Как определить кпд трансформатора

13 Кпд трансформаторов

как определить кпд трансформатора

KПДтрансформатора называется отношениеактивной мощно­сти вторичной обмоткик активной мощности первичной обмотки.У силовых трансформаторов небольшоймощности КПД ~ 0,95, а у трансформаторовбольшой мощности (несколько Мегаволь-ампер)доходит до 0,995.

KПДтрансформаторов находится по формуле:

гдеΣP- сумма потерь в трансформаторе: а)магнитные потери, вызванные прохождениемпотока 2/3 сердечник; б) электрическиепотери, возникающие при протекании токапо обмоткам. Так как Ф=соnst,при U1= constи изменении нагрузки от холостого ходадо номинальной, то магнитные потери вэтом диапазоне постоянны и равны потерямХ.Х.Р. Электрические потери (основные,добавоч­ные) пропорциональны I2.Их выражают 2/3 потери К.З. полученныепри номинальном токе:

U2≈U2ном=const,поэтому

гдеSном= m2∙ U2ном∙ I2ном- номинальная мощность трансформатора

т —числофаз.

из (12.1) и (12.2) следует:

Максимум КПД можноопределить:

ОпределениеКПД при максимальной нагрузке βт:

Усовременных масляных трансформаторовв отношение ,что дает βт= 0,4 ÷ 0,5. Характерной особенностьюзависимости η= f(β),является малое изменение их КПД призначи­тельных колебаниях нагрузки взоне β> βт.На КПД трансформато­ра оказываетвлияние характер нагрузки. С увеличениемcosφ2,КПД возрастает, так как возрастаетполезная активная мощность.

14 Регулирование вторичного напряжения трансформатора

Приэксплуатации трансформаторов возникаетнеобходимость поддержания на определенномуровне вторичного напряжения при самомтрансформаторе, так как ,тоесть дляизмененииего вследствие больших падений напряженийв сети и регулирования вторичногонапряжения нужно изменить число вит­кову одной из обмоток — для этой цели обмоткавыполняется с ря­дом ответвлений,переключение производятся переключателями,встроенными в трансформатор. Существуетдва вида переключателя ответвленийобмоток трансформаторов:

  1. Переключение ответвлений обмотки трансформатора безвозбуждения (ПБВ) (отключение всех его обмоток от сети)

  2. Переключение ответвлений обмотки без перерыва нагрузки(РПН)

ПБВ: в силовыхтрансформаторах переключение ответвленийнапряжение регулируется на ±5% отноминального. В таких транс­форматорахбольшой и средней мощности имеется пятьответвле­ний: +5, +2,5, -2,5, — 5%. Обычноответвления выполняются у обмот­киВН.

РПН: позволяютрегулировать напряжение на ±9 — ±16%.Ре­гулирование осуществляется вшесть-девять ступеней.

15 Параллельная работа трансформаторов

Под параллельнойработай трансформаторов понимаетсятакая работа, когда их вторичные обмоткиподключены к общей нагрузке, а первичныеобмотки получают питание от одной сети.

а) Однофазные

б) Трехфазные

Рисунок 14.1 -Параллельное включение трансформаторов

Параллельноевключение трансформаторов используется:

  1. При сезонных и суточных колебаний нагрузки.

  2. Для обеспечения резервирования в электроснабжении приаварии или ремонте трансформатора.

  3. Если передаваемая мощность превышает мощность, на которую можно выполнить трансформатор.

При параллельнойработе трансформаторов следуетстремить­ся к тому, чтобы каждый изних был нагружен токами пропорцио­нальнымиих номинальным мощностям.

В этомслучае Рmахвсех трансформаторов м.б. равна суммено­минальных мощностей. Для этогонеобходимо, чтобы трансформа­торывключаемые в параллельную работу имелиравные первичные и вторичные номинальныенапряжения, а следовательно одинаковыекоэффициенты трансформации, одинаковыегруппы соединения об­моток, одинаковыенапряжения К.З. Если эти условия невыполня­ются, то нарушается желаемаянагрузка параллельно включенных

трансформаторов.Согласно ГОСТУ различие в коэффициентахтрансформации допускается не более чемна 0,5% их среднего зна­чения, различиев напряжениях К.З. не более ±10% среднегозначе­ния.

Число включенныхна параллельную работу трансформаторовможно выбирать, исходя из минимумасуммарных потерь — в этом случае работатрансформаторов будет наиболееэкономичной.

Источник: https://studfile.net/preview/2892396/page:8/

Кпд – коэффициент полезного действия трансформатора

как определить кпд трансформатора

КПД – коэффициент полезного действия, одна из важнейших характеристик, определяющая эффективность работы устройства, относящее к трансформаторам. Рассмотрим особенности определения указанного показателя трансформатора с учётом принципа работы, конструкции данного электрооборудования и факторов, влияющих на эффективность эксплуатации.

Общие сведения о трансформаторах

Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.

Аппарат состоит из следующих основных элементов:

  • первичной и вторичной обмоток;
  • сердечника, вокруг которого навиты обмотки.

Принцип работы трансформатора

Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.

Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

Также читайте:  Назначение силикагеля в трансформаторах

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Трансформатор, в отличие от электрических машин, практически не допускает механических потерь энергии, поскольку не включает движущихся узлов. Незначительный расход энергии возникает за счёт температурного нагрева устройства.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

в которой:

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

в которой:

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

Также читайте:  Регулирования напряжения под нагрузкой — РПН трансформатора

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14): Открыть файл

Источник: https://ofaze.ru/teoriya/kpd-transformatora

Трасформаторы силовые, напряжения, тока. Потери и КПД трансформатора

как определить кпд трансформатора

Трансформатор — это электромагнитный статический преобразователь с двумя или более неподвижными обмотками, которые превращают параметры переменного тока: напряжение, ток, частоту, количество фаз. Возможно также использование трансформаторов для преобразования синусоидального переменного тока в несинусоидальный.

[adsense_id=»1″]

Преимущественное использование в электрических устройствах получили силовые трансформаторы, преобразующие напряжение переменного тока при неизменной частоте. Трансформаторы преобразования не только напряжения переменного тока, но и для частоты, количества фаз и т.д.

называют трансформаторными устройствами специального назначения.

Силовые трансформаторы широко используются в энергосистемах при передаче электроэнергии от электростанции к потребителям, а также в различных электроустановках для получения напряжения требуемой величины.

В этой главе рассматриваются силовые трансформаторы (для сокращения мы их будем называть трансформаторами) небольшой мощности (не более нескольких киловольт-ампер), получившие наибольшее применение в блоках электропитания устройств автоматики, вычислительной техники, в измерительных приборах, связи.

Трансформаторы делятся, в зависимости от:

— Количества фаз преобразовательной напряжения на однофазные и многофазные (как правило трехфазные);

— Количества обмоток, принадлежащих одной фазе трансформирующей напряжения на двохобмоточни и многообмоточные;

— Метода охлаждения, на сухие (с воздушным охлаждением) и масляные (погружены в металлический объем, заполненный трансформаторным маслом).

Рис.2.1.1. Электромагнитная схема однофазного двохобмоточного трансформатора

Рассмотрим однофазный двух обмоточный трансформатор. Его принцип действия основан на явлении электромагнитной индукции. Однофазный двух обмоточный трансформатор состоит из замкнутого магнитопровода и двух обмоток.

Одна из обмоток — первичная — подключается к источнику переменного тока с напряжением U 1 и частотой f (рис.2.1.1). Переменный ток, проходящий по виткам этой обмотки, создает МРС, которая приводит в магнитопроводе трансформатора переменный магнитный поток Ф.

Запершись в магнитопроводе, этот поток сцепляется с витками обмоток трансформатора и индуцируется соответственно в первичной w 1 и вторичной w 2 обмотках ЭДС:

е 1 = w 1 dФ / dt; (2.1.1)

е 2 = w 2 dФ / dt. (2.1.2)

Если магнитный поток трансформатора — синусоидальная функция времени Ф = Ф max sinwt, что меняется с угловой частотой w = 2pf, то после подстановки его в (2.1.1) и (2.1.2), дифференцировки и преобразования, получим истинное значение ЭДС первичной и вторичной обмоток:

Е 1 = 4,44 fw 1 Ф max; (2.1.3)

Е 2 = 4,44 fw 2 Ф max. (2.1.4)

В режиме холостого хода трансформатора, когда ток во вторичной обмотке отсутствует (обмотка разомкнута), напряжение на выводах вторичной обмотки равно ЭДС вторичной обмотки Е 2 = U 20, а ЭДС первичной обмотки настолько незначительно отличается от первичного напряжения, что этой разницей можно пренебречь: Е 1 »U 1.[adsense_id=»1″]

Отношение ЭДС обмотки высшего напряжения (ВН) до ЭДС обмотки низкого напряжения (НН) называют коэффициентом трансформации k. Для режима холостого хода трансформатора отношение указанных ЭДС практически равна отношению напряжений:

k = Е 1 / Е 2 = w 1 / w 2 »U 1 / U 20. (2.1.5)

Если w 2w 1 и U 2> U 1, то трансформатор называется повышающим. Один и тот же трансформатор в зависимости от того, к какой из обмоток подводится напряжение, может быть понижающим или повышающим.

Если на выводы вторичной обмотки трансформатора подключить нагрузку сопротивлением Z н, то в обмотке появится ток нагрузки I 2. При этом мощность на выходе трансформатора определяется произведением вторичного напряжения U 2 на ток нагрузки I 2. С некоторым приближением можно принять мощность на входе и выходе трансформатора одинаковыми, то есть U 1 I 1 »U 2 I 2. Из этого следует, что отношение токов в обмотках трансформатора обратно пропорционально отношению напряжений:

I 1 / I 2 »U 2 / U 1″ 1 / k. (2.1.6)

Таким образом, ток в обмотке низшего напряжения больше тока в обмотке высокого напряжения в k раз.

Если на выводе вторичной обмотки трансформатора подключить нагрузку сопротивлением r н, то, так как мощности на входе Р 1 = и 1 2 r н ¢ и выходе Р 2 = И 2 февраля r н трансформатора примерно одинаковые, из уравнения

ЭТО ИНТЕРЕСНО:  Как подобрать частотный преобразователь

И 1 2 r н ¢ »И 2 r н (2.1.7)

определим сопротивление нагрузки, измеренное на выводах первичной обмотки:

r н ¢ »r н и 2 2 / I 1 2» r н k 2, (2.1.8)

т.е. он изменится в k 2 раз по сравнению с сопротивлением r н.

Это свойство трансформаторов используется в межкаскадных трансформаторах для согласования входного сопротивления какого-либо каскада (блока) с выходным сопротивлением предыдущего каскада (блока).

