Как подключить кнопку с 4 контактами

Схема подключения проходного выключателя

как подключить кнопку с 4 контактами

Цены на жилищно-коммунальные услуги повышаются ежегодно, что заставляет задумываться об экономии, в том числе и электроэнергии. Причем, это касается тех мест, о которых раньше человек даже не задумывался. Например, освещение лестниц и лестничных площадок в многоэтажных домах.

В недалеком прошлом, когда цены на электроэнергию были мизерными, лестницы освещались 24 часа в сутки. Эта проблема актуальна и в частных домах, имеющих не один этаж, соединенный между собой лестницей. Чтобы сэкономить средства, свет приходится выключать, но для этого нужно или опять спуститься по лестнице или подняться по ней.

Это крайне неудобно, поэтому иногда его попросту не выключают и, он горит до утра, когда не станет светло.

Для удобства освещения на подобных участках были разработаны, так называемые «проходные» выключатели. Их еще называют «дублирующими» или «перекидными». Их можно отличить от классических выключателей наличием большего количества контактов. Поэтому, чтобы их подключить, необходимо знать схему, а тем более, уметь разобраться в принципе их действия. Естественно, что это не совсем просто, но абсолютно реально.

Принцип работы проходного выключателя

На клавише проходного выключателя расположены две стрелочки (не большие), направленные вверх и вниз.

Такой вид имеет проходной одноклавишный выключатель. На клавише могут находиться двойные стрелочки.

Схема подключения ненамного сложнее схемы подключения классического выключателя. Разница лишь в большем количестве контактов: обычный выключатель имеет два контакта, а проходной – три контакта. Два из трех контактов считаются общими. В схеме включения освещения, задействуются два и более, подобных выключателей.

Отличия – в количестве контактов

Работает выключатель следующим образом: при переключении клавишей вход подключается к одному из выходов. Другими словами, проходной выключатель рассчитан на два рабочих состояния:

  • Вход подключен к выходу 1;
  • Вход подключен к выходу 2.

Промежуточных положений у него нет, поэтому, схема работает так, как необходимо. Поскольку происходит простое подключение контактов, то по мнению многих специалистов их нужно было назвать «переключателями». Поэтому, переходной переключатель можно смело отнести к таким устройствам.

Чтобы не ошибиться, что за выключатель, следует ознакомиться со схемой включения, которая присутствует на корпусе выключателя. В основном, схема имеется на фирменных изделиях, а вот на не дорогих, примитивных моделях ее не увидишь. Как правило, схему можно обнаружить на выключателях фирмы «Lezard», «Legrand», «Viko» и т.д. Что касается дешевых китайских выключателей, то в основном, подобной схемы нет, поэтому приходится концы вызванивать прибором.

Такой вид имеет переключатель с тыльной стороны.

Как уже было сказано выше, при отсутствии схемы контакты лучше вызвонить при разных положениях клавиши. Это еще необходимо и для того, чтобы не перепутать концы, так как безответственные производители часто путают клеммы в процессе производства, а это означает, что он правильно работать не будет.

Чтобы прозвонить контакты, необходимо иметь или цифровой, или стрелочный прибор. Цифровой прибор следует перевести переключателем в режим прозвонки. В таком режиме определяются короткозамкнутые участки электропроводки или других радиодеталей. При замыкании концов щупов, прибор издает звуковой сигнал, что весьма удобно, так как нет необходимости смотреть на дисплей прибора. Если имеется стрелочный прибор, то при замыкании концов щупов у него отклоняется стрелка вправо до упора.

В данном случае важно найти общий провод. Для тех, у кого имеются навыки работы с прибором, особых проблем не будет, а вот для тех, кто взял в руки прибор первый раз, задача может оказаться не разрешимой, несмотря на то, что нужно разобраться всего лишь в трех контактах. В таком случае, лучше сначала посмотреть видео, где доходчиво рассказывается, а главное показывается, как это сделать.

Проходной выключатель- как найти общую клемму?

Схема подключения двух проходных выключателей

Подобная схема может оказать существенную помощь в организации освещения на лестнице (в двухэтажном доме), в длинном коридоре или в проходной комнате. Достаточно удобной может оказаться организация освещения в спальне, когда один выключатель устанавливается на входе в спальню, а другой – рядом с кроватью. В таком случае не придется постоянно вставать с кровати, чтобы выключить основной свет.

Электрическая схема подключения двух проходных выключателей

Схема подключения очень простая и понятная: на вход одного из переключателей подается фаза, вход другого переключателя подсоединяется к одному из проводов люстры (светильника). Второй конец светильника соединяется напрямую с нулевым проводом. Выходы N1 обоих выключателей соединяются вместе, как и выходы N2.

Схема функционирует довольно просто. Если посмотреть на схему, то в таком положении источник света включен. При последующем переключении любого из выключателей, в произвольном порядке, светильник будет то выключаться, то включаться.

Для того, чтобы было более понятно, следует внимательно посмотреть на рисунок.

Разводка проводов между двумя проходными выключателями.

В случае установки подобных выключателей в помещении, разводку проводов следует выполнить так, как это видно на рисунке ниже. Современные требования допускают разводку проводов на удалении 15 см от потолка.

Как правило, провода укладываются в специальные лотки или короба, а концы проводов сосредотачивают в монтажных (распределительных) коробках. Такой подход имеет неоспоримые плюсы. Главное, что поврежденный провод можно всегда заменить. Соединение проводов в монтажных коробках осуществляется с помощью специальных зажимов (контактных колодок).

При этом, допускаются и скрутки, которые затем обязательно пропаиваются и надежно изолируются.

Выход второго выключателя подсоединен к одному из проводников идущего к лампе освещения. Белые проводники – это провода, подключающие выходы обоих выключателей.

Разводка проводов по жилому помещению

Каким способом соединяются концы проводов в распределительной коробке, можно узнать, посмотрев соответствующее видео.

Схема подключения проходного выключателя

Вариант управления освещения с трех точек

Если имеется необходимость в дальнем управлении светильником из трех мест, то придется приобрести еще и перекрестный выключатель. Он переключает одновременно не по одному, а по два контакта, поэтому он имеет по два входа и два выхода.

Как все три выключателя соединить видно на рисунке. Это несколько сложнее предыдущего случая, но понять принцип работы можно.

Схема электрическая включения лампы из трех мест.

Чтобы подключить источник электрического света, согласно данной схемы, необходимо проделать следующие операции:

  1. Нулевой провод подключается к одному из проводов лампы.
  2. Фазный провод подключается к входному контакту одного из проходных выключателей.
  3. Свободный провод лампы подключается к входному контакту второго выключателя (проходного).
  4. Два выходных контакта проходного выключателя подключается к двум входным контактам перекрестного выключателя.
  5. Два выходных контакта второго проходного переключателя подсоединяют к двум выходным контактам перекрестного переключателя.

Схема та же, но показано более доходчиво, куда именно подключать провода.

К каким клеммам подключаются провода.

Примерно так следует развести провода по помещению.

На основе схемы на три точки управления, можно собрать схемы на 4 или на 5 точек. В таких случаях необходимо увеличивать количество перекрестных выключателей. Их следует всегда устанавливать в промежутке между двумя проходными переключателями.

Схема организации вкл/выкл лампы на 5 точек.

Если из этой схемы убрать один из перекрестных переключателей, то получится вариант на 4 точки, а если к ней добавить один перекрестный переключатель, то уже выйдет вариант на 6 точек.

Проходные выключатели из 5-ти мест без распаячных коробок. Suneler.ru

Двухклавишный проходной выключатель: схема подключения

Для того, чтобы из нескольких точек можно было управлять работой двух ламп существуют двухклавишные проходные выключатели. Они располагают шестью контактами. Главное – это определить общие контакты. Они определяются по такому же принципу, как и при поиске общего контакта в одноклавишных проходных выключателях.

В схеме, где используется два двухклавишных проходных выключателя, применяется значительно больше проводов.

