Что такое петля фаза ноль простым языком

Измерение петли фаза-ноль: самая полная методика — Электрик

что такое петля фаза ноль простым языком

При существующем разнообразии электрического оборудования, устанавливаемого в силовых цепях, важно научиться правильной эксплуатации систем энергоснабжения и поддержанию их в рабочем состоянии.

Нарушение этого требования приводит к снижению эксплуатационных показателей и возможности повреждения подключенных к ней устройств. Проверка электропроводящих линий предполагает организацию тестирования, включающего в себя измерение распределенных электрических параметров.

При проведении периодических испытаний обязательно обследуются все защитные устройства и электрические проводники, а также так называемая «петля фаза ноль».

Определение понятия

Измеритель сопротивления петли фаза-ноль

Любое подключенное к электросети оборудование оснащается защитным заземляющим контуром. Это приспособление обустраивается в виде сборной металлической конструкции, располагающейся либо рядом с контролируемым объектом, либо на трансформаторной подстанции. В случае аварийной ситуации (при повреждении изоляции проводов, например) фазное напряжение попадает на заземленный корпус, а затем стекает в землю.

Для надежного растекания в грунт опасного потенциала сопротивление цепочки не должно превышать определенной нормы (единиц Ома).

Под петлей фаза ноль понимается проводной контур, образуемый при замыкании фазной жилы на токопроводящий корпус подключенного к сети оборудования. Фактически он образуется между фазой и заземленной нейтралью (нулем), что и явилось причиной такого названия.

Знать его сопротивление необходимо для того, чтобы контролировать состояние цепей защитного заземления, обеспечивающих стекание аварийного тока в грунт. От состояния этого контура зависит безопасность человека, пользующегося оборудованием и бытовыми приборами.

Методика определения сопротивления петли фаза-нуль

В соответствии с требованиями ПТЭЭП при эксплуатации промышленного и бытового электрооборудования необходим постоянный контроль состояния защитных устройств. Согласно требованиям нормативной документации в установках до 1000 Вольт с глухозаземленной нейтралью они проверяются на однофазное замыкание в грунт. В известных методиках испытаний в первую очередь учитывается техническая база, представленная образцами специальных измерительных приборов.

Используемая аппаратура

Для измерения цепочки фаза-нуль применяются электронные приборы, отличающиеся как своими возможностями (способом снятия показаний и их погрешностью, в частности), так и назначением. К самым распространенным образцам измерителей относятся:

  • Приборы М417 и MSC300, позволяющие определять искомую величину, по окончании измерений токи КЗ на землю вычисляются на основе полученных результатов.
  • Устройство ЭКО-200, посредством которого удается замерить только ток замыкания.
  • Прибор ЭКЗ-01, применяемый для тех же целей, что ЭКО-200.
  • Измеритель ИФН-200.

ИФН-200 ЭКО-200 М417

Прибор М417 позволяет проводить измерения в цепях 380 Вольт с глухозаземленной нейтралью без необходимости снятия питающего напряжения. При проведении замеров используется метод его падения в режиме размыкания контролируемой цепи на промежуток времени, составляющий 0,3 секунды. К недостаткам этого устройства относят необходимость калибровки системы перед началом работы.

Прибор MSC300 относится к изделиям нового типа с электронной начинкой, построенной на современных микропроцессорах. При работе с ним используется метод падения потенциала при подключении фиксированного сопротивления величиной 10 Ом.

Рабочее напряжение – 180-250 Вольт, а время замера контролируемого параметра – 0,03 сек. Устройство подсоединяется к проверяемой линии в самой дальней ее точке, после чего нажимается кнопка «Старт».

Итоги измерений выводятся на встроенный в прибор цифровой дисплей.

Когда в наличии не имеется ни одного образца измерительного прибора (а также при необходимости дублирования операций), для практического определения искомой величины используется способ измерения с помощью вольтметра и амперметра.

Существующие методики измерений

Известные методики включают в себя расчетную часть, представленную в виде формул. Общепринятый расчетный инструмент позволяет узнать суммарное сопротивление петли по следующей формуле:

Zпет = Zп + Zт/3, где

  • Zп – полное сопротивление проводов на участке КЗ;
  • Zт – то же, но для силового трансформатора подстанции (источника тока).

Для дюралевых и медных проводов Zпет в среднем составляет 0,6 Ом/км. По найденному сопротивлению находится ток однофазового замыкания на землю: Iк = Uф/Zпет.

Если в результате приведенных выкладок выяснится, что значение искомого параметра не превышает трети от допустимой величины (смотрите ПУЭ), можно ограничиться этим вариантом расчета. В противном случае проводятся прямые измерения тока посредством приборов ЭКО-200 или ЭКЗ-01. В их отсутствие может применяться метод амперметра-вольтметра.

Общий порядок проведения испытаний с помощью измерительных приборов указанных марок:

  • Контролируемое оборудование отключают от сети.
  • Организуется питание проверяемой петли от понижающего трансформатора.
  • Нужно умышленно замкнуть фазу на корпус электрического приемника, а затем измерить значение Zпет, получившееся в результате КЗ.

При измерениях по способу амперметра-вольтметра после подачи напряжения в контролируемую цепочку и организации замыкания определяются величины тока I и потенциала U. Первое из этих значений не должно превышать 10-20 Ампер.

Расчеты и оформление результатов

Сопротивление проверяемой петли вычисляется по формуле: Zпет=U/I. Полученное по результатам расчета значение складывается с импедансом одной из 3-х обмоток станционного трансформатора, равным Rтр./3.