Трансформатор является аппаратом переменного тока

Если первичную обмотку трансформатора включить в сеть постоянного тока, то магнитный поток в магнитопроводе этого трансформатора окажется постоянным как по величине, так и по направлению, т.е. dФ / dt = 0.

Такой поток не будет индуцировать ЭДС в обмотках трансформатора выключит передачу электроэнергии по первичной сети во вторичную.

Кроме этого, отсутствие ЭДС в первичной обмотке трансформатора приведет к возникновению в ней тока недопустимо большой величины, следствием чего будет выход из строя этого трансформатора.
[adsense_id=»1″]

Трансформаторы. Потери и КПД трансформатора

В процессе работы трансформатора под нагрузкой часть активной мощности Р 1, поступает в первичную обмотку из сети, рассеивается в трансформаторе на покрытие потерь. В результате активная мощность Р 2, поступающей в нагрузку, оказывается меньше мощности Р 1 на величину суммарных потерь в трансформаторе åР:

P 1 = P 2 + åP

В трансформаторе существует два вида потерь — магнитные и электрические.

Магнитные потери Р м в стальном магнитопроводе, по которому замыкается магнитный поток Ф max , Состоят из расходов на гизтерезис Р г, вихревые токи Р вх:

Р г = Р г + Р вх. (2.1.23)

Магнитные потери прямо пропорциональны массе магнитопровода и квадрату магнитной индукции в нем. Они также зависят от свойств стали, из которой изготовлен магнитопровод. Уменьшению потерь на гизтерезис способствует изготовления магнитопровода из ферромагнитных материалов (электротехнической стали), владеющие небольшим коерцетивною силой (узкой петлей гизтерезису).

Для уменьшения потерь на вихревые токи магнитопровод изготавливают шихтованной (из тонких стальных пластин, изолированных друг от друга тонким слоем лака или оксидной пленки) или витым из стальной ленты. Магнитные потери зависят также и от частоты переменного тока с повышением частоты f магнитные потери повышаются за счет потерь на гизтерезис Р г и вихревые токи Р вх.

Ранее было установлено, что главный магнитный поток в магнитопроводе не зависит от нагрузки трансформатора [см.. (2.1.17)], поэтому при изменениях нагрузки магнитные потери остаются практически неизменными.

Электрические потери — это потери в обмотках трансформатора обусловлены нагревом обмоток токами, проходящими по ним.

Р е = Р е 1 + Р е 2 = и 1 2 r 1 + I 2 февраля r 2. (2.1.24)

Электрические потери являются переменными, так как их величина пропорциональна квадрату тока в обмотках. Электрические потери при любом токе нагрузки и 2 трансформатора, Вт,

Р е = Р е. Ном b 2, (2.1.25)

где Р е.ном — электрические потери при номинальном токе нагрузки; b = I 2 / И 2ном — коэффициент нагрузки, характеризует степень нагрузки трансформатора.

Коэффициент полезного действия (КПД) трансформатора представляет собой отношение активных мощностей на его выходе Р 2 и входе Р 1:

h = P 2 / P 1 = P 2 / (P 2 + P м + Р е). (2.1.26)

Активная мощность на выходе трансформатора, Вт,

Р 2 = S ном b cos j 2, (2.1.27)

где S ном — номинальная мощность трансформатора, В × А; cos j 2 — коэффициент мощности нагрузки.

Учитывая (2.1.25), (2.1.26) и (2.1.27), получим формулу КПД трансформатора, удобную для практических расчетов:

h = (S ном b сos j 2) / (S ном b сos j 2 + P м + Р е.ном b 2). (2.1.28)

Рис.2.1.4. Зависимость h = f (b) при cosj 2 = 1 (график 1) и cosj 2

Таким образом, КПД трансформаторов зависит от величины нагрузки b и от ее характера соs j 2. Графически эта зависимость показана на рис.2.1.4. Максимальное значение КПД h max соответствует нагрузке b ¢, при котором электрические потери равны магнитным (Р е.ном b ¢ 2 = Р м).[adsense_id=»1″]

Номинальное значение КПД h ном тем выше, чем больше номинальная мощность трансформатора S ном.

Например,

h ном = 0,70 ¸ 0,85 при S ном £ 100 В × А

и

h ном = 0,90 ¸ 0,95 при S ном £ 10 k В × А.

В более мощных трансформаторов КПД может достигать h ном = 0,98 ¸ 0.99.

2.1.5. Исследование холостого хода и короткого замыкания

Исследование холостого хода проводят в следующей последовательности: первичную обмотку включают в источник на номинальное напряжение, а вторичную обмотку оставляют разомкнутой. При этом ток в первичной обмотке I 0, а во вторичной обмотке I 2 = 0 (рис.2.1.5, а).

Рис.2.1.5. Схемы включения однофазных трансформаторов при опытах

холостого хода (а) и короткого замыкания (б)

Амперметр А в первичной цепи позволяет определить ток холостого хода I 0, который принято измерять в процентах от номинального тока и 1ном в первичной обмотке:

и 0 = (I 0 / I 1ном) 100. (2.1.29)

В трансформаторах большой и средней мощности и 0 = (2 ¸ 10)%, а в трансформаторах малой мощности (менее 200-300 В × А) может достигать 40% и более.

Ток холостого хода I 0 вместе с реактивной составляющей , которая приводит в магнитопроводе главный магнитный поток, имеет активную составляющую и 0на, обусловленная магнитными потерями в магнитопроводе трансформатора. Использование качественных электротехнических сталей с небольшими удельными потерями способствует уменьшению активной составляющей тока холостого хода до значения, не превышает 10%, т.е. И 0а £ 0,1 и 0. Результирующий ток холостого хода, А.