Фазный провод подается на входы обоих выключателей, а другие входы выключателей подключаются к одному из концов одной и другой лампы. Свободные концы лампы подключаются к нулевому проводнику. Два выхода одного выключателя соединяются с двумя выходами второго выключателя, а два других выхода этого выключателя подсоединяются к двум другим выходам первого выключателя.

Вариант разводки проводов для подключения двухклавишных проходных выключателей.

Если есть желание управлять работой двух ламп из трех или четырех точек, то придется приобрести по два перекрестных переключателя. Каждая пара выходов двухклавишного выключателя подсоединяется к одной паре одного перекрестного переключателя. И так дальше, пара за парой выходы устройств соединяются между собой.

Управление работой двух ламп освещения из четырех точек.

Если разобраться, то сложного ничего нет, особенно при применении одноклавишных проходных выключателей. Что касается двухклавишных проходных выключателей, то здесь все намного серьезнее и затратнее, как по проводам, так и по выключателям. А если быть более точным, то эта схема менее практичная, но более дорогостоящая.

Схема подключения проходного выключателя | переключателя.

Источник: https://stroyday.com/shema-podklyucheniya-prohodnogo-vyklyuchatelya/

Подключение кнопки к ардуино

как подключить кнопку с 4 контактами

Подключение датчика кнопки к ардуино требует определенных знаний и навыков. В этой статье мы поговорим о том, что такое тактовая кнопка, что такое дребезг кнопки, как правильно подключать кнопку с подтягивающим и стягивающим резистором, как можно управлять с помощью кнопки светодиодами и другими устройствами.

Кнопка ардуино

Кнопка (или кнопочный переключатель) – самый простой и доступный из всех видов датчиков. Нажав на нее, вы подаете контроллеру сигнал, который затем приводит к каким-то действиям: включаются светодиоды, издаются звуки, запускаются моторы. В своей жизни мы часто встречаемся с разными выключателями и хорошо знакомы с этим устройством.

Тактовые кнопки и кнопки-переключатели

Как обычно, начинаем раздел с простых вещей, интересных только начинающим. Если вы владеете азами  и хотите узнать о различных вариантах подключения кнопки к ардуино – можете пропустить этот параграф.

Что такое кнопка? По сути, это достаточно простое устройство, замыкающее и размыкающее электрическую сеть. Выполнять это замыкание/размыкание можно в разных режимах, при этому  фиксировать или не фиксировать свое положение. Соответственно, все кнопки можно поделить на две большие группы:

  • Кнопки переключатели с фиксацией. Они возвращаются в исходное состояние после того, как их отпустили. При в зависимости от начального состояния разделяют на нормально-замкнутые и нормально-разомкнутые кнопки.
  • Кнопки без фиксации (тактовые кнопки). Они фиксируются и остаются в том положении, в котором их оставили.

Вариантов различных кнопок великое множество, это действительно один из самых распространенных видов электронных компонентов.

Кнопки ардуино для простых проектов

В наших проектах мы будем работать с очень простыми тактовыми кнопками с 4 ножками, которые идут практически в любом наборе ардуино. Кнопка представляет собой переключатель с двумя парами контактов. Контакты в одной паре соединены между собой, поэтому больше одного выключателя в схеме реализовать не удастся, но вы можете одновременно управлять двумя параллельными сегментами, это бывает полезно.

В зависимости от ситуации, вы можете создавать как схемы с нормально замкнутыми, так и с нормально разомкнутыми контактами – для этого нужно будет только соответствующим образом выполнить соединение в схеме.

Для удобства работы в комплекте с тактовой кнопкой обычно идет пластмассовый колпачок какого-то цвета, он достаточно очевидно надевается на кнопку и придает проекту менее хакерский вид.

Включение и выключение светодиода с помощью кнопки

Давайте начнем с самого простого способа подключения тактовой кнопки. Рассмотрим схему с Arduino в качестве источника питания,  светодиода, ограничительного резистора номиналом 220 Ом и кнопки, которая будет замыкать и размыкать цепь.

При подключении кнопки с двумя парами ножек важно правильно выбрать размыкающие контакты. Посмотрите на изображение внимательно: пары ножек расположены по бокам кнопки.

Сама кнопка квадратная, но расстояния между парами контактов визуально заметны: можно сразу выделить два на одной стороне и два а другой. Так вот, именно между одной «парой» на стороне и будет реализован выключатель.

Для включения в схему мы соединяемся с одним и с другим контактом, между которыми минимальное расстояние. Вторая пара контактов просто дублирует первую.

Если у вас переключатель другого типа, то можете смело выбрать контакты с противоположных углов (на некоторых кнопка делается специальный знак в  виде выемки, по которому можно определить, с какой стороны расположены спаренные контакты). Самый надежный способ определить правильные ножки – это прозвонить контакты тестером.

Сама схема с кнопкой, светодиодом и контроллером Arduino не нуждается в особых пояснениях. Кнопка разрывает цепь, светодиод не горит. При нажатии цепь замыкается, светодиод включается. Если вы перепутаете контакты (включите через замкнутые спаренные контакты кнопки), то кнопка работать не будет, потому что цепь никогда не разомкнется. Просто поменяйте контакты местами.

Подключение кнопки с подтягивающим резистором

Давайте теперь подключим кнопку к ардуино так, чтобы можно было считывать в скетче ее состояние. Для этого воспользуемся следующей схемой.

В скетче мы будем отслеживать факт нажатия и выводить сообщение в монитор порта. Более интересный пример и подробное объяснение самой схемы мы приведем чуть позже.

Следует обратить внимание на сопротивление 10 К, которое мы добавили в этой схеме. Более подробно о его предназначении мы поговорим позже, просто имейте в виду, что такой резистор необходим для правильной работы схемы.

Скетч для кнопки ардуино с подтягивающим резистором:

/* Пример использования тактовой кнопки в ардуино. Кнопка подключена к пину 2. */ const int PIN_BUTTON = 2; void setup() { Serial.begin(9600); pinMode(PIN_LED, OUTPUT); } void loop() { // Получаем состояние кнопки и выводим в мониторе порта int buttonState = digitalRead(PIN_BUTTON); Serial.println(buttonState); delay(50); }

Подключение кнопки в режиме INPUT_PULLUP

В указанной выше схеме мы использовали резистор, называемый подтягивающим, для формирования определенного уровня сигнала на цифровом порту. Но есть другой способ подключить кнопку без резистора, используя внутренне сопротивление платы ардуино. В блоке setup мы должны всего лишь определить тип пина, к которому подключим кнопку, как INPUT_PULLUP.

pinMode(PIN_BUTTON, INPUT_PULLUP);

Альтернативным вариантом будет выбрать режим пина как OUTPUT и установить на данный порт высокий уровень сигнала. Встроенный подтягивающий резистор подключиться автоматически.

pinMode(PIN_BUTTON, INPUT_PULLUP); digitalWrite(PIN_BUTTON, HIGH);

И все. Можно собрать вот такую сложную схему и работать с кнопкой в скетче.

Мигание светодиода после нажатия на кнопку

В предыдущем примере со светодиодами мы подключили кнопку к плате ардуино и поняли, как она работает. Светодиод включался и выключался, но делал это в совершенно пассивном режиме – сам контроллер здесь был абсолютно лишним, его можно было бы заменить батарейками.

Поэтому давайте сделаем наш новый проект более «интеллектуальным»: при нажатии на кнопку заставим светодиод непрерывно мигать.

Обычной схемой с лампочкой и выключателем этого уже не сделаешь – мы будем использовать мощь нашего микроконтроллера для решения этой пусть и простой, но не тривиальной задачи.

Полная схема проекта изображена на рисунке:

Фрагмент схемы со светодиодом уже хорошо нам знаком. Мы собрали обычный маячок со светодиодом и ограничительным резистором. А вот во второй части мы видим знакомую нам кнопку и еще один резистор. Пока не будем вдаваться в подробности, просто соберем схему и закачаем в ардуино простой скетч. Все элементы схемы  идут в самых простых стартовых наборах ардуино.

