Как работает солнечная электростанция

Солнечные электростанции: готовые решения для дома и дачи

как работает солнечная электростанция

Альтернативные источники энергии используются во многих странах, это уникальные устройства, которые помогают добывать электричество буквально из ничего. Солнечные электростанции считаются самыми простыми и доступными вариантами для домашнего и производственного использования среди других приборов аналогичного типа действия.

Плюсы и минусы

Портативная или стационарная солнечная электростанция – это устройство, которое преобразует энергию Солнца, при помощи фотовольтатики, в электрический ток.

Иногда применяется технология косвенного применения солнечной энергии концентрированного типа в разных механизмах. Чаще всего, солнечные электростанции для дома – это косвенные приборы, зеркала или отражатели лучей.

Их принцип работы основан на том, чтобы большую площадь света сконцентрировать в направленный луч, энергия с которого поступит в хранилище аккумуляторного типа.

Фото — башенная солнечная электростанция

Современные готовые решения солнечных электростанций помогают преобразовать энергию Солнца в ток при помощи специальных фотоэлементов и фотоэлектрических процессов. Батареи работают при использовании систем слежения, которые как бы «улавливают» свет и направляют его в нужную точку.

Преимущества применения солнечных электростанций:

  1. Фотоэлектрические процессы происходят даже тогда, когда на небе тучи. Человеческий глаз не всегда улавливает лучи, пробивающиеся сквозь облака, в отличие от следящих приборов. Это обеспечивает практически беспрерывную работу;
  2. Возможность комбинации нескольких альтернативных источников энергии. Сейчас все чаще используются ветро-солнечные батареи, которые сочетают в себе возможности ветровых и солнечных электростанций. Такой тандем работает в любых условиях, независимо от внешних факторов;
  3. Даже небольшого устройства хватит для питания квартиры или даже загородного коттеджа;
  4. Автономная электростанция на солнечных батареях является бесконечно возобновляемым источником энергии, средний расчет продолжительности работы – 50 лет (модульная схема). Накопительные аккумуляторы могут хранить в себе энергию до тех пор, пока она не понадобится системе, в то время как Солнце каждый день излучает свет – это очень большая экономия ресурсов;
  5. Небольшие СЭС можно строить на частных участках, что является невозможным для ветряков;
  6. Если купить готовые солнечные электростанции для дачи, квартиры, дома, то можно не беспокоиться про их обслуживание – ремонт им не понадобится. Среди всех вариантов альтернативной энергетики, СЭС являются самыми надежными и долговечными.

Помимо этого, Вы сможете использовать в своем жилье столько электрической энергии, сколько Вам необходимо, не беспокоясь о налогах за превышение нормы.

Но, помимо преимуществ, у солнечных электростанций есть и недостатки:

  1. Геотермальные (тепловые) станции довольно дорогие, их сложно купить в отечественных магазинах, в большинстве случаев придется заказывать из-за границы;
  2. Нет возможности использования СЭС ночью. Поэтому нужно иметь большие батареи для хранения энергии;
  3. Главным недостатком систем является то, что даже СЭС с высокой мощностью могут преобразовать только 20 % всей солнечной энергии. Это означает, что Вы теряете до 80 % потенциального электричества. Обратите внимание, что приливные используют до 70 %, а ветряные – до 40.

Чтобы максимально использовать достоинства системы, но при этом обойти недостатки, многие производители предлагают своим клиентам стационарные гибридные системы.

как устроены солнечные электростанции

Какие бывают электростанции

Существуют разные типы СЭС, их классифицируют по конструкции и принципу действия. Виды электростанций:

