Трансформатор без стального магнитопровода
Трансформатор без стального магнитопровода (воздушный трансформатор)
В электротехнике широко применяется передача энергии из одного контура цепи в другой при помощи трансформаторов. Они могут иметь различные назначения, но чаще всего предназначаются для преобразования переменного напряжения. Отсюда возникло и само название аппарата, происходящее от латинского слова transformare — преобразовывать. Такое преобразование необходимо, например, в том случае, если напряжение источника энергии отличается от напряжения, которое требуется для приемника энергии.
Трансформаторы состоят из двух или нескольких индуктивно связанных катушек или обмоток. Ограничимся здесь рассмотрением простейшего двухобмоточного трансформатора без стального (ферромагнитного) магнитопровода. Такие трансформаторы применяются при высоких частотах, а в ряде специальных измерительных устройств и при низких частотах переменного тока.
Обмотка трансформатора, к которой подводится питание, называется первичной, обмотка, к которой присоединяется приемник энергии, — вторичной. Напряжения между выводами обмоток и токи в этих обмотках называются соответственно первичными и вторичными напряжениями и токами трансформатора. Цепи, в состав которых входят первичная и вторичная обмотки трансформатора, называются соответственно первичной и вторичной цепям и трансформатора.
Если пренебречь распределенной емкостью между витками обмоток трансформатора, то цепь, состоящая из дзухобмсп очного трансформатора и приемника, имеет схему, представленную на рис. 7.1.
Введем обозначения: , где и неактивное и реактивное сопротивления приемника, и — активное и реактивное сопротивления вторичного контура.
Запишем уравнения по второму закону Кирхгофа для первичного и вторичного контуров:
Дополнительно по теме
Трансформаторы силовые
Трансформатор без стального магнитопровода (воздушный трансформатор)
Идеальный трансформатор
Простейшие приближенные эквивалентные схемы трансформатора со стальным магнитопроводом
Расчеты электрических цепей с трансформаторами
Потеря напряжения в трансформаторе
Рис. 7.1
Построим векторную диаграмму токов и напряжений для первичной и вторичной цепей. Для этого зададимся током и отложим векторы (рис. 7.2), где принято . Соединив конец вектора с началом векторной диаграммы, получим, как следует из второго уравнения (7.1), вектор . Разделив напряжение на , определим значение тока . Вектор отложим под углом p/2 (в сторону опережения) к вектору . Затем построим векторы . Их сумма равна вектору напряжения .
Решив уравнения (7.1) относительно тока получим
где обозначено
Сопротивления и называют вносимыми (из второго контура в первый) активным и реактивным сопротивлениями. Из структуры выражения (7.2) следует, что со стороны первичной обмотки вся схема может рассматриваться как двухполюсник с сопротивлениями .
Вносимое активное сопротивление всегда больше нуля. В нем поглощается энергия, которая в реальной цепи передается из первичной цепи во вторичную. Вносимое реактивное сопротивление имеет знак, противоположный знаку .
Пользуясь схемой эквивалентного двухполюсника, решим вопрос об условиях передачи максимальной активной мощности во вторичную цепь, т. е. передачи максимальной мощности в сопротивление гвн. Для этого (см. раздел) должны удовлетворяться следующие соотношения между сопротивлениями:
или
Рис. 7.2
Последние соотношения можно получить, если предусмотреть возможность изменения параметров контуров. Для изменения и в первичный и вторичный контуры можно включить конденсаторы переменной емкости (рис. 7.3), для изменения М применить трансформатор с подвижными обмотками (вариометр) или трансформатор с подвижной магнитной системой. Отметим, что для выполнения соотношений (7.5) и (7.6) достаточно предусмотреть изменение только двух из трех параметров и М.
Все приведенные выше выражения справедливы для схемы по рис. 7.3, если положить
Из (7.5) получаем
причем имеет действительное значение при условии, что .
Если , то ни при каких значениях и не может быть получена максимальная мощность.