/* Скетч для схемы с использованием тактовой кнопки и светодиода Светодиод мигает, пока нажата кнопка. Кнопка подтянута к земле, нажатию соответствует HIGH на входе */ const int PIN_BUTTON = 2; const int PIN_LED = 13; void setup() { Serial.begin(9600); pinMode(PIN_LED, OUTPUT); } void loop() { // Получаем состояние кнопки int buttonState = digitalRead(PIN_BUTTON); Serial.println(buttonState); // Если кнопка не нажата, то ничего не делаем if (!buttonState) { delay(50); return; } // Этот блок кода будет выполняться, если кнопка нажата // Мигаем светодиодом digitalWrite(PIN_LED, HIGH); delay(1000); digitalWrite(PIN_LED, LOW); delay(1000); }

ЭТО ИНТЕРЕСНО:  Как подключить розетки последовательно

Нажимаем и держим – светодиод мигает. Отпускаем – он гаснет. Именно то , что хотели. Хлопаем от радости в ладоши и приступаем к анализу того, что сделали.

Давайте посмотрим на скетч. В нем мы видим довольно простую логику.

  1. Определяем, нажата ли кнопка.
  2. Если кнопка не нажата, то просто выходим из метода loop, ничего не включая и не меняя.
  3. Если кнопка нажата, то выполняем мигание, используя фрагмент стандартного скетча:
    1. Включаем светодиод, подавая напряжение на нужный порт
    2. Делаем нужную паузу при включенном светодиоде
    3. Выключаем светодиод
    4. Делаем нужную паузу при выключенном светодиоде

Логика поведения кнопки в скетче может зависеть от способа подключения с подтягивающим резистором. Об этом мы поговорим в следующей статье.

Дребезг кнопки ардуино

В процессе работы с кнопками мы можем столкнуться с очень неприятным явлением, называемым дребезгом кнопки. Как следует из самого названия, явление это обуславливается дребезгом контактов внутри кнопочного переключателя.

Металлические пластины соприкасаются друг с другом не мгновенно (хоть и очень быстро для наших глаз), поэтому на короткое время в зоне контакта возникают скачки и провалы напряжения.

 Если мы не предусмотрим появление таких “мусорных” сигналов, то будем реагировать на них каждый раз и можем привести наш проект к хаусу.

Для устранения дребезга используют программные и аппаратные решения. В двух словах лишь упомянем основные методы подавления дребезга:

  • Добавляем в скетче паузу 10-50 миллисекунд между полкучением значений с пина ардуино.
  • Если мы используем прерывания, то программный метд использоваться не может и мы формируем аппаратную защиту. Простейшая из них  – RC фильтр с конденсатором и сопротивлением.
  • Для более точного подавления дребезга используется аппаратный фильтр с использованием триггера шмидта. Этот вариант позволит получить на входе в ардуино сигнал практически идеальной формы.

Более подробную информацию о способах борьбы с дребезгом вы можете найти в этой статье об устранении дребезга кнопок.

Переключение режимов с помощью кнопки

Для того, чтобы определить, была ли нажата кнопка, надо просто зафиксировать факт ее нажатия и сохранить признак в специальной переменной.

Факт нажатия мы определяем с помощью функции digitalRead(). В результате мы получим HIGH (1, TRUE) или LOW(0, FALSE), в зависимости от того, как подключили кнопку. Если мы подключаем кнопку с помощью внутреннего подтягивающего резистора, то нажатие кнопки приведет к появлению на входе уровня 0 (FALSE).

Для хранения информации о нажатии на кнопку можно использовать переменную типа boolean:

boolean keyPressed = digitalRead(PIN_BUTTON)==LOW;

Почему мы используем такую конструкцию, а не сделали так:

boolean keyPressed = digitalRead(PIN_BUTTON);

Все дело в том, что digitalRead() может вернуть HIGH, но оно не будет означать нажатие кнопки. В случае использования схемы с подтягивающим резистором HIGH будет означать, что кнопка, наоборот, не нажата.

В первом варианте (digitalRead(PIN_BUTTON)==LOW ) мы сразу сравнили вход с нужным нам значением и определили, что кнопка нажата, хотя и на входе сейчас низкий уровень сигнала. И сохранили в переменную статус кнопки.

Старайтесь явно указывать все выполняемые вами логические операции, чтобы делать свой код более прозрачным и избежать лишних глупых ошибок.

Как переключать режимы работы после нажатия кнопки?

Часто возникает ситуация, когда мы с помощью кнопок должны учитывать факт не только нажатия, но и отпускания кнопки. Например, нажав и отпустив кнопку, мы можем включить свет или переключить режим работы схемы.  Другими словами, нам нужно как-то зафиксировать в коде факт нажатия на кнопку и использовать информацию в дальнейшем, даже если кнопка уже не нажата.  Давайте посмотрим, как это можно сделать.

Логика работы программы очень проста:

  • Запоминаем факт нажатия в служебной переменной.
  • Ожидаем, пока не пройдут явления, связанные с дребезгом.
  • Ожидаем факта отпускания кнопки.
  • Запоминаем факт отпускания и устанавливаем в отдельной переменной признак того, что кнопка была полноценно нажата.
  • Очищаем служебную переменную.

Как определить нажатие нескольких кнопок?

Нужно просто запомнить состояние каждой из кнопок в соответствующей переменной или в массиве ардуино. Здесь главное понимать, что каждая новая кнопка – это занятый пин. Поэтому если количество кнопок у вас будет большим, то возможно возникновение дефицита свободных контактов. Альтернативным вариантом является использование подключения кнопок на один аналоговый пин по схеме с резистивным делителем. Об этом мы поговорим в следующих статьях.

Источник: https://arduinomaster.ru/datchiki-arduino/knopka-arduino/

Изготовление дверей

как подключить кнопку с 4 контактами

Для подачи питания на различные электроприборы используются включатели. В зависимости от мощности электроустановки, проектируются контакты коммутаторов: чем выше ток (потребляемая мощность), тем больше масса и площадь соприкосновения металла. Соответственно, прижимное устройство (пружина, стальная пластина) должно обеспечивать большее усилие нажатия. Если включатель ручной (механический), его размеры будут слишком велики, пользоваться им будет неудобно.

Такие вводные устройства имеют ряд недостатков (помимо габаритов):

  • слишком большое усилие при включении (выключении);
  • контактные группы не рассчитаны на частую коммутацию: быстро изнашиваются;
  • не решены вопросы безопасности: при необходимости аварийного отключения тратится слишком много времени;
  • «рубильники» необходимо размещать рядом с зоной работ (в непосредственной близости от электроустановки), это не всегда удобно по причине тех же габаритов.

Единственный выход — подключение двигателя (или другого электроприбора) через пускатель.

Преимущества реализации такой схемы подключения

  1. Коммутатор и манипулятор управления (кнопка) могут быть разнесены. То есть, управляющий элемент располагается в непосредственной близости от оператора, а массивный коммутатор можно разместить в любом удобном месте.
  2. Возможно управление с помощью ножного привода (руки остаются свободными). Это позволяет лучше контролировать электроустановку и удерживать обрабатываемую деталь.
  3. Схема подключения выносного пускателя позволяет разместить устройства безопасности.

    Например, защиту от короткого замыкания или тепловые реле, срабатывающие при температурных перегрузках. Кроме того, такая схема позволяет реализовать механическую защиту: при перемещении подвижных частей электроустановки до критической отметки, срабатывает концевой выключатель, и магнитный пускатель размыкается.

  4. Дистанционное расположение управляющих элементов позволяет расположить аварийную кнопку в удобном месте, что повышает безопасность эксплуатации.

  5. Есть возможность установить единый кнопочный пост для управления большим количеством магнитных пускателей при расположении электроустановок в разных местах и на большом удалении. Схема подключения через такой пост предполагает использование слаботочной управляющей проводки, что экономит средства на приобретение дорогостоящих силовых кабелей.
  6. Для управления одним пускателем можно установить несколько кнопочных постов.

    В таком случае управление электроустановкой с каждого поста будет равнозначным. То есть, можно запустить электродвигатель с одной точки, а выключить с другой. Схема подключения нескольких кнопочных постов на иллюстрации:

  7. Магнитные контакторы можно интегрировать в электронную систему управления. В этом случае команды на пуск и отключение электроустановок подаются автоматически, по заданному алгоритму.