Если ток холостого хода I 0, полученный опытным путем, намного превышает значение, указанное в каталоге на исследуемый тип трансформатора, то это свидетельствует о неисправности трансформатора: наличие короткозамкнутых витков в обмотках, нарушение электрической изоляции между некоторыми пластинами (полосами) магнитопровода.

При исследовании холостого хода U 20 = Е 2 и U 1 »E 1, поэтому, используя показатели вольтметров V 1 и V 2, можно с необходимой точностью определить коэффициент трансформации k = U 1 / U 20.

Ваттметром W в первичной цепи трансформатора измеряют мощность Р 0, используется трансформатором в режиме холостого хода. В трансформаторах мощностью 200-300 В × А электрические потери в первичной обмотке вследствие небольшой величины тока I 0 небольшие, поэтому считаем мощность холостого хода равной магнитным потерям, т.е. Р 0 = Р м (див.2.1.4).

Исследование короткого замыкания выполняют следующим образом. Вторичную обмотку трансформатора замыкают накоротко (рис.2.1.5, б), а к первичной обмотке подводят пониженную напряжение короткого замыкания U 1 = U к, при котором ток короткого замыкания в первичной обмотке равен номинальному значению, есть и 1к = И 1ном. Напряжение короткого замыкания принято выражать в процентах от номинального напряжения U 1ном:

u к = (U к / U 1ном) 100 (2.1.31)

Как правило u к = (5 ¸ 12)%.

Магнитный поток Ф max пропорционален напряжению U 1 [см.. (2.1.

18)], но, так как напряжение короткого замыкания не превышает 5-12% от U 1ном, то для создания главного магнитного потока при опыте короткого замыкания требуется столь малая величина намагничивающего тока, что ею можно пренебречь.

Исходя из этого, принято считать магнитные потери при опыте короткого замыкания равны нулю, а используемую мощность короткого замыкания Р к равной мощности электрических потерь трансформатора (див.2.1.4) при номинальной нагрузке трансформатора (Р к = Р е.ном).

Коэффициент мощности при опыте короткого замыкания

cos j к = Р к / (U к И 1ном). (2.1.32)

Таким образом, исследование холостого хода и короткого замыкания позволяют экспериментально определить ряд важных параметров трансформатора: I 0, Р 0 = Р м, u к, Р к = Р е.ном, используя которые за (2.1.28) можно определить КПД трансформатора.

Похожее

Источник: https://vetrodvig.ru/trasformatory-silovye-napryazheniya-toka-pervichnye-i-vtorichnye-obmotki-trasformatora/

Как определяется коэффициент полезного действия трансформатора?

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД), с условным обозначением .

Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети.

КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P2 имеет следующий вид:

P2=P1-ΔPэл1-ΔPэл2-ΔPм (1)

где, P2 — полезная, а P1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P1=ΔP+P2 (2)

Из этой формулы видно, что P1 расходуется на P2, а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P2 и P1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Суммарная мощность, ВтКоэффициент полезного действия
10-20 0,8
20-40 0,85
40-100 0,88
100-300 0,92

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

 (3)

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P2=U2*J2*cosφ2, (4)

где U2 и J2 — вторичные напряжение и ток нагрузки, а cosφ2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P1=ΔP+P2, формула (3) приобретает следующий вид:

 (5)

Электрические потери первичной обмотки ΔPэл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

 (6)

В свою очередь:

 (7)

где rmp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки , который равен:

β=J2/J2н, (8)

где J2н — номинальный ток вторичной обмотки.

ЭТО ИНТЕРЕСНО:  Как подключить контактор на 380

Отсюда, запишем выражения для определения тока вторичной обмотки:

J2=β*J2н(9)

Если подставить данное равенство в формулу (5), то получится следующее выражение:

 (10)

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P2/P1)+ΔPм+ΔPэл1+ΔPэл2, (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте холостого хода, либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Интересное видео: КПД трансформатора 100%

Источник: https://protransformatory.ru/raschety/kpd-transformatora

Формулы для трансформатора – : —

Как бы ни развивалась электроника, но всё же отказаться от такого устройства, как трансформатор пока не удаётся. Каждый надёжный блок питания и преобразователь напряжения содержит этот электромагнитный аппарат с гальванической развязкой обмоток. Они применяются широко и на производстве, и в быту, и представляют собой статическое электромагнитное устройство, работающее по принципу взаимоиндукции. Состоят такие устройства из двух основных элементов:

  1. замкнутого магнитопровода;
  2. двух и более обмоток.

Обмотки трансформаторов не имеют между собой никакой связи, кроме индуктивной. Предназначен он для преобразования только переменного напряжения, частота которого, после передачи по магнитопроводу, будет неизменна.

Расчет параметров трансформатора необходим для того, чтобы на вход этого устройства было подано одно напряжение, а на выходе генерировалось пониженное или повышенное напряжение другой заданной величины. При этом нужно учесть токи, протекающие во всех обмотках, а также мощность устройства, которая зависит от подключаемой нагрузки и от назначения.

Любой даже простейший расчет трансформатора состоит из электрической и конструктивной составляющей. Электрическая часть включает в себя:

  • Определение напряжений и токов, протекающих по обмоткам;
  • Определение коэффициента трансформации.