Схема двух контуров с индуктивной связью (см. рис. 7.1) может быть заменена эквивалентной схемой без индуктивной связи. Для этого соединим между собой два нижних вывода схемы (режим при этом не изменится). Части контуров с элементами и рассмотрим как две индуктивно связанные ветви, присоединенные к одному узлу своими одноименными выводами, и применим для них эквивалентную схему (см. рис. 6.14). В результате для рассматриваемой цепи получим эквивалентную схему по рис. 7.4.
Рис. 7.3
Рис. 7.4
Электрический трансформатор
Трансформатор – это устройство, главным назначением которого является преобразование электрического тока. Он изменяет напряжение тока посредством электромагнитной индукции.
Работа трансформатора основана на двух базовых принципах:
- Изменяющийся во времени электрический ток создает изменяющееся во времени магнитное поле.
- Изменение магнитного потока, проходящего через обмотку, электромагнитную индукцию в этой обмотке. В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать. Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток.
В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии.
Режимы работы трансформатора
1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. 2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора. 3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко.
С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора. 4. Режим холостого хода. Когда вторичные обмотки ни к чему не подключены, ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток, протекающий через первичную обмотку, невелик.
Для трансформатора с сердечником из магнито-мягкого материала ток холостого хода характеризует величину потерь в сердечнике (на вихревые токи и на гистерезис) и реактивную мощность перемагничивания магнитопровода. 5. Режим короткого замыкания. В режиме короткого замыкания на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко.
Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора.
6. Режим с нагрузкой. При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой.
В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.
Виды электрических трансформаторов
Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Автотрансформатор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую.
Обмотка автотрансформатора имеет несколько выводов, подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью.
Трансформатор тока — трансформатор, питающийся от источника тока.
Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы.
Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.
Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения. Импульсный трансформатор — это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического. Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаниях к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Согласующий трансформатор — трансформатор, применяемый для согласования сопротивления различных частей электронных схем при минимальном искажении формы сигнала. Одновременно согласующий трансформатор обеспечивает создание гальванической развязки между участками схем. Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью. Сдвоенный дроссель — конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания.
Трансфлюксор — разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора — это большая величина остаточной намагниченности магнитопровода. Иными словами трансфлюксоры могут выполнять роль элементов памяти.
Помимо этого трансфлюксоры часто снабжались дополнительными обмотками, обеспечивающими начальное намагничивание и задающими режимы их работы. Эта особенность позволяла (в сочетании с другими элементами) строить на трансфлюксорах схемы управляемых генераторов, элементов сравнения и искусственных нейронов.
Наиболее часто трансформаторы применяются в электросетях и в источниках питания различных приборов.
Применение трансформаторов в электросетях
Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи.
Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения.
Трансформаторы понижающие электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью.
Применение трансформаторов в источниках электропитания
Для питания разных узлов электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы.
В схемах питания современных радиотехнических и электронных устройств широко применяются высокочастотные импульсные трансформаторы. В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы.
Система управления с помощью широтно-импульсной модуляции позволяет стабилизировать напряжение. После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение.
Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в тех случаях, когда надо обеспечить минимальный уровень высокочастотных помех, например при высококачественном звуковоспроизведении.
Эксплуатация электрических трансформаторов
Срок службы трансформатора может быть разделен на две категории: Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего электрического трансформатора превысит капитализированную стоимость доходов от эксплуатации этого трансформатора. Или экономический срок жизни трансформатора (как актива) заканчивается тогда, когда удельные затраты на трансформацию энергии с его помощью становятся выше удельной стоимости аналогичных услуг на рынке трансформации энергии.
Источник: https://promplace.ru/articles/elektricheskij-transformator-18
Применение трансформаторов
Повседневно трансформаторы применяются в электросетях и в источниках питания различных приборов.
Применение в электросетях
Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи.
Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения.
Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.
Поскольку в электрической сети три фазы, для преобразования напряжения применяют трёхфазные трансформаторы, или группу из трёх однофазных трансформаторов, соединённых в схему звезды или треугольника. У трёхфазного трансформатора сердечник для всех трёх фаз общий.