    Организовать такую систему с помощью механических (ручных) включателей невозможно.

Фактически, такая коммутация представляет собой релейную схему.

Как подключить пускатель на 220V с кнопкой

Самая распространенная схема включения — однофазный потребитель с кнопочным стартом. Причем кнопки должны быть разнесены: отдельно «пуск», отдельно «стоп». Чтобы понять, как подключить магнитный пускатель, изобразим комбинированную схему, с изображением деталей:

В нашем случае используется однофазный источник питания (220 V), разнесенные кнопки управления, защитное термореле, и собственно магнитный пускатель. Потребитель — мощный электродвигатель.

  • Нулевой кабель (N) подключается одновременно к электродвигателю и контактам управляющей цепи.
  • Кнопка (Кн2) «стоп» является нормально замкнутой: в отпущенном состоянии через нее протекает электрический ток.
  • Линия фазы (F) контролируется защитной схемой термореле (ТП), и подключается к входным рабочим контактам пускателя (ПМ1).
  • Пусковая электроцепь от фазы соединяется с обмоткой соленоида пускателя (ПМ) через замкнутые (без перегрева) контакты термореле (ТП-1).
  • Параллельно нормально разомкнутой кнопке (Кн1) «пуск», подключены контакты сервисной цепи магнитного пускателя (ПМ4).
  • При нажатии кнопки «пуск», через соленоид контактора течет электроток. Замыкаются контакты (ПМ1) — питание электродвигателя и (ПМ4) — питание соленоида пускателя. После отпускания кнопки «пуск», управляющая и силовая цепи остаются замкнутыми, схема находится в режиме «включено».
  • При перегреве линии, срабатывает термореле (ТП), нормально замкнутые контакты (ТП1-) разрывают цепь соленоида, контактор размыкается, потребитель отключен. Повторное включение можно выполнить после остывания термореле.
  • Для принудительного обесточивания потребителя, достаточно коснуться кнопки (Кн2) «стоп», цепь питания соленоида разомкнется, питание потребителя прекратится.

Такая схема клавишного подключения магнитного пускателя на 220 V позволяет безопасно пользоваться мощными электроустановками, и обеспечивает дополнительную защиту в случае перегрева линии по току. Например, если вал двигателя остановится под нагрузкой.

Упрощенная схема (без защитных устройств и термореле) на иллюстрации:

В этом случае управление соленоидом (соответственно и силовыми контактными группами) осуществляется двумя кнопками вручную.

Информация:

При организации электронного поста управления, роль кнопок выполняют реле, подключенные к схеме, либо электрические системы (например, на тиристорах).

В качестве бонуса, рассмотрим подключение с помощью розетки с таймером. В этом случае схема включения работает без кнопки «стоп». То есть, при наличии управляющего напряжения (от таймера), электроустановка работает.

Как подключить трехфазный двигатель через магнитный пускатель

Питание 380 V (три фазы) осуществляется аналогично, только силовых проводов будет больше.

Контактор включает не одну, а три фазные линии. При этом, управляющая кнопка подключена по аналогичной схеме (как в однофазном случае).

На иллюстрации изображен пускатель, с управляющей катушкой соленоида на 380 V. Управляющая цепь коммутируется между двумя любыми фазами. Для безопасности присутствует термореле, датчики которого могут располагаться как на одном, так и на нескольких фазных проводах.

Как подключить контактор на 3 фазы, с обмоткой пускателя 220 V? Схема аналогичная, только управляющая цепь коммутируется между любой из фаз, и нейтральным проводом. Термореле работает так же точно, поскольку его механизм завязан на температуру силовых кабелей.

Как менять направление вращения двигателя с помощью пускателя

Трехфазные электромоторы дают возможность задавать направление вращения. Существует множество схем для однофазного питания 220 V. А для работы трехфазной (380 V) коммутации, существует схема подключения реверсивного магнитного пускателя.

Прибор состоит из двух самостоятельных схем, с отдельным управлением каждой группы контактов (пм1 и пм2). Каждая обмотка соленоида (ПМ1 и ПМ2) управляется своей кнопкой. При этом клавиша стоп всего одна, она просто разрывает цепь управления (как и в одиночном пускателе). Соединение входных и выходных контактов второй группы производится с так называемым «сдвигом фазы». При этом обмотки электродвигателя создают крутящий момент на валу в противоположном направлении.

Термореле без изменений: их задача разомкнуть пускатель при перегрузках.

Есть одна особенность:

Для предотвращения короткого замыкания между фазами, группы контактов (пм1 и пм2) не должны замыкаться одновременно. Поэтому они механически размещены на одном штоке, и чисто физически не могут быть подключены к питающей шине вместе. При попытке нажать на вторую кнопку (при работающей первой), питание потребителя отключится.

Источник: https://911dveri.ru/blog/shema-podklyucheniya-knopki.html

Как подключить контактор?

Для тех, кто нормально относился к изучению школьного курса физики, не составит особого труда разобраться в схемах подключения различного электрооборудования, включая трехфазные электродвигатели. Они подключаются через контакторы или магнитные пускатели. Зарубежная классификация не делает разницы между этими аппаратами, поскольку пускатель является тем же контактором, но укомплектованным дополнительными устройствами для безопасной работы потребителя тока.

Другими словами, пускатель – это своего рода электротехнический шкаф в миниатюре, в котором помимо контактора установлена тепловая защита и от короткого замыкания. Пускатели имеют 8 величин от «0» до «7», каждая из которых рассчитана на электродвигатели с определенным диапазоном мощности (номинального тока). Благодаря закрытому исполнению (в корпусе), пускатели могут устанавливаться в любом месте. При подключении электромоторов через контактор защитные устройства подбираются отдельно.

Система контактов на контакторе

Вне зависимости от типоразмера и производителя электротехники любой трехфазный контактор имеет стандартную схему контактов и их подключения. Для удобства монтажа все контакты имеют маркировку, указывающую на их предназначение. Маркировка наносится на корпус аппарата и выглядит следующим образом:

  • А1 (ноль) и А2 (фаза) – контакты для управления включением и отключением контактора;
  • Нечетные цифры 1, 3, 5 и маркировка L1, L2, L3 указывают на места ввода трехфазного питания;
  • Четные цифры 2, 4, 6 и маркировка T1, T2, T3 указывают на места подключения проводов, идущих к потребителю тока;
  • 13NO и 14NO это пара блок-контакта для обеспечения функции самоподхвата.

Контакт А2 продублирован в верхней и нижней части корпуса аппарата для удобства коммутации. С этой же целью верхнюю и нижнюю (нечетную и четную) группу силовых контактов также можно использовать для ввода или вывода питания. При монтаже контактора надо быть внимательным, иначе схема не будет работать.

Нельзя допускать неправильное подключение фаз. Если их перепутать при монтаже контактора, вы получите обратное вращение двигателя. Для этого предусмотрены два способа маркировки на изоляции жил кабеля – цифрами и цветом.

Числам 1, 2 и 3 соответствуют цвета – желтый, зеленый и красный. Нулевой проводник имеет белый цвет или маркировку цифрой «0». Подключение силовых контактов не представляет никакой сложности.

Главное – это правильное подключение управляющего напряжения через кнопочный пост.

Подключение кнопочного поста

Рассмотрим 2 схемы подключения контактора к сети 380 В: для катушки с напряжением питания 380 В и 220 В.

Кнопочный пост имеет две кнопки. «Пуск» с нормально-открытыми и «Стоп» с нормально-закрытыми контактами. Питание к нему (фаза) подается через контакт №4 кнопки «Стоп».

Между клеммами №3 «Стоп» и №2 «Пуск» устанавливаем перемычку, продлевая тем самым линию «фаза». Клемма А1 (фаза) контактора соединяется с контактом №1 «Пуск». Нулевая жила управляющего провода подключается на клемму А2.

Между дублем контакта А1 и клеммой 14NO устанавливается перемычка. Клемма 13NO соединяется с контактом №2 «Пуск».