По завершении линейных измерений согласно действующим нормативам их следует зафиксировать документально. Для этого по установленной форме подготавливаются протоколы испытаний, в которых обязательно регистрируются следующие данные:

  • Тип линии, ее основные характеристики.
  • Используемое при проверке измерительное оборудование.
  • Величины собственного переходного сопротивления и обмоток станционного трансформатора.
  • Их сумма, являющаяся итогом проведенных измерений.

В соответствии с основными положениями ПУЭ периодичность проводимых на силовых цепях проверок составляет один раз в 6 лет. Для взрывоопасных объектов – раз в два года.

Расчеты по таблицам

Полное значение искомой величины зависит от следующих факторов:

  • Параметры трансформатора силовой подстанции.
  • Выбранные при проектировании электрической сети сечения фазных и нулевых жил.
  • Сопротивление переходных соединений, всегда имеющихся в любой цепи.

Проводимость используемых проводов может задаваться еще на стадии проектирования энергосистемы, что при условии правильного ее выбора позволит избежать многих неприятностей.

Согласно ПУЭ этот показатель должен соответствовать хотя бы половине аналогичного значения для фазных проводников. По необходимости ее допускается увеличивать до той же величины. В требованиях главы 1.

7 ПУЭ оговариваются эти значения, а ознакомиться с ними можно в Таблице 1.7.5, приводимой в Приложении Правил. Согласно ей производится выбор наименьшего сечения проводников защиты (в миллиметрах квадратных).

По завершении табличного этапа обсчета петли фаза-ноль переходят к ее проверке путем вычисления тока короткого замыкания по формулам. Его расчетное значение сравнивается затем с практическими результатами, полученными ранее путем непосредственных измерений. При последующем выборе приборов защиты от КЗ (линейных автоматов, в частности) время их срабатывания привязывается к этому параметру.

В каких случаях проводят измерения

Замер сопротивления участка цепи фаза-ноль обязательно организуется в следующих ситуациях:

  • при вводе в постоянную эксплуатацию новых, еще не работающих силовых электроустановок;
  • когда со стороны контролирующих энергетических служб поступило указание на их проведение;
  • согласно заявке предприятий и организаций, подключенных к обслуживаемой электрической сети.

При вводе энергетической системы в эксплуатацию тестовые замеры сопротивления петли является частью комплекса мероприятий, проводимых с целью проверки ее рабочих характеристик.

Второй случай связан с аварийными ситуациями, нередко случающимися при эксплуатации силовых цепей.

Заявка от тех или иных потребителей, представленных предприятием или организацией, может поступить при неудовлетворительной защите оборудования (по жалобам конкретных пользователей, например).

Примеры проведения вычислений

В качестве примеров таких измерений рассматриваются два способа.

Эффект от падения напряжения на контролируемом участке силовой цепи

При описании этого способа важно обратить внимание на трудности его практической реализации. Это объясняется тем, что для получения конечного результата потребуется несколько этапов.

Сначала придется измерить параметры сети в двух режимах: с отключенной и подключенной нагрузкой. В каждом из этих случаев сопротивление измеряется путем снятия показаний по току и напряжению.

Далее оно рассчитывается по классическим формулам, вытекающим из закона Ома (Zп=U/I).

В числителе этой формулы U представляет собой разницу двух напряжений – при включенной и при выключенной нагрузке (U1 и U2). Ток учитывается только для первого случая. Для получения корректных результатов разница между U1 и U2 должна быть достаточно большой.

Полное сопротивление учитывает импеданс катушки трансформатора (он суммируется с полученным результатом).

Применение независимого источника электрического питания

Данный подход предполагает определение интересующего специалистов параметра с помощью независимого источника питающего напряжения. При его проведении потребуется учесть следующие важные моменты:

  • В процессе измерений первичная обмотка питающего станционного трансформатора замыкается накоротко.
  • С независимого источника напряжение питания подается непосредственно в зону КЗ.
  • Сопротивление фаза-ноль рассчитывается по уже знакомой формуле Zп=U/I, где: Zп – это значение искомого параметра в Омах, U – измеренное испытательное напряжение в Вольтах, I – величина измерительного тока в Амперах.

Все рассмотренные методы не претендуют на абсолютную точность полученных по их итогам результатов. Они дают лишь приблизительную оценку величины полного сопротивления петли фаза-ноль.

Такой ее характер объясняется невозможностью в рамках предложенных методик измерять индуктивные и емкостные потери, которые всегда присутствуют в силовых цепях с распределенными параметрами.

При необходимости учета векторной природы измеряемых величин (фазовых сдвигов, в частности) придется вводить специальные поправки.

В реальных условиях эксплуатации мощных потребителей величины распределенных реактивных сопротивлений настолько незначительны, что в определенных условиях они не учитываются.

Источник: https://orensbyt.ru/avtomatizatsiya/izmerenie-petli-faza-nol-samaya-polnaya-metodika.html

Как измерить петлю фаза ноль – Измерение петли фаза-ноль | Заметки электрика

что такое петля фаза ноль простым языком

Уважаемые, посетители!!!

Приветствую Вас на своем ресурсе «Заметки электрика».

В прошлой статье мы узнали с Вами, что такое петля фаза-нольи для чего нужно проводить измерение сопротивления петли фаза-ноль.

Сегодняшняя статья будет посвящена теме измерения петли фаза-ноль, т.е. разберем пошагово и подробно как самостоятельно произвести измерение. Измерение будем проводить в 2 этапа:

1. Внешний осмотр

Проводим тщательный внешний осмотр:

2. Измерение петли фаза-ноль

Перед измерением необходимо проверить плотность соединения проводов к аппаратам защиты. Если провода не протянуты — то смысла измерения нет, т.к. полученные показатели получатся не достоверными.

Цель  — это выяснить соответствие номинального тока аппаратов защиты и сечение проводов измеряемой цепи.