К конструктивным относятся:

  • Размеры сердечника и тип устройства;
  • Выбор материала сердечника трансформатора;
  • Возможные варианты закрывающего корпуса и вентиляции.

Через один квадратный сантиметр сечения магнитопровода протекает магнитная индукция, единица измерения её — Тесла. Тесла, в свою очередь, выдающийся физик, в честь которого и она и названа. Это значение напрямую зависит от частоты тока. И так при частоте 50 Гц и, допустим, 400 Гц величины индукция (тесла) будет разной, а значит и габариты устройства с увеличением частоты снижаются.

После этого определяют падение напряжения и потери в магнитопроводе, на этапе электрического расчёта все эти величины определяются лишь примерно. Расчет нагрузки в трансформаторе является ключевым в его исполнении. В сварочном, например, нагрузочную особенность выражают из режима короткого замыкания. Большое значение тока короткого замыкания, связано с малым значением сопротивления трансформатора в данных условиях работы.

Важнейшим элементом всех формул данного расчёта является коэффициент трансформации, который определяется как соотношение числа намотанных витков в первичной обмотке, к количеству витков во вторичной обмотке. Если обмоток не две, а больше, значит и соответственно таких коэффициентов тоже будет несколько. Если известны напряжения обмоток, то можно его рассчитать как отношение напряжений первичной обмотки, ко вторичной.

Расчет силового трансформатора

Расчет силового трансформатора напрямую зависит от количества фаз в питающей сети, то есть однофазной или же трехфазной. Прежде всего в силовом трансформаторе основную роль играет его мощность. Упрощенный расчет трансформаторов малой мощности и большой можно выполнить и в домашних условиях. Расчёт потерь неизбежен, как и для любых электромагнитных устройств, здесь же он состоит из двух основных магнитных составляющих:

  1. вихревые токи;
  2. намагничивание.

Расчет однофазного трансформатора

Рассчитывая понижающие трансформаторы однофазного тока, как самые распространенные в быту, для начала нужно выяснить его мощность. Конечно, понизить напряжение можно и другими способами, но этот самый эффективный и даёт ещё вдобавок гальваническую развязку, а значит возможность подключения силовой нагрузки.

Например, если напряжение первичной обмотки 220 Вольт, что свойственно для стандартных сетей однофазного тока, то вторичное напряжение нужно определить по нагрузке, которая будет подключаться к нему. Это может быть как низшее, так и высшее напряжение. Например, для зарядки автомобильных аккумуляторов необходимо напряжение 12-14 Вольт. То есть вторичное напряжение и ток тоже должно быть заранее известно.

Примерная мощность будет равна произведению тока на напряжение. Стоит учесть также и КПД. Для силовых аппаратов он составляет примерно 0,8–0,85. Тогда с учётом этого коэффициента полезного действия расчётная мощность будет составлять:

Ррасч= P*КПД

Именно эта мощность и ложится в основу расчёта поперечного сечения сердечника, на котором будут произведены намотки обмоток. Кстати, видов этих сердечников магнитопровода может быть несколько, как показано на рисунке снизу.

Далее, по этой формуле определяем сечение

Источник: https://m-gen.ru/raznoe-2/formuly-dlya-transformatora.html

Режимы работы трансформатора. Часть 2

Всем доброго времени суток! В первой части статье о режимах работы трансформатора я рассказал о холостом ходе и расчете параметров в этом режиме. Кроме данного режима трансформатор может оказаться в аварийном режиме – режиме короткого замыкания.

Кроме того одним из этапов испытания и проверки параметров трансформатора является опыт короткого замыкания, при котором на первичную обмотку подают такое напряжение, при котором в замкнутой вторичной обмотке протекает номинальный ток.

Данный опыт и опыт короткого замыкания позволяют определить КПД трансформатора. Об этом пойдет речь в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Режим короткого замыкания

В процессе работы трансформатора иногда возникают ситуации, когда его вторичная обмотка оказывается замкнутой. В этом случае в ней возникает ток, превышающий номинальный в десятки раз.

В этом случае говорят о работе трансформатора в режиме короткого замыкания. Данный режим является аварийным и недопустимым, так как вследствие перегрева обмоток трансформатора происходит их разрушение.

Таки образом, режим короткого замыкания характеризуется следующими параметрами напряжения и тока

Для испытания трансформатора и определения некоторых его параметров проводят опыт короткого замыкания, при котором вторичную обмотку замыкают, а на первичную обмотку подают такое напряжение, что во вторичной обмотке устанавливается номинальный ток. В таком случае напряжение на первичной обмотке называется нормальным напряжением короткого замыкания. Величину данного напряжения в параметрах трансформатора обычно выражают в процентах от номинального напряжения первичной обмотки

где UКЗ – нормальное напряжение короткого замыкания,

UH – номинальное напряжение на первичной обмотки.

«Нормальное» короткое замыкание

В виду того, что нормальное напряжение короткого замыкания UКЗ составляет несколько процентов (обычно 1-3%), то и противодействующая ей ЭДС самоиндукции Е1 в первичной обмотке так же имеет незначительное значение. Соответственно и электромагнитная индукции и потери в сердечнике будут незначительными, то есть в практических расчётах их можно не учитывать. Ниже приведена эквивалентная схема замещения трансформатора в режиме «нормального» короткого замыкания

Эквивалентная схема замещения трансформатора в режиме «нормального» короткого замыкания.