Несмотря на высокий КПД трансформатора (для трансформаторов большой мощности — свыше 99 %), в очень мощных трансформаторах электросетей выделяется большая мощность в виде тепла (например, для типичной мощности блока электростанции 1 ГВт на трансформаторе может выделяться мощность до нескольких мегаватт).
Поэтому трансформаторы электросетей используют специальную систему охлаждения: трансформатор помещается в баке, заполненном трансформаторным маслом или специальной негорючей жидкостью. Масло циркулирует под действием конвекции или принудительно между баком и мощным радиатором. Иногда масло охлаждают водой.
«Сухие» трансформаторы используют при относительно малой мощности (до 16000 кВт).
Применение в источниках электропитания
Для питания различных электроприборов требуются самые разнообразные напряжения. Блоки электропитания в устройствах, которым необходимо несколько напряжений различной величины содержат трансформаторы с несколькими вторичными обмотками или содержат в схеме дополнительные трансформаторы. Например, в телевизоре с помощью трансформаторов получают напряжения от 5 вольт (для питания микросхем и транзисторов) до 30 киловольт (для питания анода кинескопа).
В прошлом в основном применялись трансформаторы, работающие с частотой электросети, то есть 50-60 Гц.
В схемах питания современных радиотехнических и электронных устройств (например в блоках питания персональных компьютеров) широко применяются высокочастотные импульсные трансформаторы.
В импульсных блоках питания переменное напряжение сети сперва выпрямляют, а затем преобразуют при помощи инвертора в высокочастотные импульсы. Система управления с помощью широтно-импульсной модуляции (ШИМ) позволяет стабилизировать напряжение.
После чего импульсы высокой частоты подаются на импульсный трансформатор, на выходе с которого, после выпрямления и фильтрации получают стабильное постоянное напряжение.
В прошлом сетевой трансформатор (на 50-60 Гц) был одной из самых тяжёлых деталей многих приборов. Дело в том, что линейные размеры трансформатора определяются передаваемой им мощностью, причём оказывается, что линейный размер сетевого трансформатора примерно пропорционален мощности в степени 1/4. Размер трансформатора можно уменьшить, если увеличить частоту переменного тока. Поэтому современные импульсные блоки питания при одинаковой мощности значительно легче.
Трансформаторы 50-60 Гц, несмотря на их недостатки, продолжают использовать в схемах питания, в случая, когда надо обеспечить минимальный уровень высокочастотных помех, например в высококачественном звуковоспроизведении.
Другие применения трансформатораРазделительные трансформаторы (трансформаторная гальваническая развязка). Нейтральный провод электросети может иметь контакт с «землёй», поэтому при одновременном касании человеком фазового провода (а также корпуса прибора с плохой изоляцией) и заземлённого предмета тело человека замыкает электрическую цепь, что создаёт угрозу поражения электрическим током. Если же прибор включён в сеть через трансформатор, касание прибора одной рукой вполне безопасно, поскольку вторичная цепь трансформатора никакого контакта с землёй не имеет.Импульсные трансформаторы (ИТ). Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ, заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.Измерительные трансформаторы. Применяют для измерения очень больших или очень маленьких переменных напряжений и токов в цепях РЗиА.Измерительный трансформатор постоянного тока. На самом деле представляет собой магнитный усилитель, при помощи постоянного тока малой мощности управляющий мощным переменным током. При использовании выпрямителя ток выхода будет постоянным и зависеть от величины входного сигнала.Измерительно-силовые трансформаторы. Имеют широкое применение в схемах генераторов переменного тока малой и средней мощности (до мегаватта), например, в дизель-генераторах. Такой трансформатор представляет собой измерительный трансформатор тока с первичной обмоткой, включённой последовательно с нагрузкой генератора. Со вторичной обмотки снимается переменное напряжение, которое после выпрямителя подаётся на обмотку подмагничивания ротора. (Если генератор — трёхфазный, обязательно применяется и трёхфазный трансформатор). Таким образом, достигается стабилизация выходного напряжения генератора — чем больше нагрузка, тем сильнее ток подмагничивания, и наоборот.