В случае, если схему управления необходимо запитать от одной фазы (фаза-ноль), при номинале катушки пускателя 220 В, схема подключения будет выглядеть следующим образом.

При нажатии кнопки «Пуск» происходит срабатывание силовых контактов и подается напряжение на блок-контакт, который обеспечивает рабочее (закрытое) положение силовых контактов, после того, как кнопка будет отпущена.

Нажатием кнопки «Стоп» цепь на блок-контакте разрывается, и силовые контакты переходят в нормально-открытое положение. Более подробные описания подключения контакторов с иллюстрациями и видеороликами можно найти в интернете.

Сделав эту работу несколько раз, в последующем вы будете выполнять ее автоматически.

Источник: https://www.scat-technology.ru/article/kak-podkluchit-kontaktor/

Как подключить кнопку с 4 контактами

Тактовая кнопка — простой, всем известный механизм, замыкающий цепь пока есть давление на толкатель.

Кнопки с 4 контактами стоит рассматривать, как 2 пары рельс, которые соединяются при нажатии.

Эффект дребезга

При замыкании и размыкании между пластинами кнопки возникают микроискры, провоцирующие до десятка переключений за несколько миллисекунд. Явление называется дребезгом (англ. bounce). Это нужно учитывать, если необходимо фиксировать «клики».

Схема подключения

Напрашивается подключение напрямую. Но это наивный, неверный способ.

Пока кнопка нажата, выходное напряжение Vout = Vcc, но пока она отпущена, Vout ≠ 0. Кнопка и провода в этом случае работают как антенна, и Vout будет «шуметь», принимая случайные значения «из воздуха».

Пока соединения нет, необходимо дать резервный, слабый путь, делающий напряжение определённым. Для этого используют один из двух вариантов.

По многочисленным просьбам выкладываю

Реле 4-контактное подключал вот так

Распиновка кнопки 4-контактной

У себя соединял вот так

Конкретно в моей машине реализована следующая схема:От АКБ в салон идет от АКБ «+» на 20 мм2, через предохранитель, заходит в «розетку» с винтовыми зажимами для потребителей. Брал в автокрепеже за 200р. Здоровая такая, позолоченая типа.Аналогично приходит от АКБ «-«.

Все доплнительные потребители подключаю уже в эти «розетки».

Дополнительно «-» от АКБ проложен на «корпус» авто 16 мм2.

Все работает.Где и как доставать + от зажигания или еще откуда я подскажу, т.к. не знаю.

Реализовав такое подключение отдельными проводами я раз и на всегда избавил себя от поисков. чего и вам советую

Любая электронная схема начинается с обеспечения требуемого питания. Для обеспечения удобства и надёжности во многих приборах используются тумблера с подсветкой. Задача тумблера проста – включить, выключить или переключить что либо. В нашей статье, описано как в самом типичном случае, правильно подключить тумблер с подсветкой в вашу схему.

Источник: http://mvpclub.ru/kak-podkljuchit-knopku-s-4-kontaktami/

Как подключить выключатель с одной клавишей: схемы как подсоединить

Для управления бытовыми электрическими источниками освещения используют различные приспособления, наиболее распространенным среди всех является выключатель. Это простое устройство, расположенное на стене и соединенное с проводами. Дизайн изделий отличается, но внутренняя принципиальная схема у одинарных моделей одинакова.

В нашем материале мы расскажем как подключить выключатель с одной клавишей, чтобы оперативно произвести ремонт. Для удобства будет приведено несколько способов подключения с тематическими фотографиями наглядно демонстрирующими процесс монтажа.

Конструкция и назначение выключателей

Выключатель – это простое механическое (реже электронное) устройство для контактного замыкания/размыкания электроцепи с целью включения/выключения осветительных приборов.

Мы затронем конструкционные особенности и монтаж наиболее простых моделей – одноклавишных выключателей.

Они состоят из 4 основных частей:

  • рабочего узла – металлическая основа с контактами и кнопочным приводом;
  • крепежа – лапок или усиков из металла, соединенных с металлической пластиной;
  • декоративного оформления – панели или рамки;
  • динамической части – пластиковой клавиши.

Часть деталей, в основном, внутренних, выполнена из металла например, оцинкованной стали, внешняя декоративная отделка обычно изготавливается из безопасного пластика. Возможны и керамические элементы, выдерживающие нагрузку до 32 А, тогда как пластик рассчитан на 16 А.

В числе причин для установки выключателя с одной клавишей значатся:

Внешнее и внутренне строение зависит от нескольких факторов, например, функциональных задач или потенциальной нагрузки. В качестве дополнительно устройства в некоторых моделях присутствует светодиод, обеспечивающий внешнюю подсветку.

Конструкция простого выключателя с одной клавишей: 1 – клавиша, с помощью которой механизм водится в действие; 2 – декоративная рамка; 3 – рабочая часть, в которой заключен электрический механизм

Выключатели устанавливают во всех помещениях, где присутствуют какие-либо приборы освещения, не оснащенные кабелем питания (например, для торшеров или настольных ламп он не нужен).

Это чаще всего потолочные или настенные светильники, люстры, сложные осветительные системы.

При выборе устройств для помещений с повышенным уровнем влажности следует обратить внимание на такой показатель, как уровень защиты: для спальни или гостиной достаточно IP 20, для ванной или кухни – IP 40, для наружного (уличного) монтажа – IP 55

Виды устройств для бытового применения

Строгого деления на категории нет, так как у разных производителей существуют свои, «фирменные» модельные ряды, однако можно выделить несколько типов выключателей, объединенных каким-то одним признаком.

Два наиболее распространенных типа современных выключателей – одноклавишная настенная модель и пульт управления, который обычно поставляется в комплекте вместе с осветительным прибором

Например, по принципу включения все устройства можно разделить на:

  • механические – элементарные клавишные приспособления, простые в монтаже и использовании (функцию клавиши может выполнять рычажок, тумблер, кнопка, шнурок, поворотная ручка);
  •  электронные сенсорные, приводимые в действие прикосновением руки;
  • с дистанционным управлением, оснащенные пультом или датчиком движения.

Самой востребованной считается первая группа, традиционная и получившая признание с первых дней изобретения электрической цепи, популярность третьей также набирает обороты, а вторая как-то не прижилась.

Датчики движения позволяют экономить электроэнергию и служат дополнительной защитой. Например, если установить подобный прибор у входа в дом, он будет сигнализировать о появлении непрошеных гостей.

В жилых помещения предпочтительнее устанавливать внутренние модели (с подсветкой или без нее), которые не выступают над поверхностью стены и выглядят более эстетично

По типу конструкции все выключатели делятся на одноклавишные и многоклавишные (стандартное исполнение для бытового применения – с 2-3 клавишами). Каждая клавиша служит для замыкания/размыкания одного осветительного контура.

Если в комнате несколько осветительных приборов – люстра, потолочная подсветка и бра – уместен трехклавишный выключатель, который позволит поочередно или вместе включать/выключать приборы.

Также довольно популярными являются двухклавишные выключатели увидеть которые можно практически в каждой квартире. Особенно они актуальны для люстр с несколькими лампами.

По способу монтажа можно выделить две группы: с наружной и внутренней установкой. Наружный тип обычно применяют, когда открыта проводка, а внутренний – с зашитыми в стену кабелями. Чтобы обеспечить безопасность и стабильность установки встраиваемого выключателя, используют монтажную коробку (подрозетник) – защитный пластиковый корпус.

По способу монтажа выключатели подразделяются на встраиваемые и накладные. Первые применяются при устройстве закрытой проводки, вторые – открытой. Устанавливаются оба варианта по аналогичным схемам

Место размещения – удобство и безопасность

Перед установкой выключателя следует продумать наиболее удобное место для монтажа и последующего использования. Наиболее выгодная зона размещена около входных дверей (со стороны дверной ручки), но могут быть и исключения (например, рядом с изголовьем кровати).

Источник: https://sovet-ingenera.com/elektrika/rozetk-vykl/kak-podklyuchit-vyklyuchatel-s-odnoj-klavishej.html

Arduino Урок 2 – Подключаем кнопку и светодиод

В предыдущем уроке мы узнали как подключать Arduino и выполнять простешую программу. В этом уроке мы научимся управлять нашим микроконтроллером с помощью обычной кнопки. Для этого нам потребуется обычная кнопка и светодиод.