Так как мощность, подводимая к трансформатору, тратится в основном на преодоление сопротивления провода обмоток, то параметры магнитного контура трансформатора можно не учитывать. Тогда параметры трансформатора можно описать следующими выражениями

где РКЗ – мощность при коротком замыкании,

IКЗ – ток короткого замыкания,

RК – суммарное сопротивление первичной и вторичной обмоток.

Так как в данном режиме по обмоткам протекают номинальные токи, то и температура обмоток также будет соответствовать рабочей, поэтому для определения реальной величины сопротивления обмоток необходимо сопротивление короткого замыкания полученное опытным путем пересчитать с учетом температурного коэффициента сопротивления и условной температуры 75 °С.

Опыт короткого замыкания

Как я уже говорил в предыдущей статье, изготовленный трансформатор подвергают двум основным испытаниям: опыту холостого хода и опыту короткого замыкания. Первое испытание я рассмотрел в предыдущей статье, а для второго собирают схему изображенную ниже

Схема опыта короткого замыкания.

Как видно на схеме в цепь первичной обмотки трансформатора включены вольтметр PV1, амперметр РА1 и ваттметр PW1, а вторичная обмотка замкнута накоротко. Для снятия характеристик трансформатора в этом режиме на первичную обмотку трансформатора подают такое напряжение UКЗ, при котором ток IКЗ в обмотке соответствовал номинальному току. После того как трансформатор прогреется в течении нескольких минут снимают показания с приборов.

Для построения графической характеристики короткого замыкания снимают параметры при изменении напряжения на первичной обмотке от 30 до 110 % UКЗ.

При проведении опыта короткого замыкания определяют следующие параметры трансформатора:

— процентное отношение напряжения короткого замыкания UКЗ%

где UКЗ – «нормальное» напряжение короткого замыкания,

UН – номинальное напряжение первичной обмотки.

— активное сопротивление обмоток трансформатора RК

где РКЗ – мощность, снимаемая с ваттметра PW1,

IКЗ – ток короткого замыкания, снимаемая с амперметра РА1.

— полное сопротивление обмоток трансформатора ZK

где UКЗ – «нормальное» напряжение короткого замыкания, снимаемое с вольтметра PV1.

— реактивное сопротивление обмоток трансформатора ХК

— коэффициент мощности короткого замыкания cos φКЗ

Мощность, подводимая к трансформатору при проведении опыта короткого замыкания для силовых трансформаторов, составляет 1 – 4 % от номинальной мощности трансформатора. При этом, чем больше номинальная мощность трансформатора, тем меньше мощность при проведении опыта короткого замыкания, то есть меньше потери в обмотках.

Коэффициент полезного действия трансформатора

Одной из основных характеристик любого преобразовательного устройства и трансформатора, в частности, является коэффициент полезного действия или сокращенно КПД.

Коэффициентом полезного действия трансформатора (КПД) η называется отношение активной мощности отдаваемой трансформатором Р2 к активной мощности подаваемой на трансформатор Р1

КПД трансформатора можно определить несколькими способами: прямым измерением мощностей и косвенным.

Прямой метод вычисления КПД заключается в измерении отдаваемой Р2 и поступаемой Р1 мощностей при полной нагрузке трансформатора и взятии их отношения. Однако такой метод не нашёл применения из-за неэкономичности, так как необходимо использовать большое количество энергии при испытаниях трансформаторов.

На практике чаще используют косвенный метод, заключающийся в определении потерь в сердечнике РС из опыта холостого хода, а потерь в обмотке (потерь в меди) РМ из опыта короткого замыкания. Тогда подводимая к трансформатору мощность составит

Соответственно КПД определяют по следующему выражению

Так как отдаваемая мощность Р2 трансформатора имеет как активную так и реактивную составляющую, соотношение между которыми определяется коэффициентом мощности cos φ, то КПД трансформатора составит

где U2 – номинальное напряжение вторичной обмотки, определяемое из опыта холостого хода,

I2 – номинальный ток вторичной обмотки, определяемое из опыта короткого замыкания,

ЭТО ИНТЕРЕСНО:  Что такое сдвиг фаз

РС – потери мощности в сердечнике трансформатора,

РМ – потери мощности в обмотках трансформатора.

Стоит отметить, что потери мощности в опыте холостого хода и опыте короткого замыкания желательно измерять у предварительно прогретого трансформатора или пересчитывать токи и напряжения с учётом нормальной температуры работы Т = 75 °С.

Со следующей статьи я буду рассказывать, как рассчитывать различные типы трансформаторов, которые чаще всего используют.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник: http://www.electronicsblog.ru/silovaya-elektronika/rezhimy-raboty-transformatora-chast-2.html

Трансформаторы. Режимы работы и рабочие характеристики

08.12.2018

В первой части нашей статьи мы рассмотрели устройство трансформатора, принцип действия и виды трансформаторов. Теперь поговорим о них более детально.

Холостой ход однофазного трансформатора

Приведенные при рассмотрении принципа действии трансформа­тора соотношения справедливы лишь для идеального трансформатора, в котором пренебрегают сопротивлениями обмоток и потерями в сердечнике и считают, что магнитный поток замыкается только по сердечнику.

В реальных условиях необходимо учитывать падения напряжения в обмотках и фактическую картину распределения магнитных полей.

В частности, при холостом ходе МДС F0 кроме основного магнитного потока взаимоиндукции Ф0, замыкающегося по сердечнику, создает магнитный поток рассеяния Фрс1, который замыкается, в основном, по воздуху и сцепляется только с первичной обмоткой (рис. 1).