Согласующие трансформаторы. Из законов преобразования напряжения и тока для первичной и вторичной обмотки (I1=I2w2/w1,U1=U2w1/w2) видно, что со стороны цепи первичной обмотки всякое сопротивление во вторичной обмотке выглядит в (w1/w2)² раз больше.
Поэтому согласующие трансформаторы применяются для подключения низкоомной нагрузки к каскадам электронных устройств, имеющим высокое входное или выходное сопротивление. Например, высоким выходным сопротивлением может обладать выходной каскад усилителя звуковой частоты, особенно, если он собран на лампах, в то время как динамики имеют очень низкое сопротивление.
Согласующие трансформаторы также исключительно полезны в высокочастотных линиях, где различие сопротивления линии и нагрузки привело бы к отражению сигнала от концов линии, и, следовательно, к большим потерям.
Фазоинвертирующие трансформаторы.
Трансформатор передаёт только переменную компоненту сигнала, поэтому даже если все постоянные напряжения в цепи имеют один знак относительно общего провода, сигнал на выходе вторичной обмотки трансформатора будет содержать как положительную, так и отрицательную полуволны, причём, если центр вторичной обмотки трансформатора подключить к общему проводу, то напряжение на двух крайних выводах этой обмотки будет иметь противоположную фазу.
До появления широко доступных транзисторов с npn типом проводимости фазоинвертирующие трансформаторы применялись в двухтактных выходных каскадах усилителей, для подачи противоположных по полярности сигналов на базы двух транзисторов каскада. К тому же, из-за отсутствия «ламп с противоположным зарядом электрона», фазоинвертирующий трансформатор необходим в ламповых усилителях с двухтактным выходным каскадом.
Потери в трансформаторах
Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи.
Потери в трансформаторе, где «железо» монолитное, значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются.
Для снижения потерь в магнитопроводе трансформатора магнитопровод может изготавливаться из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга.
Режим работы трансформаторов
1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в стали.
2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.
3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.
Габаритная мощность
Габаритная мощность трансформатора описывается следующей формулой:
Pгаб=(P1 + P2)/2=(U1I1 + U2I2)/2
- 1 — первичной обмотки
- 2 — вторичной обмотки
Однако, это конечный результат. Или академическое определение. Изначально габаритная мощность, как следует из названия, определяется габаритами сердечника и материалом, его магнитными и частотными свойствами.
КПД трансформатора
КПД трансформатора находится по следующей формуле:
где
P0 — потери холостого хода (кВт) при номинальном напряженииPL — нагрузочные потери (кВт) при номинальном токеP2 — активная мощность (кВт), подаваемая на нагрузкуn — относительная степень нагружения (при номинальном токе n=1). кпд, холостой ход, трансформатор, обмотки Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Последние ответы на форуме ukrelektrik.com
Заземление, зануление
rashpilek1975 Alexzhuk / 37 Электроотопление
IusCoin Multiki / 68 Всё обо всём — общение
2alpilip Наде4ка / 29
Источник: http://ukrelektrik.com/publ/oborudovanie/transformatory/primenenie_transformatorov/19-1-0-941
Трансформаторы тока. Виды и устройство. Назначение и работа
В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений.
Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии.
Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.
Назначение
Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.
По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.
Устройство
Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.
С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.
Отличие от трансформатора напряжения
Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.
Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.
Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
- Сухие.
- Тороидальные.
- Высоковольтные (масляные, газовые).
У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.
Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.
Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.
Принцип работы и применение
При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.
Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.
В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.
Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.
Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе
В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.
С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.
На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.
Коэффициент трансформации
Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.
Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.
Установка
Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.
Подключение
Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.
Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.
Контроль
Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.
Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.
Безопасность
Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.
Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/transformatory-toka/
Электрические трансформаторы
ВИДЫ И ТИПЫ
ХАРАКТЕРИСТИКИ
ПРИМЕНЕНИЕ
Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.
Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.
Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.
Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.
Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.
После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.
Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.
Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:
- W1, W2 — количество витков первичной и вторичной обмоток соответственно;
- U1,U2 — входное и выходное напряжения соответственно.
Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.
Виды и типы трансформаторов
Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:
Автотрансформаторы.
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.
Стоит выделить способ классификации трансформаторов по способу их охлаждения.
Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.
Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.
Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.
Характеристики трансформаторов
К основным техническим характеристиками трансформаторов можно отнести:
- уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
- способ преобразования: повышающий, понижающий;
- количество фаз: одно- или трехфазный;
- число обмоток: двух- и многообмоточный;
- форму магнитопровода: стержневой, тороидальный, броневой.
Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.
Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.
Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).
Область применения
Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.
Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.
В зависимости от назначения трансформаторы делят на:
Силовые.
Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.
Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.
Тока.
Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.
В зависимости от выполняемых функций различают следующие виды:
- измерительные — подающее ток на приборы измерения и контроля;
- защитные — подключаемые к защитным цепям;
- промежуточные — используется для повторного преобразования.
Напряжения.
Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.
2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Источник: https://eltechbook.ru/transformatory.html
Трансформаторы. Их назначение и область применения
Трансформатором, в электротехнике, называют статическое устройство, в состав которого входят две или боле индуктивно связанные обмотки, и предназначенное для выполнения преобразований, при помощи электромагнитной индукции, одних систем переменного тока в другие системы переменного тока.
Многие электротехнические задачи решаются благодаря применению трансформаторов. В основном это понижение или повышение напряжения, изменение числа фаз, согласование нагрузок, развязки цепей и многое другое. Преобразования выполняются, как правило, с минимальными потерями мощности и без изменений частоты. Подробно принцип работы трансформатора описан в этой статье. Трансформаторы в основном применяют для следующих целей.
Трансформаторы в электроснабжении
Эксплуатируемые на электростанциях генераторы переменного тока, как правило, вырабатывают электроэнергию при напряжениях 6-24кВ, но передавать электрическую энергию на большие расстояния значительно выгодней при напряжениях гораздо выше.
Обычно напряжения на высоковольтных линиях электропередач имеют значения 110, 220, 330, 400, 500 и 750кВ.
Поэтому для согласования генераторов переменного тока и линий электропередач, на каждой электростанции устанавливают повышающие напряжение трансформаторы.
Поставляемую линиями электропередач электроэнергию необходимо распределять между потребителями, населенными пунктами (городами и сёлами), промышленными предприятиями, внутри городов и сёл, а также внутри крупных предприятий, где электроснабжение осуществляется по воздушным и кабельным линиям и может иметь значение 220, 110, 35, 20, 10 и 6кВ. Из этого следует, что в узлах распределительных сетей надо устанавливать трансформаторы понижающие напряжение от линий электропередач до значения применяемого конкретным потребителем (населённым пунктом или предприятием).
Но и это ещё не всё, ведь большинство конечных потребителей используют переменную электроэнергию напряжением 110, 220, 380 и 660в. Поэтому понижающие трансформаторы надо устанавливать и для пунктов конечного потребления электроэнергии.
Итого, чтобы пройти путь от электростанции до конечного потребителя, электрическая энергия подвергается многократным трансформаторным преобразованиям, примерно от 3-х до 5-ти раз.
Трансформаторы, которые выполняют вышеуказанные функции по передаче и распределению электроэнергии, принято называть силовыми трансформаторами.
Основными особенностями силових трансформаторов являются очень малые отклонения значений напряжений от номинальных на первичных и вторичных обмотках, а также то, что они почти всегда работают на частоте 50 Гц. Силовые трансформаторы бывают двух- и трёх- обмоточными, одно- и трёхфазными, и могут быть изготовлены на напряжение до 1150кВ и мощность до 1 000 000 кВ*A.
Трансформаторы в преобразовательных устройствах
Трансформаторы используются для согласования напряжений на выходе и входе, а также для обеспечения нужной схемы включения вентилей преобразователя.