Замер петли фаза-ноль производим на самой удаленной точке измеряемой линии.

Если же проблематично определить самую дальнюю точку линии, то проводим измерение по всем точкам этой линии.

Измеренные величины записываем в блокнот.

Методика измерения петли фаза-ноль. Как провести замер?

 Существует несколько методов измерения:

  • метод падения напряжения в отключенной цепи
  • метод падения напряжения на нагрузочном сопротивлении
  • метод короткого замыкания цепи

Наша электролаборатория использует для измерения петли фаза-ноль электроизмерительный прибор MZC-300 от фирмы Sonel, который работает по методу падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию ГОСТом  50571.16-99 (приложение D1).

Данный метод измерения я считаю более удобным, а главное безопасным. 

Измерение в рабочей цепи А (L1) — N

Измерение в защитной цепи А (L1) — PE

Проверка защиты от замыкания на корпус электрооборудования в системе заземления TN

Проверка защиты от замыкания на корпус электрооборудования в системе заземления TT

Более подробно видах систем заземления читайте в статьях:  TN-C, TN-C-S, TN-S и TT.

Измерение сопротивления петли мы проводим на электроустановке, которая находится под напряжением.

Как пользоваться прибором MZC-300, более подробно, можно узнать в руководстве по эксплуатации данного прибора.

Периодичность проведения измерений

Согласно нормативно-технического документа ПТЭЭП, измерение петли фаза-ноль проводится с определенной периодичностью, установленной системой ППР организации. Система ППР, включающая в себя циклы текущих и капитальных ремонтов электрооборудования,  утверждается техническим руководителем организации.

Для электроустановок во взрывоопасных зонах, не менее 1 раза в 2 года.

При отказе устройств защиты электроустановок должны выполняться внеплановые электрические измерения.

Как сделать заключение?

Выполнив замер петли фаза-ноль по вышеприведенным  схемам, на дисплее прибора отразится величина однофазного тока короткого замыкания.

Это значение сравниваем по время-токовым характеристикам с током срабатывания расцепителя автоматического выключателя или с плавкой вставкой предохранителя, и делаем соответствующее заключение.

Чтобы сделать правильное и верное заключение необходимо внимательно прочитать выдержки из ПТЭЭП и ПУЭ 7 издания. Я их совместил для Вашего удобства в одну картинку.

(для увеличения нажмите на картинку)

Для более наглядного представления, как сделать правильное заключение при измерении ПФО, приведу Вам пример из личного опыта.

Пример:

Производили замер петли фаза-ноль в помещении библиотеки. Измеряемая линия питается от силовой сборки ЩС автоматическим выключателем с номинальным током 16 (А) и характеристикой С (подробнее о всех видах характеристиках).

Как я уже говорил в статье, измерение проводим на самой отдаленной точке этой линии, в нашем случае это розетка, расположенная в самом дальнем углу библиотеки.

Электроснабжение библиотеки выполнено системой заземления TN-C. Поэтому измерение производим в рабочей цепи (фаза — ноль).

Измеренный ток однофазного короткого замыкания, который показал нам прибор, составлял 87 (А).

Внимательно читаем информацию, приведенную на картинке выше.

ЭТО ИНТЕРЕСНО:  Преобразователь частоты как работает

В данном примере воспользуюсь пунктом из ПТЭЭП. Т.е. ток однофазного замыкания должен быть не менее, чем 1,1 * 16 * 10 = 176 (А). А у нас ток получился 87 (А) —  условие не выполняется.

При токе 87 (А) электромагнитная защита автоматического выключателя не сработает, а сработает тепловая защита, выдержка времени которой составит несколько секунд (больше, чем 0,4 секунды — ПУЭ). За это время есть большой риск возникновения воспламенения или пожара электропроводки.

Вывод:

В моем примере условие не удовлетворяет требованиям ПТЭЭП и ПУЭ. Поэтому необходимо:

  • увеличить сечение проводов, измеряемой линии (при увеличении сечения провода уменьшается его сопротивление, а значит и увеличится ток однофазного замыкания, который пройдет по нашим условиям)
  • установить автоматический выключатель с меньшим номинальным током (при уменьшении номинала автомата мы тем самым жертвуем мощностью линии)

Форма протокола измерения петли фаза-ноль

Самым последним этапом является занесение величин измерений в протокол.

(для увеличения нажмите на картинку)

(для увеличения нажмите на картинку)

Источник: https://yato-tools.ru/raznoe/kak-izmerit-petlyu-faza-nol-izmerenie-petli-faza-nol-zametki-elektrika.html

Петля фаза ноль. Для чего проверяют сопротивление петли фаза-ноль

что такое петля фаза ноль простым языком

   Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петля фаза ноль.

Что это такое, и как формируется проверочная схема

   Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).

   Итак,  от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация.

Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень.

Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.

   Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.Что это такое, и как формируется проверочная схема.

измерения петля фаза ноль

   Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.

Как измеряется сеть

   Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:

R=U/I.

   Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:

  • Активная составляющая сопротивления сети.
  • Реактивная, состоящая из емкостной и индуктивной части.

   Что это значит?

   Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:

  • Активное – это потребитель и провода. Это самая большая часть сопротивления.
  • Индуктивное – это сопротивление встроенных обмоток.
  • Емкостное – это сопротивление отдельных элементов.

   Как измерить сопротивление петля фаза ноль

   Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора.

Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой.

Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.

Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.

   Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:

Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.

   Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2). 

   Процесс измерения петля фаза ноль

   Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.

Где провести замер

   Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.

Цель проводимых замеров

   Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.

   Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали.

К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию.

Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.

   Замер сопротивления петля фаза ноль

   Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:

Iкз=Uном/Rп.

   Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.

   Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:

    I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.

  • Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
  • Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Источник: https://powercoup.by/kak-eto-ustroeno/petlya-faza-nol

Измерение петли фаза-ноль

Если в вашем доме или квартире регулярно срабатывают автоматические выключатели на вводах (перед электросчетчиком), и даже увеличение их номинала не дает результата – невозможно, например, одновременно включить стиральную машину и электрический чайник, то вам стоит провести замер полного сопротивления цепи. На языке профессионалов эта процедура называется «измерение сопротивления петли фаза-ноль».

Что такое петля фаза-ноль?

В силовых подстанциях напряжением до 1 тыс. вольт, с которых подается электроэнергия бытовым потребителям, выходные обмотки трехфазного трансформатора соединены звездой – c так называемой глухозаземленной технической нейтралью. По ней, вследствие естественного перекоса фаз, не выходящего за пределы норм эксплуатации электроустановок, может течь ток.

Теперь условно представьте, что вы единственный потребитель на линии и у вас есть только один электроприбор – электрическая лампочка. Один конец подающейся вам фазы подключен к технической нейтрали трансформатора, другой – к центральной клемме (надеемся, что это именно так) электропатрона. Через нить лампы она соединяется с нейтральным проводом.

Так образуется непрерывное кольцо, по которому циркулирует электрический ток. Вот оно и называется петлей фаза-ноль, которая обладает сопротивлением, складывающимся из удельного сопротивления проводников и нити лампы накаливания.

На практике количество элементов, составляющих полное сопротивление цепи, может быть значительно большим. Часть из них является естественным условием нормальной эксплуатации электроустановки. Другие возникают в результате нарушений, которые до поры до времени не приводят к катастрофическим последствиям.

Например, дома у вас могут быть ослаблены скрутки в клеммных коробках. Они способны добавить в общую копилку до сотен Ом! А на уличном столбе треснувший изолятор отдает часть фазы земле или заброшенный мальчишками на провода воздушный змей частично закорачивает электролинию и вызывает едва заметное – на пару вольт, падение напряжения. Вот именно эти нарушения и выявляются измерением петли фаза-ноль.

Почему срабатывают автоматы на вводах

Причины частого и необъяснимого срабатывания автоматов на вводах бывают двух типов:

  1. Внешние, обусловленные нарушениями в работе электролинии.
  2. Внутренние, из-за неисправности электропроводки в доме.

Внешние характеризуются стойким несоответствием норме номинала напряжения. Например, оно у вас постоянно не 220, а 200 вольт. Это сопровождается увеличением силы тока, протекающего по вашей домашней электропроводке. Увеличение номинала автоматического выключателя на входе, например, с 25 до 40 А в этом случае вам ничего не даст, кроме того, что сам автомат будет нагреваться, а при дальнейшем вашем упорствовании может даже эффектно взорваться.

Внутренних причин несколько. Самые распространенные из них:

  • Неплотный контакт в клеммных коробках.
  • Не соответствующее номиналу тока сечение проводов.
  • Уменьшение сопротивления изоляции проводов в результате естественного старения.

Внешне они проявляются нагревом проводников и скруток. Поэтому установка более мощных автоматических выключателей приведет к пожару. Конечно, можно потратить день на то, чтобы руками перещупать все розетки, провода и скрутки в доме. Но, во-первых, это чревато электротравмой. И, во-вторых, слишком субъективно. Измерение даст лучший результат.

Как и чем измерять

Сразу скажем, что замерить сопротивление петли фаза-ноль на внешнем контуре (от силовой подстанции до вводов в дом) могут только лица из оперативно-технического персонала местного РЭС. Вам этого делать категорически нельзя. Во-вторых, это сделать не удастся из-за отсутствия нужных приборов, а если и получится, то вы не сможете воспользоваться полученным значением. Ведь вам не с чем его сравнивать – у вас нет доступа к протоколам испытаний электрической сети.

Дома вы можете сделать это двумя способами:

  1. Использовать сетевое напряжение и прибор с эталонным сопротивлением.
  2. Протестировать схему с помощью внешнего источника напряжения.

Перед началом измерений вам надо определить общую длину электрических проводников и вычислить их удельное сопротивление.

При этом вы должны считать, что их сечение соответствует нормам электробезопасности при пропускании через них тока, сила которого равна номиналу автоматических выключателей на вводе.

После этого рассчитываете сопротивление всех энергопотребителей, для чего делите квадрат напряжения на величину их паспортной мощности. Полученное значение суммируете с удельным сопротивлением проводников.

Измерение прибором с эталонным сопротивлением

В этом случае вы оставляете домашнюю электропроводку подключенной к электрической сети. Находите самую дальнюю от вводных автоматов розетку. Если контуров несколько, то измерение проводятся отдельно для каждого. Ваша цель – установить величину падения напряжения при включении эталонного сопротивления в цепь измерителя.

Если у вас нет специальных приборов для таких измерений, то используйте мультиметр и сопротивление 100 Ом, рассчитанное на работу с напряжением 230 вольт. Установив количество вольт в розетке без нагрузки, подключаете эталонное сопротивление к нейтральной линии и повторяете опыт.

После этого вам надо сравнить расчетное падение напряжения с фактическим, эти значения не должны отличаться более чем на 5–6 вольт. Проведя подобные опыты с каждой розеткой, и сдвигаясь при этом в сторону вводных автоматов, вы найдете проблемную клеммную коробку или участок проводки.

От необходимости проводить вычисления после опытов вас избавят приборы MZC-300 или ИФН-200, они выводят на дисплей значение сопротивления тестируемого участка цепи.