Рис. 1 — Холостой ход однофазного трансформатора

Под действием этого магнитного потока в первичной обмотке индуктируется ЭДС самоиндукции ерс1, действующее значение которой обычно рассчитывают по соотношению

где хрс1 — индуктивное сопротивление рассеяния первичной обмотки.

Для упрощения записи это сопротивление часто обозначают просто х1  Оно равно

где L1 — индуктивность рассеяния, определяемая по специальным формулам.

Таким образом, реально существующий магнитный поток рассеяния Фрс1 первичной обмотки и соответствующая ему ЭДС Ерс1 учитываются путем введения некоторого индуктивного сопротивления рассеяния х1, падение напряжения на котором уравновешивает ЭДС, т.е. в векторной форме равенство

записывают в виде

Такой подход значительно упрощает анализ и расчет режимов работы трансформатора. Сопротивление х1 практически постоянно, а величина Ерс1 пропорциональна току первичной обмотки.

Полное сопротивление первичной обмотки, кроме сопротивления х1 учитывает также активное сопротивление r1, т.е.

Электрическая схема замещения фазы первичной обмотки трансформатора на холостом ходу полностью аналогична схеме замещения катушки со стальным сердечником (рис. 2).

Рис. 2 — Электрическая схема замещения фазы трансформатора на холостом ходу

Уравнение электрического равновесия трансформатора для режима холостого хода может быть записано в виде

или

Таким образом, подводимое к первичной обмотке напряжение уравновешивается ЭДС самоиндукции Е10 и падением напряжения на сопротивлениях r1 и х1 обмотки. Поскольку падение напряжения  достаточно мало, последнее уравнение для режима холостого хода часто записывают в виде

Векторная диаграмма трансформатора в режиме холостого хода является графической иллюстрацией и решением уравнений

Векторы как это следует из уравнений

отстают от вектора Фом на 90° (рис.3). Величина напряжения U20 =Е20 отличается от Е10 в отношении коэффициента трансформации. Ток холостого хода I0 не синусоидален и его представляют в виде двух составляющих: I0а — активной, определяющей потери энергии в стали сердечника и в обмотке; I0р — реактивной, необходимой для создания МДС F0 и потоков Ф0 и Фрс1.

Рис. 3 — Векторная диаграмма холостого хода трансформатора

Таким образом, можно записать

Обычно I0а 0.

Рис. 4 — Нагрузочный режим однофазного трансформатора

Это основной режим, при котором вторичный ток изменяется в пределах 0 0, ?2 = 0  и ?2 < 0, а также геометрическое место концов вектора при изменении угла ?2  пределах :

Построение упрощенных диаграмм производятся следующим образом: из точки 0 как из центра проводится дуга окружности радиусом, равным в принятом масштабе величине напряжения ; под углом ?2 проводятся направления вектора вторичного напряжения ; во всех случаях нагрузки треугольник короткого замыкания распо­лагается таким образом, чтобы вершина А была на дуге  , вер­шина С — на направлении вектора ; а катет ВС совпадал с направлением вектора тока .

Рис. — 12.  Упрощенная векторная диаграмма приведенного  трансформатора при различных по характеру нагрузках

Точки С, С1 и C2 определяют величину приведенного вторичного напряжения при соответствующем значении ?2 . Если треугольник ABC поместить в положение 0 B’ C’, то дуга, проведенная из вершины С радиусом, равным , пройдет через точки С, С1 и C2 и является, таким образом, геометрическим местом конца вектора напряжения  .Из рис. 12 хорошо видно, что при активно-индуктивной (?2 > 0) и чисто активной нагрузке (?2 = 0) приведенное вторичное напряжение меньше первичного напряжения  .

При активно-емкостной нагрузке (?2 < 0) вторичное напряжение может стать даже больше первичного.

Физически это объясняется следующим образом. Реактивная мощность, необходимая для создания магнитного поля взаимоиндукции определяется, главным образом, реактивным сопротивлением рассеяния xk. При активно-емкостной нагрузке эта реактивная мощность может забираться от нагрузки и при определенной величине емкости в нагрузке избыток реактивной мощности отдается в первичную сеть. При этом растет ЭДС:

что приводит к перевозбуждению трансформатора, т.е. к возрастанию потока и увеличению напряжения .

Внешняя характеристика трансформатора

Внешней характеристикой трансформатора называют зависимость:

при   и cos?1 = const (рис. 13).

Рис. 13 —  Внешняя характеристика трансформатора

Из рис. 13 следует, что внешняя характеристика трансформатора при увеличении тока нагрузки до номинального является достаточно жесткой. Изменение напряжения составляет всего несколько процентов и зависит от характера нагрузки, что находится в соответствии с векторной диаграммой (рис. 12 ).

При активной и активно-индуктивной нагрузке напряжение  уменьшается, при активно-емкостной нагрузке оно может несколько возрастать. На практике величина изменения напряжения обычно рассчитывается по приближенной формуле:

где  ? = I2/I2н нагрузка трансформатора в относительных единицах;

Потери в трансформаторе и его КПД

Трансформатор потребляет из сети мощность:

где m1 – число фаз.

Часть этой мощности, как отмечалось, теряется в виде потерь в обмотках:

другая часть — в виде потерь в сердечнике на гистерезисе и вихревые токи.

Электромагнитная мощность:

передается во вторичную обмотку посредством магнитного поля.