Подключение кнопки

Сперва подключим кнопку к Arduino через любой доступный порт (pin). Можно использовать как аналоговый, так и цифровой порт. Для этого подадим на вход нашей кнопки 5 вольт, а выход соединим с портом Arduino, пусть это будет порт #2.

Так же, следует понимать, когда кнопка не нажата, связь между портами “5V” и “2” будет разомкнута. Из-за этого Arduino не сможет корректнто считывать информацию из порта “2”, так как этот pin будет висеть в воздухе. Решается эта проблема очень просто. Для этого нужно дополнительно подключить выход из кнопки на землю через подтягивающий резистор как это показано на следующей схеме.

Таким образом, при нажатии на кнопку на порт “2” будет поступать 5 вольт напряжения, а когда не нажата порт будет соединён с землёй.

Добавляем светодиод

Давайте подключим светодиод который будет загораться при нажатии на нашу кнопку. Сделать это очень просто. Достаточно подключить анод светодиода (длинная ножка) в порт “13”. Далее в программе мы будем включать светодиод просто подавая 5 вольт на этот порт. Катод светодиода (короткая ножка) подключаем на землю через разъём “GND”. Но не забываем про резистор, так как 5 вольт для одного светодиода слишком много и светодиод может перегореть.

Что бы правильно подобрать резистор с нужным нам сопротивлением можно воспользоваться специальной таблицей:

Цветовая характеристика светодиода Напряжение
Инфракрасный до 1.9 В
Красный от 1.6 до 2.03 В
Оранжевый от 2.03 до 2.1 В
Желтый от 2.1 до 2.2 В
Зелёный от 2.2 до 3.5 В
Синий от 2.5 до 3.7 В
Фиолетовый от 2.8 до 4 В
Ультрафиолетовый от 3.1 до 4.4 В
Белый от 3 до 3.7 В

Рассчитать необходимое сопротивление резистора можно по следующей формуле: 

R=(Uист-Uд)/Iд, где Uист – напряжение источника питания, – напряжение диода, – ток диода (обычный светодиод потребляет около 20 миллиампер).

Пример рассчёта для красного светодиода:

R = (5V – 2.03V) / 20mA = 0,1485. Можем округлить до 150 Ом. С таким резистором крассный светодиод будет работать с максимальной яркостью. Меняя сопротивление резистора мы можем сделать свечение нашего светодиода более или менее ярким.

Пишем программу

Наша схема готова, осталось написать программу. Запускаем Arduino IDE и вставляем следующий код:

const int buttonPin = 2; // номер порта нашей кнопкиconst int ledPin =    13; // номер порта светодиодаvoid setup() {    // устанавливаем порт светодиода на выход    pinMode(ledPin, OUTPUT);    // устанавливаем порт кнопки на вход    pinMode(buttonPin, INPUT);}void loop() {    // читаем состояние порта кнопки и записываем в переменную    int buttonState = digitalRead(buttonPin);    // делаем простую проверку нашей переменной, если на входе в порт кнопки присутствует напряжение — включаем светодиод, иначе — выключаем    if (buttonState == HIGH) {        // подаем 5 вольт на порт наешго светодиода        digitalWrite(ledPin, HIGH);        } else {        // выключаем светодиод        digitalWrite(ledPin, LOW);        }

}

Подключаем нашу Arduino и перепрошиваем её через меню «Скетч → » или нажав на комбинацию Control+U. Дожидаемся сообщения « завершена».

Проверка работы устройства

Если Вы сделали всё правильно то при нажатии на кнопку можно увидеть как зажигается светодиод. Если же кнопку отпустить светодиод выключится.

Источник: https://heliosun.com.ua/arduino-urok-2-podklyuchaem-knopku-i-svetodiod/

Подключение кнопки к пускателю с тепловым реле

У каждого мастера на все руки имеется пара задумок соорудить какой-либо станок, точильный, токарный или подъемник. Сегодня поговорим о важном элементе электропривода — тепловом реле, которое еще называют токовым или теплушкой.

Данное устройство реагирует на величину тока через него проходящее и в случае превышения установленного значения производит переключение контактов, отключая привод или сигнализируя о внештатной ситуации. В одной из наших статей мы уже рассматривали типы теплушек и принцип их работы, а также по каким параметрам происходит выбор теплового реле.

В этой статье мы рассмотрим, как производится установка и подключение теплового реле своими руками. Инструкция будет предоставлена со схемами, фото и видео примерами, чтобы вам были понятны все нюансы монтажа.

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:

Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98.

 На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы.

 Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети.

 При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения.

 Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления.

 Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса.

Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств.

 При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А.

Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

Источник: https://gscomplect.com/podklyuchenie-knopki-k-puskatelyu-s-teplovym-rele/

Ардуино: кнопки

Кнопка — всем известное механическое устройство, которое может замыкать и размыкать электрическую цепь по желанию человека. Есть множество видов кнопок, работающих по разным правилам. Например, тактовая кнопка (push button), используемая в этом уроке, замыкает цепь только пока палец давит на неё. Кнопка на размыкание, напротив, разрывает цепь при нажатии.

Есть кнопки с группой контактов, одни из которых рвут цепь при нажатии, а другие в это время замыкают. Маленькие версии таких кнопок часто называют микропереключателями.

Тактовые кнопки, можно найти практически в каждом электронном приборе: в клавиатуре компьютера, в телефоне, в пульте от телевизора, и т.д.

Есть кнопки с фиксацией, работающие как кнопка на шариковой ручке: один раз нажали — цепь замкнулась, второй раз — разорвалась. На фото ниже как раз одна из таких. Кнопки с фиксацией удобно использовать для переключения режима работы устройства. Например, можно переключать источник питания: батарея, или блок питания.

Или другой вариант — большие кнопки для экстренной остановки оборудования. Они окрашены в яркие цвета, чтобы привлекать внимание человека. По сути — обычные тактовые кнопки на размыкание, или кнопки с фиксацией.

Это лишь некоторые варианты. Кроме кнопок, в мире электричества есть и другие механизмы, например, тумблеры и рубильники. Все они призваны  механически управлять течением тока в цепи.

Подключение к Ардуино Уно

Теперь, когда функция тактовой кнопки предельно ясна, соберем схему с кнопкой и светодиодом, и подключим их к контроллеру. Поставим перед собой простую задачу: пусть при однократном нажатии кнопки Ардуино Уно мигнет три раза светодиодом.

Принципиальная схема

Внешний вид макета

На этой схеме мы видим уже привычную цепь для зажигания светодиода. Также видим кнопку, соединенную с выводом Ардуино №3. Здесь может вполне резонно возникнуть вопрос: зачем мы соединили кнопку ещё и с землей, через резистор 10кОм? Чтобы разобраться с этим вопросом, представим что мы подключили кнопку по «наивной» схеме без всяких дополнительных резисторов.

Здесь между выводом №3 и землей изображен небольшой конденсатор, который способен накапливать заряд. Такая особенность есть у многих микроконтроллеров.

Теперь представим, что мы замыкаем кнопку. Ток начинает бежать от +5В, прямиком в контакт №3, попутно заряжая ёмкость. Ардуино успешно регистрирует нажатие кнопки. Но после того, как мы убираем палец с тактовой кнопки, вопреки нашим ожиданиями, микроконтроллер продолжает считать что кнопка нажата! Еще бы, ведь заряженный конденсатор постепенно отдает накопленный заряд в ногу №3. Это будет продолжаться до тех пор, пока ёмкость не разрядится ниже уровня логической единицы.

Чтобы такого не случилось и нужен так называемый стягивающий резистор (или подтягивающий к земле). При замыкании кнопки ток пойдет по пути наименьшего сопротивления, то есть на вывод №3. А вот как только кнопка будет отжата, паразитная ёмкость мгновенно разрядится на землю, через резистор.