Выпрямление переменного тока в постоянный ток или преобразование из постоянного в переменный (инвертирование) осуществляется вентильными преобразователями. От схемы включения вентилей зависит отношение напряжений на входе и выходе преобразователя, то есть если на вход вентильного преобразователя мы подали одно напряжение, то на выходе мы обязательно получим другое, зависящее от схемы включения вентилей.
А ведь напряжения на входе и выходе, как правило, должны соответствовать стандартным значениям. Этот недостаток устраняется благодаря применению трансформаторов, которые принято называть преобразовательными. К основным свойствам таких трансформаторов можно отнести то, что они работают при частоте от 50Гц и более, при напряжении до 110кВ, а мощность может достигать сотни тысяч киловольт*ампер.
Изготавливаются одно-, трёх- или многофазными с возможностью регулирования выходного напряжения или без неё.
Следует также отметить, что трансформаторы применяют не только для согласования напряжений, но ещё и в ряде схем включения вентилей.
Области различных технологий
Например, для питания электротермических установок применяют электропечные трансформаторы. Работают такие трансформаторы обычно на частоте 50Гц, а их мощность может достигать десятков тысяч киловольт-ампер при напряжении до 10кВ.
В области электросварки широко применяются сварочные трансформаторы, мощность которых гораздо меньше чем электропечных.
Как случай единичного применения, трансформатор Тесла, который применяется для создания спецэффектов в шоу индустрии.
Для подачи питания в различные электрические цепи радио и теле аппаратуры, автоматики и телемеханики, изделий связи, электробытовых приборов; а также для разделения и (или) согласования напряжений цепей различных элементов вышеуказанных устройств и т.д.
Эти трансформаторы обычно маломощные (от вольт-ампера до нескольких киловольт-ампер). Могут иметь две или более обмотки, работают при невысоких напряжениях в основном на частоте 50Гц, но гораздо реже и на более высоких частотах (до десятков килогерц). Условия работы вышеуказанных трансформаторов зачастую могут быть специфичны, что может вызывать повышенные требования при изготовлении и проектировании.
Трансформаторы в электрических измерениях
Чтобы обеспечить электробезопасность и расширить пределы измерений, к электрическим цепям высокого напряжения или же к тем, где проходят большие токи, подключение электроизмерительных приборов и некоторых исполнительных аппаратов (реле и так далее) осуществляют с помощью измерительных трансформаторов.
Их мощность определяется мощностью потребляемой вышеуказанными приборами и аппаратами и обычно сравнительно небольшая. При этом они могут выполняться на высокие напряжения, как и у силовых трансформаторов.
Источник: https://elenergi.ru/transformatory-ix-naznachenie-i-oblast-primeneniya.html
Трансформаторы ТСЗИ и ТСУ
Вы можете сделать онлайн заказ этого товара. В комментарии укажите количество товара, номенклатуру либо в свободной форме перечислите все, что Вам нужно. Наши специалисты подберут нужную продукцию и свяжутся с Вами.
Справки по тел: 328-42-32, 8-913-902-1426
Подробнее о ценах и комплектации в прайс-листе
Трансформатор марки ТСЗИ представляет собой электроустановку, имеющую воздушное охлаждение и защитный кожух. ТСЗИ состоит из магнитопровода, а также медных, либо алюминиевых обмоток. Обмотки трансформатора пропитываются специальным органическим лаком на основе кремния, а также покрываются эмалью, служащей защитой от влаги.
Трансформаторы данного типа отличаются высокой надежностью и неприхотливостью в обслуживании. ТСЗИ рассчитаны на напряжение сети питания до 380В, а номинал напряжения на выходе от 12В до 380В. Степень защиты устройства — IP21.
Расшифровка аббревиатуры ТСЗИ
- Т — говорит о том, что трансформатор трёхфазный
- С — означает, что трансформатор сухой, те есть имеет естественное воздушное охлаждение
- З — обозначает защищенное исполнение устройства
- И — тип трансформатора — инструментальный (для питания электроинструмента)
Область применения трансформатора ТСЗИ
Трансформаторное оборудование этого типа применяется в низковольтных (12В, 24В, 36 В и т.д.) осветительных сетях, в цепях управления, а также для обеспечения электропитания различных установок и электроинструмента.