ЭТО ИНТЕРЕСНО:  Какого цвета фаза и ноль

Измерение с внешним источником напряжения

Внешним источником напряжения может стать гальванический мегомметр. Однако при его использовании надо принять меры предосторожности и подготовить электропроводку.

  • Отключить внешнюю сеть.
  • Закоротить выходные клеммы автоматического выключателя на вводах или в ближайшей клеммной коробке.
  • Отключить всех потребителей от розеток, вместо них установить эталонные сопротивления по 100 Ом каждое.
  • Вместо светодиодных и люминесцентных ламп (экономок) установить лампы накаливания.
  • Если есть дифавтоматы (АВДТ) или УЗО, установить между входными и выходными клеммами с маркировкой N перемычки из проводников того же сечения, что и в фазной линии.

Предел измерений мегомметра устанавливается по шкале кОм. Произведите опыт на самой дальней розетке и сравните полученное значение с вычисленной суммой удельного сопротивления проводников, всех эталонных сопротивлений в розетках и ламп в светильниках.

Измерение полного сопротивления цепи фаза-ноль является частью регламента по обслуживанию электрических сетей и электроустановок. Оно дает наиболее точную картину их состояния.

Поэтому результаты протоколируются и являются основанием для проведения ремонта или нахождения виновных в случае чрезвычайных ситуаций. В бытовых условиях оно применяется редко. Однако вы можете провести его и самостоятельно. При этом надо строго соблюдать все меры электробезопасности.

Источник: https://electriktop.ru/provodka/izmerenie-petli-faza-nol.html

Расчет петли фаза нуль и выбор автомата — Все об электричестве

Раздел: Релейная защита и автоматика

В данной статье речь пойдет об определении величины тока однофазного тока к.з. в сетях 0,4 кВ с глухозаземленной нейтралью.

Данный вопрос очень актуален, так как электрические сети 0,4 кВ, являются наиболее распространёнными.

В настоящее время существует два метода расчета однофазного КЗ – точный и приближенный и оба метода основаны на методе симметричных составляющих.

1. Точный метод определения тока однофазного КЗ

1.1 Точный метод определения тока однофазного КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:

Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.

К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.

2. Приближенный метод определения тока однофазного КЗ

2.1 Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы (Хс < 0,1Хт), рассчитывается по формуле [Л1, с 4 и Л3, с 39]:

где: • Uф – фазное напряжение сети, В; • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом; • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазного кз определяется по формуле 2-26 [ Л3, с 39]:

2.3 Значение Z∑ определяется по таблице 2.9 или можно определить по формуле 2-25 [ Л3, с 39]:

где: • х1т и r1т; х2т и r2т; х0т и r0т — индуктивное и активное сопротивления трансформатора токам прямой, обратной и нулевой последовательности, мОм. Принимаются по таблице 2.4 [Л3, с 29].

Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].

Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.

2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 [Л3, с 39]:

2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:

где: • Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] или по таблицам [Л2], мОм/м; • l – длина участка, м.

Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно [Л3, с 41,42].

Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей [Л1, с 6, 14].

Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы +65(+80) С [Л1, с 15, 16].

На практике согласно [Л1, с 5] рекомендуется использовать приближенный метод определения тока однофазного КЗ. При таком методе, допустимая погрешность в расчете тока однофазного КЗ при неточных исходных данных в среднем равна – 10% в сторону запаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления используется 4-я жила либо оболочка кабеля; 10-12% — при использовании стальных труб для зануления электропроводки.

Из выше изложенного, следует, что при использовании данного метода, создаётся не который запас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.

Литература:

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г. 2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ. 3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

11206

Статья создана: 28.11.2017

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Источник: https://contur-sb.com/raschet-petli-faza-nul-i-vybor-avtomata/

Автоматический выключатель и сопротивление петли фаза ноль бытовой проводки

Электрическая безопасность жилых помещений по-прежнему остается актуальной. Ей необходимо уделять постоянное внимание.

Однако не все владельцы квартир квалифицированно занимаются этим, зачастую просто не представляя специфику вопроса.

Часто можно встретить случаи, когда приобретенный в магазине автомат сразу установлен в качестве основной защиты электрической проводки и введен в работу без необходимых проверок.

В тексте статьи приводятся советы домашнему мастеру по выбору автоматического выключателя для защиты бытовой сети и способам его проверок применительно к конкретно выполненной электропроводке с поясняющими картинками, схемами и видеороликом.

Они призваны помочь начинающему электрику избежать типичные ошибки монтажа, наладки и эксплуатации защитных устройств, сделать бытовую электрическую проводку надежной и безопасной.

Особенности работы автоматического выключателя

Конструкция устройства и принципы работы этой защиты изложены отдельной статьей. Рекомендую ознакомиться с ней.

Автоматический выключатель создан для оперативного снятия напряжения со схемы питания в случае ее перегрузки или возникновения короткого замыкания.

Режим перегрузок

Первоначальную защиту электрической схемы раньше выполняли с помощью предохранителя, плавкая вставка которого просто перегорела и разрывала электрическую цепь под тепловым воздействием аварийного тока.

Эта функция осталась в конструкции автоматического выключателя. В нем она реализована тепловым расцепителем и выполняет защиту от перегрузок, снимая напряжение с защищаемого участка с выдержкой времени. Это необходимо для исключения частых отключений при возникновении переходных процессов от различных коммутаций схемы.

Определять зону работы теплового расцепителя, как и его второй составляющей — электромагнита отключения удобно с помощью времятоковой характеристики, указывающей зависимость времени срабатывания от величины аварийного тока, проходящего по контактам биметаллической пластины.

Режим коротких замыканий

При его возникновении к схеме прикладываются максимально возможные мощности, энергия которых способна расплавить металлические провода или вызвать пожар. Поэтому с целью сохранения оборудования необходимо выполнять очень быстрое снятие питания за тысячные доли секунды.