Подключение модуля тактовых кнопок ROC к Ардуино

Специально для ваших проектов мы в RobotClass сделали модуль из двух тактовых кнопок. На модуле уже есть необходимые резисторы и даже два светодиода для индикации нажатия кнопок.

Разберемся с подключением этого модуля к Ардуино Уно.

Принципиальная схема

Внешний вид макета

Как можно было заметить, независимо от того, какие всё-таки кнопки мы будем использовать — схема подключения не сильно меняется. Не будет менять и программа для работы с ними.

Программа для работы с кнопкой на Ардуино

Наконец, мы разобрались с нюансами нашей схемы, и готовы к написанию программы. В уроке по зажиганию светодиода мы познакомились с функциями настройки выводов pinMode и функцией вывода в цифровой порт digitalWrite. На этот раз нам понадобится ещё одна важная функция, которая обеспечивает ввод информации в микроконтроллер:

digitalRead( номер_контакта );

Эта функция возвращает логическое значение, которое Ардуино считала с заданного контакта. Это означает, что если на контакт подать напряжение +5В, то функция вернет истину*. Если контакт соединить с землей, то получим значение ложь. В языке C++, истина и ложь эквивалентны числам 1 и 0 соответственно.

https://www.youtube.com/watch?v=i3SDVyXQxQA

Для того, чтобы интересующий нас контакт заработал в режиме ввода информации, нам нужно будет установить его в определенный режим:

pinMode( номер_контакта, INPUT );

Наконец, соберем всё вместе, и напишем программу.

const int led = 2;const int button = 3;int val = 0;void setup(){ pinMode( led, OUTPUT ); pinMode( button, INPUT );}void loop(){ // записываем в переменную val состояние кнопки val = digitalRead( button ); // если состояние кнопки — истина, выполняем действие if( val == HIGH ){ // цикл от 0 до 2, с шагом 1 for( int i=0; i

Источник: https://robotclass.ru/tutorials/arduino_buttons/

Подключение трехклавишного выключателя в блоке с розеткой и без нее

Трехклавишный выключатель света предназначен для управления тремя контурами освещения. Причем в каждом из контуров может быть любое количество лампочек — одна, две, три и более.

Подключение необходимо начинать с подсоединения проводов к выключателю в монтажной коробке. А для этого его сперва необходимо разобрать.

Снимаете клавиши с выключателя. Начинать нужно с центральной. Обычно под ней имеется зазор. Вставляете в него жало отвертки и с небольшим усилием отщелкиваете клавишу.

Остальные можно снять руками без применения отвертки.

Далее, по бокам, опять же отверткой, поддеваете фиксаторы и освобождаете декоративную накладку.

Должна остаться центральная часть выключателя с 4-мя контактами. Один сверху и три снизу.

Не всегда верхний контакт может располагаться по центру, имейте это ввиду.

На эту одиночную клемму должен приходить общий фазный проводник питания с распредкоробки.

К трем нижним подключаются провода отходящие на лампочки, то есть на отдельные контура №1, №2, №3.
Для подключения вам понадобится 4-х жильный кабель ВВГнГ-Ls 4*1,5мм2. Из распаечной коробки в штробе, спускаете его в подрозетник, где должен монтироваться выключатель.
После чего начинаете подключение проводов.

На общую центральную клемму подсоединяете фазный проводник.

На отходящие контура, к нижним клеммам подключаете оставшиеся три жилы. Для того, чтобы не запутаться в дальнейшем, лучше их промаркировать.

Вставляете выключатель в монтажную коробку и закрепляете его там. Клавиши ставите на место в обратном порядке, начиная с крайних. Просто защелкиваете их обратно на свои места.

При этом обратите внимание на расположение клавиш.

Теперь необходимо произвести правильное расключение всех проводов в распредкоробке.

В распредкоробку может приходить несколько кабелей.

Во-первых, это трехжильный кабель питания с автомата освещения, установленного в электрощитке. Во-вторых — 4-х жильный кабель опускающийся к трехклавишнику, который вы уже подключили снизу.

Ну а дальше, могут быть варианты. Если у вас одна люстра на 3,6,9 лампочек, то подключить ее можно одним единственным пяти или 4-х жильным кабелем ВВГнГ-Ls сечением 1,5мм2.

Если же у вас три независимых светильника, в разных частях комнаты или дома, то придется тянуть на каждый из них по отдельному 3-х жильному кабелю. Рассмотрим последний вариант подробнее.

Итак, в распредкоробке у вас будет 5 кабелей. Нужно не запутаться и правильно соединить их жилы между собой.

Для этого всегда начинайте расключение с нулевых жил и жил заземления. Независимо от количества контуров и лампочек, все нули должны быть сведены в одну общую точку.

То же самое, относится и к заземляющим проводникам. На светильниках они подключаются к корпусу. Хотя в некоторых случаях их вообще может и не быть.

Быстрее всего соединение жил выполнить через клеммные зажимы Ваго. Для нагрузок под освещение это вполне хороший вариант.

Старайтесь выбирать расцветку жил согласно действующих правил. Нули — синие проводники, заземления — желто-зеленые.

Осталось подключить фазные проводники. Начинать нужно с фазы приходящей по кабелю от вводного автомата.
Соединяете ее только с общим фазным проводником, идущим на центральную клемму трехклавишного выключателя и больше никуда. Тем самым вы запустите фазу на переключатель.

Далее соединяете три провода выходящих с клавиш, с тремя фазными проводами отходящих контуров на светильники. Делаете это тремя разными зажимами wago.

Если вы до этого промаркировали жилы, то легко распознаете какая клавиша какую лампочку будет отключать (туалет, ванная, прихожая и т.д.)

При правильной сборке в распредкорбке должно получиться 6 точек соединения.

Перед непосредственной подачей напряжения, необходимо еще раз проверить всю схему подключения 3-х клавишного выключателя. Если нет ошибок, то включайте автомат освещения и запускайте клавишами ваши светильники.

Зачастую тройной выключатель устанавливают в один блок с розеткой. Как правильно выполнить такое подключение?

Кабель данного сечения должен идти не только от распредкоробки до выключателя, но и самое главное от щитовой, до этой самой распаечной коробки.

Кабель 5*2,5мм2 спускаете по штробе к блоку выключатель+розетка. Теперь по нему нужно будет завести не только фазу, но и ноль. Общий фазный проводник лучше подключить к контакту розетки, так как именно на ней, нагрузка больше чем на светильниках.

А уже далее, перемычкой, пустить эту фазу на верхнюю клемму 3-х клавишного выключателя.

Ноль подключается на второй контакт розетки. Остальные три провода, по уже ранее рассмотренной схеме, заводятся под три нижних контакта трехклавишника.

Расключение проводов в распаечной коробке, выполняется практически аналогично рассмотренному выше. За исключением того, что необходимо подключить еще одну нулевую жилу к общей точке нолей.

1Самая частая ошибка — розетка работает, а выключатель нет.

Дело здесь может быть в том, что вы попросту перепутали фазу и ноль на розетке. И соответственно запустили перемычкой на общую клемму выключателя не фазный провод, а нулевой.

При помощи индикаторной отвертки еще раз перепроверьте куда приходит фаза.

2Если вы монтируете блок розетка-выключатель не на новом месте, а меняете уже существующий, обязательно проверяйте напряжение питания на всех жилах.

Зачастую некоторые электрики заводят отдельную проводку на розетку и отдельную на выключатель. В итоге у вас в блоке может оказаться два питания одновременно. И собрав схему по вышеприведенному руководству, можно ненароком создать короткое замыкание.

3Свет на двух клавишах не загорается, пока не включите третью.

Как только ее включаете, все работает как надо. Тут все дело в неправильном подсоединении фазы. Вы ее запустили на выходной контакт третьей клавиши, а не на общий вход.
Опять же все решается проверкой индикатором.

4Чаще всего проблемы возникают при замене старых блоков выключатель-розетка и старых трехклавишников на новые.

Начинаете проверять напряжение на контактах, а индикаторная отвертка вместо одной приходящей фазы показывает три! То есть светится на всех трех контактах одновременно. Как такое возможно?