ТСЗИ является понижающим трансформатором и используется для преобразования напряжения трехфазного переменного тока (частотой 50Гц) до уровня, который безопасен для питания низковольтного оборудования.
Семейство трансформаторов ТСЗИ широко применяется для подключения к источнику питания устройств и инструмента, рассчитанных на напряжение до 50В.
Такой уровень напряжения рекомендуется использовать во влажных помещениях и при других неблагоприятных условиях, где велика вероятность поражения электрическим током.
Трансформатор цепей управления ТСУ
Трансформатор ТСУ имеет естественную воздушную вентиляцию и рассчитан на входное напряжение переменного тока (частотой 50, 60 Гц) до 380В. По своему типу ТСУ является встраиваемым, в отличие от ТСЗИ который является стационарным.
ТСУ рассчитан на эксплуатацию в тропиках, а также в районах с умеренно-холодным климатом. Трансформатор имеет класс защиты IР00
Область применения и эксплуатация ТСУ
ТСУ применяется для понижения напряжения первичной цепи до уровня, пригодного для питания цепей управления и освещения, электроинструмента, а также систем сигнализации и автоматизации работы оборудования, станков, асинхронных двигателей, лифтового оборудования и т.п.
Эксплуатация трансформатора допускается на высоте до 2 км над уровнем моря, но при его использовании выше 1 км необходимо снизить мощность нагрузки (на каждые 500 м по 2,5 %).
В исполнении УХЛ2, ТСУ можно эксплуатировать при температуре от -60оС до +40оС. Относительная влажность воздуха при этом, не должна превышать значения 80% (при температуре +15оС). А в тропическом исполнении (Т2) работа трансформатора разрешена в температурных пределах от -10оС до +50оС. Относительная влажность во время работы в тропиках при +27оС допускается не более 80%.
Весь перечень трансформаторного оборудования вы найдете в нашем каталоге Трансформаторы Наша компания занимается поставкой электротехнической продукции со склада в Новосибирске по всей России, а также в страны ближнего зарубежья (Казахстан, Узбекистан, Киргизстан, Украину, республику Беларусь).
Источник: https://elektrika-ok.ru/tovary/silovoe-elektrooborudovanie/transformatory-tszi-i-tsu
Устройство и принцип работы трансформатора
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.
Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.
Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.
В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.
Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.
1. Принцип работы трансформатора
Принцип работы трансформатора основан на явлении электромагнитной индукции.
Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле.
Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2.
И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.
При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.
В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.
Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2.
Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo.
Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.
Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.
Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.
Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.
Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.
Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.
Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.
Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.
Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению.
В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную.
Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.
2.1. Магнитопровод. Магнитные материалы
Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением.
Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях.
Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.
Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.
Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.
Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.
Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.
Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.
Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.
Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.
Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.
2.2. Типы магнитопроводов
Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.
Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.
Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.
В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.
Стержневые.
В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.
Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.
Броневые.
В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.
Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.
Тороидальные.
Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.
Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.
Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.
За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.
На этом пока закончим. Продолжим во второй части.
Удачи!
Литература:
1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.
Источник: https://sesaga.ru/ustrojstvo-i-princip-raboty-transformatora.html
������������� �������������� ���� � ����������
������� / .. / 2016 / ������������� �������������� ���� � ����������
������������� �������������� � ��� ������ ������������������ ���������, ������� ������ ����������� ��� ��������� �������� �������� ���������� (���, ����������) � ������� � ������������ ����� � �������� 50-60 ����.
������� ���������� ���� ��������� ����������� � ���������� �������� ���������� ���� ��� ���������� � ���� ��� ����������� ����������� ������������� ��������, ��������� ���������� � �������� ������ (����-�����������).
����������� � ���� �������������� �������������� ��������� ��������� ���� ������� � ������� ����������, ��� ����������� �������������� ������������ ��� ���������� ���������� ��������� (�������������, �������� ������� ���������), �������� ����� ���� ���� � ����� � �������� ���������� ���� � ����������.