Это задача второй составляющей защиты автоматического выключателя: токовой отсечки, которую выполняет электромагнитный расцепитель.

Обе защиты автомата работают автономно, не зависят друг от друга, имеют собственные уставки и настройки. Однако они подобраны под конкретную величину рабочего номинального тока, призваны обеспечивать его нормальное прохождение без излишних, ложных отключений.

Принцип выбора автоматического выключателя

При определении его технических возможностей учитывают:

  • величину номинального тока в сети, на которую существенное влияние оказывает состояние электропроводки и подключаемые к ней нагрузки;
  • допустимый режим перегрузок;
  • отключающие способности возможных аварийных режимов.

Алгоритм выбора автоматического выключателя по номинальному току с учетом особенностей схемы электроснабжения показан на диаграмме.

Она позволяет сделать предварительный расчет необходимых параметров автоматического выключателя, подобрать его защитные характеристики.

Для проведения подобного расчета также можно воспользоваться компьютерной программой Электрик 7-8.

Что такое петля фаза ноль

В любой бытовой схеме электрический ток совершает работу за счет того, что электродвижущая сила вторичной обмотки трансформаторной подстанции замыкается на цепочку, состоящую из последовательно подключенных электрических сопротивлений:

  • питающих шин 0,4кВ;
  • жил силовых кабелей и проводов;
  • включенных контактов защитных устройств;
  • контактных соединений коммутационных аппаратов и транспортных магистралей.

Всю эту собранную цепочку на языке электриков принято называть петлей фаза ноль. Ее техническое состояние, качество монтажа, эксплуатационные режимы и последующее обслуживание могут увеличить величину электрического сопротивления. Оно в большинстве случаев практически не оказывает значительного влияния на обычный режим электроснабжения.

Бытовые потребители будут нормально функционировать, а ток, проходя от обмотки трансформаторной подстанции по всем контактам, проводам и кабелям, совершает полезную работу.

Как бытовая проводка влияет на работу автоматического выключателя

Сопротивление петли фаза ноль может существенно сказаться на работе автоматических защит в аварийной ситуации: оно способно их сильно загрубить. Поэтому оно требует периодического измерения, учета и корректировок.

Увеличение сопротивления питающей цепочки может произойти:

  • в результате ослабления резьбовых зажимов на контактных соединениях;
  • ухудшения усилий сжатия пружинных контактов;
  • подключения дополнительных участков электроснабжения;
  • подгорания или засорения подвижных контактов коммутационных аппаратов;
  • по другим причинам.

Все эти факторы необходимо заранее, до момента возникновения аварии, выявить и своевременно устранить.

Еще один метод безопасного предотвращения последствий коротких замыканий — учет корректировок измененного электрического сопротивления этой петли и подбор по ним характеристик автоматического выключателя. Но для его обеспечения необходимо знать эту величину.

Как замеряется сопротивление петли фаза ноль

Работа состоит из трех этапов:

  1. подготовительная часть;
  2. электрические измерения;
  3. анализ полученных данных и принятие решения по ним.

Подготовительный этап

Общепринято до начала проведения электрических замеров выполнять внутренний осмотр оборудования, проверять состояние контактов, прожимать резьбовые соединения. Любые выявленные дефекты, включая соединения проводов и кабелей, должны своевременно устраняться: иначе просто теряется смысл всей последующей работы.

Особое внимание обращайте на механическое состояние каждой жилы провода в месте контактного соединения. Среди электромонтажников встречаются работники, которые пережимают ее, деформируя металл и ослабляя его прочность. Со временем в этом месте создается излишний нагрев, а затем — разрыв провода.

Для измерения выбирается наиболее удаленная по проводке розетка. Ее тоже необходимо осмотреть и определить правильность схемы ее подключения к бытовой сети.

Основные принципы замера

Оценить качество настройки и работы автоматического выключателя можно двумя способами:

  1. прямым созданием короткого замыкания в розетке с замером времени его отключения защитой;
  2. косвенными методами.

Первый метод измерения является самым достоверным, эффективным, но наиболее опасным. Любые дефекты в электрической проводке или ошибки в выборе модели автоматического выключателя могут привести к возникновению опасных режимов, включая пожар. Поэтому на практике выполняют замер косвенным способом.

Для его проведения используют различные электронные приборы, работающие по принципу измерения падения напряжения на встроенном в корпус нагрузочном калиброванном сопротивлении.

При подключении измерителя в розетку вначале фиксируется напряжение холостого хода на ее контактах, а затем кратковременно коммутируется цепь через встроенный резистор. При этом определяется величина тока через него и разность приложенных потенциалов. По полученным данным автоматически осуществляются вычисления, а их результат высвечивается на табло.

На картинке приведен пример подобного измерения петли фаза ноль для системы заземления TN-S, когда путь тока создается по цепочке рабочего ноля. Однако не стоит забывать о проверке качества монтажа РЕ проводника. Для этого прибор подключают между ним и фазой, а технология измерения остается прежней.

В схеме заземления зданий TN-C замер сопротивления петли фаза ноль выполняют только между фазой и PEN проводником, а в системах заземления ТТ и TN-C-S, как и в предыдущем случае.

ЭТО ИНТЕРЕСНО:  Как определить кпд трансформатора

Современные электронные измерители предоставляют сведения не только о полном сопротивлении измеренной петли, но и об активной и реактивной составляющих с отображением направлений векторов тока и напряжения, участвующих в замере.

