующий данный алгоритм.

Вот его функциональная схема:

Информация с датчика преобразуется прибором с помощью шкалы масштабирования, проходит фильтрацию и коррекцию. Это необходимо, чтоб ПИД-алгоритм получил измеренное значение в удобном и понятном для него виде.

Значение измеренной величины отображается на дисплее прибора.

Управляющее воздействие регулятора может быть импульсным или аналоговым. В первом случае управляющее воздействие регулятора заключается в изменении ширины генерируемых на выходе импульсов. Во втором случае регулятор выдаёт сигнал унифицированного напряжения в диапазоне 010 В или тока в диапазоне 420 мА. С помощью этих сигналов можно управлять практически любым устройством.

В ТРМ210 предусмотрен блок сигнализации, который сообщает о выходе физической величины за заданные пределы, замыкая дискретный выход, который, например, может «зажигать» лампу «Авария».

Также в приборе имеется блок регистратора, который может передавать измеренное значение физической величины любому другому прибору или устройству с помощью токового сигнала 420 мА.

В дополнение ко всему выше перечисленному регулятор имеет «на борту» интерфейс RS-485, который позволяет читать с прибора значения измеряемой величины, выходной мощности регулятора и любых конфигурируемых параметров. Это может пригодиться, если нужно передавать информацию о работе прибора в диспетчерский пункт.

Пример использования

Допустим, необходимо реализовать проветривание помещения следующим образом: чем больше температура внутри, тем больше нужно открыть окно. Для этого установим на окно привод, который будет плавно поворачиваться на заданный угол, а управляться будет сигналом тока 420 мА (такой управляющий сигнал поддерживают практически все подобные приводы). То есть, если подать на привод сигнал 4 мА — он полностью закроет окно, а 20 мА — полностью его откроет.

Для измерения температуры можно взять любой из поддерживаемых ТРМ210 — это практически любые термопары и любые датчики имеющие унифицированные выходы 010 В и 420 мА.

Настройка ПИД-регулятора

Прибор ТРМ210 имеет функцию автонастройки. В этом режиме регулятор сам имитирует возмущающие воздействия, отслеживает реакцию системы и исходя из этих данных подстраивает свои коэффициенты.

Однако, таким способом настроить регулятор получается далеко не всегда, поскольку регулятор ничего не знает о реальной системе, и генерируемые им тестовые возмущения могут не совпадать с реальными возмущениями, возникающими в этой системе.

В таких случаях необходимо подобрать коэффициенты вручную. О том, как это правильно сделать мы расскажем в отдельной статье.

До свидания! Читайте LAZY SMART.

Источник: http://lazysmart.ru/osnovy-avtomatiki/primenenie-pid-regulyatora-v-sistemah/

Понравилась статья? Поделиться с друзьями:
220 вольт
Dc ac что это

Закрыть