�������� ������������� � ������������� ������������� ���������������
���������� ����� ��� ����������, �� ������� ���������� ������������� ������������� ���������������.
� ����������� �� ����������� �������� ����� �������� ��������� ���� ������������� ���������������:
- �������� �������� � ��� ����������� ��������. ���������� ������������� �������������� ���� � ����������, ������� �������� �� ������ � ���������� ��� ���������� �����;
- �� ������������ ������������� ������� ����� ���� ����������������� ��� ����������������;
- ���� � �������� �������� ����� ������ ���������, �� ����� �������� �������, ���������, ����������, ������������ � ���������� ��������������;
- � ����������� �� ����������� ������������� ��������� ���� ������������ � ��������, ������� ��� �����.
�������������� ������������� ��������� ������� ��� ���� ������������� ��������������� � ��������� ���������������� �� ������ �� �������� ���������.
� ����������� ������� ������� �������������� ������ �� ��������� �������� � ���� ����������� ��������. ������� ���������� ���� ������ ����� ��������.
����� ���������� �������� �������� ���������
������������� �������������� ���������� � ��������� ������ ������������������ ���������, ������� �� �������� ������ ����������� ������� �������� ���������� � ����� ������, ������� ��� ������ ����������-������������� ���������� � ��������.
�������� ����� ������ � �������� ���, ��� ��� ������� �� ������������� ��� �������� ��������.
�� ����� ����������� � �������� ������ ������� ����������� �� ���������� �� �������� ����������� �������������� � ��� �� �������� ���������, ���� ��������� � ��������� ��������� �������.
������ �� ������������ ����������� ��������� ���� �������������� ��������������� ����������:
- �����������;
- �������������;
- ���������;
- ����- ��� ��������������;
- ���������.
�������� �������� � ���������� ���
������������� �������������� ���� ��������������� ��� � ���� �� �������� ��������. ������� ������ ������������ � �������� ���� ��� ������������ ����� �������������� ������ � � ��������� ����� ��������������, ��� � ������� ��������� ����� ���������.
����������� ������ �������������� ����������� � ���, ��� ��������� ������� ���������� �� ����������� ������������� ������� ��� �������� ����������, � �� ��������� �������� ���.
������������ ������ ������������� � � ������� � ������������ ����� ����������������, ��� ����� ����� ������������� ������������ ����������� ������������� �������.
���������� ��������� �������� �������������� ������������� ��������������� ����, ������� ���������� ����� ��������� ������� (����������, ������ � ����������).
���� ����� �� �������� ������� ����������, �� �������� ��� ������ ��������� � ���������� � ��������� �� 1000 ����� � ���� ���������� ��������.
���������� ���
������������� �������������� ����������� ���� �������� ������� ���������� ��� ������ �������� �������� ����������� � �������������� �����. �� ����� ����������� � �������� �������� ���� ��� ��������������� ����������� ����� �� ���������� �� ���������� ���������.
� ������ �������� ������ ����� ���������� ��������� �������� ���������������. ������������� ����� ������������� ����� ����������� ��������� �� ��������������� ��������� � ��� ������������� �������, ������� ������������� ��� ���������� � ���������� �����.
�� ���������� ��� ����������� ����� ��������� ������������� �������� ��������. � ����������� ������ ������� �������� ����� ��� �� ������ ����� ����, ������� �������� �������� ����������, ������� ������� � ������������� ��������������, � ������� �������� ��������������� ���������� � ���������� ������.
����������� �������� ���� ������������� ������� ����������, ��� ������ ���������� ������ ����� ����������� ���������� � ������� ��������� �� �������������� ������� ��������.
������� ������ ���� ������:
����������, ������� �������� ������������� ���������������, � ����� �� ������ � ������.
��������������, ������, ������������, ������������ ������ ����������������
�������������������
Источник: https://www.elektro-expo.ru/ru/articles/2016/izmeritelnye-transformatory-toka-i-napryazheniya/