Анализ результатов измерения

Полученные показания измерителя сопротивления петли фаза ноль используются чисто в практических целях. Они предназначены для выполнения одного из последующих действий:

  1. возможности продолжать эксплуатировать электрическую проводку и ее защиты в технически исправном состоянии без каких-либо переделок;
  2. необходимости усовершенствования проводимости проблемных участков электропроводки;
  3. срочного принятия мер по настройке защит автоматического выключателя или его замены.

Первый вывод

Его делают, когда:

  1. результат замера соответствует нормативам;
  2. ток рассчитанного короткого замыкания лежит в зоне срабатывания токовой отсечки автоматического выключателя.

Определить ток короткого замыкания в петле фаза ноль позволяет простое действие: деление напряжения холостого хода в розетке на полученный замером результат сопротивления. Здесь действует общеизвестный закон Ома.

Полученную величину необходимо сравнить с зоной срабатывания автоматического выключателя. Ее определяют по величине номинального тока с обеспечением запаса 10% по требованию ПУЭ и действующей характеристике электромагнитного расцепителя (в бытовой проводке применяют автоматический выключатель типов “B”, “C” или “D”.)

Модернизация проблемных мест

Сравнение двух результатов измерения сопротивления петли относительно рабочего ноля и РЕ проводника позволяет сделать вывод о качестве монтажа этих отдельных цепочек.

РЕ проводник выполняют цельной конструкцией без возможности создания разрывов. Он обладает повышенной проводимостью. Но на результате конечного измерения его цепи в схемах TN-C-S и ТТ может сказаться величина сопротивления контура заземления. Ее тоже необходимо измерить и учесть, но это отдельная тема.

Сопротивление цепочки рабочего нуля может быть чуть выше: в него входят контакты коммутационных аппаратов, отдельные провода и кабели, что учитывается при анализе.

Вывод о непригодности автоматического выключателя

К нему можно прийти, если зона отключения токовой отсечки электромагнитом расположена выше рассчитанного тока короткого замыкания. В этом случае сработают только резервные защиты теплового расцепителя, но они обладают задержкой по времени, что не приемлемо для мгновенного отключения. Такой автоматический выключатель требует замены.

Таким образом, измерение сопротивление петли фаза ноль имеет чисто практическое значение и производится для корректировки электрических параметров схемы электропроводки, уточнения правильности работы, встроенных в нее защит.

Заключительный вывод

Периодическое проведение этой операции обеспечивает электрическую безопасность жилых помещений, надежность электроснабжения, оперативное устранение возможных аварийных ситуаций.

Замер сопротивления петли фаза ноль выполняют аккредитованные специалисты электротехнических лабораторий. Инструментальной базы и навыков домашнего мастера для выполнения подобной работы явно недостаточно.

Для закрепления материала рекомендую посмотреть видеоролик владельца Sitgreentv об измерении петли фаза ноль.

Если у вас остались вопросы по этой теме, то задавайте их в комментариях. Сейчас вам удобно поделиться этим материалом с друзьями в соц сетях.

Источник: https://housediz.ru/avtomaticheskij-vyklyuchatel-i-soprotivlenie-petli-faza-nol-bytovoj-provodki/

Что такое петля фаза-ноль простым языком – методика проведения измерения

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети.

В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль.

Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Источник: https://odinelectric.ru/elektrosnabzhenie/chto-takoe-petlya-faza-nol

Замер полного сопротивления цепи фаза-нуль: существующие методики расчёта, используемые приборы контроля цепи

Представить себе жизнь современного человека без электричества и разнообразных электроприборов попросту невозможно. Сборку различных агрегатов и электрических схем можно выполнить самостоятельно. Необходимо лишь в точности следовать имеющейся документации, а также проводить замер полного сопротивления цепи фаза-ноль, что позволит обеспечить беспроблемность эксплуатации электрооборудования и его полную безопасность.

Электрический ток имеет разрушительную силу, поэтому опасен для оборудования, материальных ценностей и живых организмов. Для защиты от поражения высоким напряжением в прошлом использовались различные изоляции из диэлектриков и проводились замеры параметров работы электролиний.

Сегодня при эксплуатации разнообразных электроустройств используются всевозможные устройства защитного отключения и автоматические выключатели, которые обеспечивают полную безопасность эксплуатации оборудования. Также применяются защитные меры, в том числе разделение рабочего нуля и заземление электротехники.

В процессе эксплуатации параметры электросетей и используемого оборудования может изменяться, что объясняется особенностями работы техники и износом силовых линий.

Потребуется на регулярной основе выполнять проверку соответствия текущих характеристик требуемым нормативам по безопасности электрических сетей. Только так можно будет обеспечить полную беспроблемность эксплуатации техники, исключив одновременно поражение электротоком.

Выполняются следующие замеры и контроль:

  • Проверка ДИФ-автоматов и УЗО.
  • Испытание током нагрузки автоматических выключателей.
  • Замер сопротивления цепи.
  • Измерение цепи фазы.
  • Замер сопротивления изоляции.
  • Испытание другого защитного технологического оборудования.

Подобные работы не представляют особой сложности, поэтому, имея начальные навыки в электротехнике и используя соответствующее оборудование, можно все замеры выполнить самостоятельно, что обеспечивает правильность работы техники и экономит расходы домовладельца на обращение к профессиональным специалистам.

Контроль параметров электросети выполняется на постоянной основе, вне зависимости от типа приборов и режимов их эксплуатации.

Для чего осуществляют измерение

Основной задачей выполнения измерения петли фазы-ноль является защита кабелей и электрооборудования от перегрузок, которые могут возникать в процессе эксплуатации техники. Высокое сопротивление электрокабелей приводит к перегреву линии, что, в конечном счёте, может спровоцировать короткое замыкание и пожар. На показатели фазы влияют различные параметры, в том числе окружающая среда, характеристики воздушной линии, качество кабеля.