Электрик, который непосредственно сам давным-давно подключал старый выключатель, может быть и не виноват. Просто со временем, кто-то другой перекинул провода в счетчике или общей щитовой на вашу квартиру.

Вот и получилось, что там где раньше была фаза, образовался ноль. Зачастую разобраться в щитовых бывает не просто даже самим монтерам.

Индикатор при этом светится на контактах, потому что вкручены лампочки в патроны. В итоге цепь получается замкнутой через нить накаливания.

Выкрутите все лампы и еще раз проверьте фазные проводники. Свечение на трех фазах должно исчезнуть. Для правильного подключения здесь уже нужно найти общий ноль и именно его подкидывать на центральный контакт нового трехклавишного выключателя.

А лучше всего найти причину в щитовой, пригласив профессионального электрика и восстановить нормальную схему электроснабжения.

5Старайтесь никогда не подключать розетку в блоке через одну из клавиш.

Многим кажется удобным — нажал клавишу и пропал свет в розетке. Так делать не рекомендуется. Связано это с тем, что обычно через контакты розетки подключают мощную нагрузку, например фен 1,5-2кВт.

А ведь через нее еще можно подключить тройник или удлинитель! Контакты выключателя на ток такой величины и продолжительности вовсе не рассчитаны. В итоге, через некоторое время, у вас исчезнет напряжение во всем блоке, если не случится еще раньше пожар.

Источник: https://domikelectrica.ru/podklyuchenie-trexklavishnogo-vyklyuchatelya-v-bloke-s-rozetkoj-i-bez-nee/

Переключатели на два направления: схема подключения

Переключатель на два направления (двухполюсный) также относится к электрическим коммутационным устройствам, как и обычный (однополюсный) выключатель. Но если последний позволяет только разорвать или соединить электрическую цепь, то переключатели могут оперировать несколькими соединениями. На рисунке ниже наглядно показаны их основные отличия.

Схематическое изображение различных коммутационных устройств

На рисунке показано:

  1. обычный выключатель и вариант его подключения;
  2. пример использования сдвоенного выключателя;
  3. подключение двухполюсного выключателя;
  4. коммутатор.

Заметим, что переключатели могут быть на два и более направлений, например, четырехполюсный или силовой трехфазный. О последних имеет смысл рассказать более подробно.

Трехфазные коммутаторы

Трехфазные силовые переключатели широко применяются в схемах управления мощными асинхронными электродвигателями, их назначение – переключение обмотки со «звезды» на «треугольник». Такая реализация позволяет существенно снизить пусковой ток. На рисунке показана схема такого подключения.

Схема переключения обмоток электродвигателя

Обозначения на схеме:

  • А, В, С – фазы питания;
  • С1, С2, С3, С4, С5, С6 – выходы обмоток электродвигателя;
  • SA – трехполюсный силовой коммутатор.

Запуск электродвигателя происходит, когда его обмотки соединены «звездой», при входе в штатный режим, осуществляется переключение на «треугольник».

Многопозиционные коммутаторы модульного типа

Кулачковый пакетный переключатель — наиболее распространенный тип данных устройств, как и другие коммутаторы, он применяется для управления различными видами электрических нагрузок.

Кулачковые переключатели

Сфера применения кулачковых коммутаторов довольно обширна, приведем несколько примеров их использования:

  • коммутационные щиты управления переменным и постоянным током;
  • системы аварийного выключения, автоматического ввода резерва, переключения режимов работы электродвигателей;
  • управление трансформаторными подстанциями и освещением;
  • оборудование для подстанций (управление заземлителями, секционными выключателями, разъединителями и т.д.);
  • переключение режимов нагревательного оборудования (включение, выключение, переключение электронагревательных элементов нагрузки);
  • выбор режима работы электросварочного оборудования и т.д.

Кулачковые переключатели состоят из нескольких пакетов (каждый из которых отвечает за коммутацию одной линии), помещенных в один корпус. На нижнем рисунке показано устройство такого пакета.

Пакет кулачкового коммутатора

Обозначения на рисунке:

  • a — зафиксированные контакты (4 шт.), к которым подключаются провода;
  • b – специальный выступ «кулачек», который позволяет удерживать и перемещать шток;
  • c – группа передвижных контактов (в данном типе их две);
  • d – два направляющих паза (позволяют штоку совершать поступательные движения);
  • e – покрытые изолирующей оболочкой два штока;
  • f – контакты (8 шт.), как правило, изготовленные из сплава, содержащего серебро;
  • g – пакет;
  • h – две резьбовых шпильки (фиксируют пакет и крышку);
  • I – ротор;
  • J – четыре пружины (возвращают шток в замкнутое положение);
  • k- соединяющий рукоять с ротором вал;
  • l – четыре винта для зажима проводов кабеля.

Заметим, что пакетный рубильник (кулачковый коммутатор) может быть на несколько положений, включая нулевое, то есть когда контакты разъединены.   На рисунке показано состояние коммутатора в нейтральном положении.

Схематическое изображение переключателя в нулевом положенииКоммутатор ABB в режиме нулевого положения

Заметим, что все основные характеристики коммутаторов указываются на корпусе устройств, там отображаются:

  • тип коммутатора;
  • номинальный ток, на который рассчитан переключатель;
  • схема и таблица коммутации;
  • класс защиты.

Ниже показана схема и таблица коммутации, изображенная на корпусе переключателя направления вращения SPAMEL.

Схема и таблица коммутации переключателя SPAMEL

Благодаря такой таблице наглядно видно, в каком положении, какие группы контактов соединяются.

Использование в быту

Переключатели не так часто используются в быту, как выключатели, но, тем не менее, есть задачи, в которых без них обойтись невозможно. Например, когда необходимо управлять освещением с разных мест. Переключатели могут быть установлены на входе в комнату и возле кровати (чтобы не подниматься выключать свет) или в разных концах длинного коридора.

Реализация такой схемы управления довольно простая, ее изображение показано на рисунке ниже.

Схема включения освещения с двух разных мест

Обозначения на рисунке:

  • А, В – переключатели;
  • L – осветительный прибор.

При необходимости управлять освещением из большего количества мест, схему можно незначительно усложнить, добавив в нее промежуточный коммутатор.

Управление освещением из трех разных мест

Обозначения на рисунке:

  • A,B – двухпозиционные коммутаторы;
  • С – промежуточный двойной переключатель двух направлений;
  • L1 – осветительный прибор.

Заметим, что взяв данную схему за основу, можно управлять освещением с трех и более мест. Для этого достаточно добавить в нее необходимое количество промежуточных коммутаторов, подключаются они так же, как и устройство «С» на представленной выше схеме.

Как подключить

Приведем пример реализации схемы управления освещением с двух мест, используя для этого переключатели Легранд (Legrand). Этот производитель выпускает надежные бытовые модели серии Cariva и Valena, цена которых ненамного отличается от стоимости обычных выключателей.

Прежде чем купить переключатели, обратите внимание на различные исполнения, они могут быть как для скрытой, так и открытой проводки, а также с подсветкой и индикацией положения на коробке (корпусе).

Напоминаем, что все работы, связанные с подключением электрооборудования необходимо выполнять только при полном обесточивании электрических цепей. Поэтому прежде, чем приступать к действиям, убедитесь в том, что электричество выключено, желательно для этого использовать специальный прибор (пробник).

Схематическая реализация поставленной задачи показана на рисунке ниже.

Схематическое изображение установки двойного управления освещением

Синим цветом обозначен нулевой провод, красным – фаза. Заметим, что все коммутации должны выполняться именно с фазой.

Как подключается одноклавишный коммутатор, видно на нижнем рисунке.

Схема монтажа двух одноклавишных переключателей Legrand

Подключение коммутаторов для управления с трех мест выглядит следующим образом.

Подключение для управления освещением из трех разных мест

Как видите, одноклавишный или двухклавишный выключатель на два направления подключить не сложно, при этом он  поможет сделать управление освещением в вашей квартире более комфортным.

Источник: https://www.asutpp.ru/pereklyuchateli-na-dva-napravleniya.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как выбрать аккумулятор для автомобиля

Закрыть