Полезная мощность равна:

Потери в стали:

мало изменяются при изменении нагрузки и относятся к категории постоянных потерь. Потери в обмотках:

являются переменными т.к. изменяются при изменении тока. Коэффициент полезного действия трансформатора показывает соотношение между мощностью, которая передается из первичной обмотки во вторичную и обратно, и мощностью, которая преобразуется в тепло. КПД определяется по формуле:

КПД силовых трансформаторов обычно достигает 9498%. Рассчитывают трансформаторы таким образом, чтобы КПД имел наибольшее значение при нагрузке ? = 0,5 – 0,7 от номинальной. Обычно трансформаторы работают с некоторой недогрузкой — в области максимального значения КПД рис. 14.

Рис. 14 — Коэффициент полезного действия трансформатора

При передаче значительной реактивной мощности (при уменьшении cos?2) КПД уменьшается, что показано на рис. 1, кривая 2.

Параллельная работа трансформаторов

Параллельная работа трансформаторов возможна лишь в том случае, если в обмотках трансформаторов не возникают уравнительные токи, а нагрузка распределяется пропорционально номинальным мощностям трансформаторов. Практически это сводится к выполнению следующих условий:

1. Напряжения обмоток высшего и низшего напряжения, указанные на заводских табличках, должны быть соответственно равны, т.е. должны быть равны коэффициенты трансформации k1 = k2 kn.

2. Напряжения короткого замыкания uк, указываемые на заводских табличках трансформаторов, должны быть также равны; при параллельной работе трансформаторов допускают отклонения в пределах ±10 %.

3. Мощности параллельно работающих трансформаторов не должны значительно отличаться одна от другой. Допускается различие мощностей не больше чем в 3 раза.

4. Схемы и группы соединений обмоток трансформаторов, предназначенных для параллельной работы, должны быть одинаковыми. Это требование может быть выполнено, если условные обозначения схем и групп соединений, указанные на заводских табличках, будут одинаковыми.

5. Обмотки фаз трансформаторов, включенных для параллельной работы, должны совпадать, т. е. одинаково обозначенные выводы обмоток фаз должны быть присоединены к одной, а не к разным шинам.

Рассмотрим последствия нарушения названных условий.

Допустим, что не выполнено первое условие (k1 < k2 ). Это значит, что при одном и том же напряжении на первичных обмотках трансформаторов U1, вторичные ЭДС трансформаторов будут неодинаковы Е1 > Е2. Под действием возникшей разности потенциалов в замкнутом контуре  вторичных обмоток пойдет уравнительный ток, который создаст падение напряжения в обмотках.

В трансформаторе 1 это вызовет уменьшение напряжения на зажимах вторичной обмотки, в трансформаторе 2 – увеличение вторичного напряжения. В результате напряжение на внешних шинах будет иметь среднее значение. При нагрузке уравнительный ток накладывается на ток нагрузки, вследствии чего трансформатор 1 будет перегружен, а трансформатор 2 – недогружен.

ГОСТ допускает расхождение в коэффициентах трансформации не больше ±0,5% от их среднего значения.

Если трансформаторы имеют неодинаковые номинальные напряжения короткого замыкания  u1К  ? u2К, значит неодинаковы сопротивления короткого замыкания Z1К ? Z2К. При работе трансформаторов в параллель напряжения вторичных обмоток одинаковы т. е. I12Z1К = I22Z2К, а это возможно лишь при неодинаковых токах трансформаторов.

Это значит, что при параллельной работе трансформаторов нагрузка между ними будет распределяться непропорционально их номинальным мощностям. Чтобы не вызвать аварии трансформатора, имеющего меньшее значение uК, необходимо снижать общую нагрузку. Это ведет к неполному использованию трансформаторов.

Согласно ГОСТ необходимо, чтобы разница напряжений короткого замыкания не превышала ±10% от их среднего значения, а соотношение номинальных мощностей параллельно работающих трансформаторов было не больше, чем 3:1.

Несоблюдение четвертого условия вызывает настолько большой уравнительный ток, что трансформаторы могут выйти из строя из-за перегрева обмоток. Даже при минимальном расхождении групп соединения трансформаторов (например, у одного группа ?/? – 0, а у другого ?/? – 11) уравнительный ток будет примерно в 5 раз больше номинального, что равносильно короткому замыканию.

Во избежание ошибок присоединение трансформаторов к сети без нулевого провода ( пятое условие ) производят следующим образом. Включают оба трансформатора со стороны высшего напряжения, затем один из них присоединяют к шинам низкого напряжения выводами обмоток всех фаз, а другой — выводами обмотки одной фазы, например С.

Затем между выводами обмоток фаз В и А второго трансформатора и шинами низкого напряжения, к которым соответственно присоединены выводы обмоток фаз В и А первого трансформатора, включают вольтметр или лампу.

Если обозначения выводов обмоток фаз на трансформаторах нанесены правильно, то между всеми парами одноименных выводов напряжение равно нулю (лампа не горит или вольтметр показывает нуль) и выводы В и А второго трансформатора могут быть соединены с шинами, к которым соответственно присоединены выводы В и А первого трансформатора.

Контрольные лампы или вольтметры при указанной проверке должны быть взяты на двойное рабочее напряжение трансформатора со стороны низшего напряжения.

Трансформаторы. Режимы работы и рабочие характеристики Ссылка на основную публикацию

Источник: http://www.radioingener.ru/transformatory_part2/

Понравилась статья? Поделиться с друзьями:
220 вольт