При выполнении замеров в обязательном порядке включают контакты имеющейся автоматической защиты, контакторы, рубильники, проводники напряжения к электроустановкам. В качестве таких проводников используются силовые кабели, которые подают в фазу-ноль к запитываемой технике.

Полное сопротивление фазы-ноль рассчитывается с помощью специальных формул, которые учитывают материал и сечение проводников, протяжённость линии и ряд других параметров. Получить максимально точные результаты измерений можно лишь обследовав физическую цепь, к которой подключены различные электроустройства.

При наличии в электроцепи устройства защитного отключения его при выполнении измерений в обязательном порядке отключают, что позволяет получить максимально точные данные. Используемые УЗО при прохождении больших токов обесточивают сеть, поэтому получить достоверные результаты будет невозможно.

Существующие методики расчетов

Измерение фазы-ноль может выполняться с помощью различных методик. В промышленности и с электрооборудованием, где требуется максимально возможная точность расчетов, используются специальные приборы, которые имеют минимальную погрешность.

Также в таком случае используются соответствующие формулы, которые учитывают различные факторы, влияющие на качество полученных данных.

В бытовых условиях будет достаточно использование простейших измерителей, что поможет получить необходимую информацию.

Наибольшее распространение получили следующие методики измерения петли фаза-ноль:

  • Метод падения напряжения.
  • Метод короткого замыкания в цепи.
  • Использование амперметра-вольтметра.

При использовании метода снижения напряжения все замеры проводят при отключении нагрузки, после чего в цепь включают нагрузочное сопротивление с заранее рассчитанной величиной. С помощью специального устройства измеряется величина нагрузки в цепи, после чего полученные результаты сверяются с эталоном, проводятся соответствующие расчеты, которые сравниваются с нормативными данными.

Метод коротких замыканий в цепи подразумевает подключение к сети специального прибора, создающего искусственные короткие замыкания в необходимой потребителю точке. С использованием специальных устройств определяют величину тока короткого замыкания, а также время срабатывания защиты. Полученные данные сверяются с нормативными показателями, после чего рассчитывается соответствие электроцепи действующим нормативам и требованиям.

При использовании метода амперметра-вольтметра снимают с цепи питающее напряжение, после чего подключают к сети понижающий трансформатор, замыкают фазный провод действующей электроустановки. Полученные данные обрабатывают, и, используя специальные формулы, определяют необходимые параметры.

Наибольшее распространение на сегодняшний день получила методика измерения петли фаза-нуль методом подключения нагрузочного сопротивления.

Такой способ сочетает простоту использования, максимальную точность, поэтому он применяется как в быту, так и при необходимости получения сверхточных данных. При необходимости контроля показателя фазы в одном здании сопротивление нагрузки подключают в самом дальнем доступном участке цепи.

Подключение приборов осуществляется к предварительно защищенным контактам, что позволит избежать падения напряжения и ослабления силы тока.

Первоначальные измерения выполняют без подключения нагрузки, после чего с помощью амперметра производится контроль с точной нагрузкой. По результатам полученных данных рассчитывают сопротивление петли фаза-ноль.

Также имеется возможность использования специальных устройств, которые с помощью соответствующей шкалы позволяют получить нужное сопротивление, обеспечивая максимально возможную точность рассчитанных данных.

При измерении этого показателя рассчитанных данных хватает для определения качества электросети в быту. В промышленности при выполнении соответствующего контроля составляется протокол, куда заносят все полученные величины. В таком протоколе выполняют соответствующие расчеты, после чего бумага подписывается инженерами и прикладывается к общей нормативно-технической документации.

Используемые высокоточные приборы

Для измерений и расчетов фазы могут применяться как стандартные амперметры и вольтметры, использование которых не представляет сложности, так и узкоспециализированные приборы. Последние обеспечивают максимально возможную точность полученных данных по параметрам электросети. Наибольшее распространение получили следующие измерительные приборы.

M417 — это надежный проверенный годами прибор, разработанный специально для измерения показателя сопротивления в цепи фазы-ноль. Одной из особенностей этого прибора является возможность проведения всей работы без снятия питания, что существенно упрощает контроль за состоянием электросети.

Этот аппарат использует метод падения напряжения, обеспечивает максимальную возможную точность полученных расчетов. Допускается использование М417 в цепи с глухозаземленной нейтралью и напряжением в 380 Вольт.

Единственный недостаток использования этого приспособления — это необходимость калибровки устройства перед началом работы.

MZC-300 — измерительное устройство нового поколения, которое построено на базе мощного микропроцессора. Приборы используют метод падения напряжения с подключением сопротивления в 10 Ом.

MZC-300 обеспечивает время замера на уровне 0,03 секунды и может использоваться в сетях с напряжением 180−250 Вольт. Прибор для обеспечения точности данных подключают в дальней точке сети, после чего нажимают кнопку Старт, а полученный результат выводится на небольшой цифровой дисплей.

Все расчёты выполняет микропроцессор, что существенно упрощает контроль фазы.

ИФН-200 — многофункциональный прибор, позволяющий выполнять измерения фазы. Работает устройство с напряжением 180−250 Вольт.

Имеются соответствующие разъемы для упрощения подключения к сети, а использование этого приспособления не представляет какой-либо сложности.

Ограничение на измерении в цепи составляет 1 кОм, при превышении которого срабатывает защита и отключается устройство, предотвращая его перегрузку. Выполнен прибор на базе мощного микропроцессора и имеет встроенную память на 35 последних вычислений.

Источник: https://220v.guru/elementy-elektriki/provodka/metodiki-zamera-polnogo-soprotivleniya-cepi-faza-nol.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как проверить лампу проектора

Закрыть