  1. Солнечные электростанции башенного типа представляют собой высокую конструкцию, на вершине которой расположен резервуар. Эта емкость покрашена в черный цвет, чтобы поглощение солнечной энергии было максимальным, и наполнено водой. По мере воздействия солнечного света, вода испаряется и появляется конденсат. Он поставляется в паровой генератор. КПД этой СЭС – 20 %, это большой показатель для альтернативной добычи ресурсов, поэтому её часто используют промышленные объекты;
  2. Тарельчатого или модульного типа. У неё практически такой же принцип работы, как и у башенной, но она состоит не из сплошного материала, а складывается из нескольких модулей. Монтаж осуществляется на возвышенностях, устанавливается приемник и отражатель. Приемник принимает солнечные лучи и передает их на отражатель, а отражатель преобразует концентрированные лучи в энергию. Этим достижением часто пользуется тепловая энергетика Нидерландов и США (Калифорния);Фото — конструкция модульной СЭС
  3. Солнечную электростанцию с фотобатареями можно легко сделать своими руками. Она состоит из целого ряда фотоэлементов с разными мощностями, размерами и другими показателями. Такие бытовые станции используют в загородных домах, на небольших промышленных объектах, для питания отдельных машин или механизмов. Можно подобрать нужные характеристики и собрать переносные или мобильные СЭС. При этом походная электростанция может представлять собой всего один модуль с подключенными аккумулятором;Фото — бытовые солнечные электростанции
  4. СЭС с концентраторами. Это электростанции, включающие в себя также инверторы. Такое оборудование используется там, где недостаточно солнечной энергии и требуется повышение КПД, чтобы достичь преобразования энергии в нужное количество электричества. Они представляют собой сетевые машины, которые подключены к турбогенератору, и при недостаточном КПД увеличивают концентрацию солнечного света за счет изменения угла приемника;Фото — солнечные электростанции с концентраторами
  5. Солнечные аэростатные или космические электростанции – это последнее слово науки. Это комплекты специальных модулей (приемников и отражателей), которые располагаются за земной орбитой, что позволяет принимать им большее количество солнечного света, чем наземным СЭС. Система очень эффективная, но дорогая;
  6. Комбинированные электростанции. Это ветровые или водяные источники альтернативной энергии, работающие в тандеме с солнечными. Такие устройства легко можно сделать самому, при этом нужно только разработать проект, который будет сочетать в себе принципы всех применяемых систем. Домашняя альтернативная энергетика часто сочетает в себе возможности нескольких видов добычи электроэнергии. Это позволяет экономить время и деньги.Фото — комбинированные электростанции

Обзор цен

Солнечные электростанции можно купить в России, Казахстане, Беларуси и других странах СНГ, но при этом нужно понимать, что не везде нужное количество ресурсов (как в «Перово» в Крыму и в «Агачская СЭС» в Алтае).

Фото — Агачская СЭС

Рассмотрим, сколько стоит СЭС в разных городах Российской Федерации:

Город Стоимость, (цена указана в рублях), 6кВт
Краснодар 942 000
Алматы 945 000
Екатеринбург 956 000
Москва 950 000
Сочи 945 000

Продажа солнечных электростанций в основном осуществляется известными компаниями-производителями альтернативных источников энергии, такими как Activ Solar и т. д. При этом гораздо чаще в бытовых условиях используется самодельная СЭС, состоящая из отдельных модулей, соединенных между собой кабелями. При желании можно найти инженеров, способных разработать персональный проект по договорной цене.

Обсудить на форуме

Источник: https://www.asutpp.ru/solnechnye-elektrostancii.html

Солнечная энергетика стала круглосуточной

как работает солнечная электростанция

Photo: torresolenergy.com

Противники использования энергии солнца частенько ехидно вопрошают: «А ночью-то электричество откуда брать?» Действительно, до недавнего времени проблема обеспечения непрерывной в течение суток выработки электроэнергии на солнечных электростанциях существовала, но сейчас она решена на основе совершенно новой технологии. На солнечной электростанции Gemasolar в испанской Севильи, тепловая энергия запасается в резервуаре с расплавленными солями, позволяя продолжать выработку электроэнергии в течение 15-и часов в отсутствии солнечного освещения.

Первая круглосуточная

Первая круглосуточная солнечная электростанция Гемасолар (Gemasolar) была введена в строй на юге Испании в провинции Севилья в мае 2011 года.

Photo: torresolenergy.com

Электростанция относится к «башенному» типу. Она состоит из центральной башни, на которую солнечную энергию направляют 2650 управляемых компьютером зеркал-гелиостатов площадью 304750 кв. м, расположенных в круге радиусом полтора километра (обозначены на схеме цифрой «1»). Теплоносителем является смесь расплавленных солей – нитратов натрия и калия. Ранее похожие теплоносители рассматривались для применения в ядерных реакторах, но солнечная энергетика и тут опередила ядерную.

Photo: torresolenergy.com

«Холодный» резервуар (2) содержит расплавленные соли при температуре 290 0С. Теплоноситель закачивается на вершину башни (3) выстой 140 метров, где нагревается солнечной энергией на 275 0С – до 565 0С. Затем теплоноситель поступает в «горячий» резервуар (4), оснащённый хорошей теплоизоляцией. По мере надобности горячие расплавленные соли прокачиваются через парогенератор (5), где, охлаждаясь, отдают свою энергию пару, который подаётся в турбину (6) и участвует в выработке электроэнергии как на обычной электростанции.

Photo: Gemasolar

Мощность электростанции 19,9 мегаватт. Технология сохранения тепла позволяет турбине работать без притока солнечной энергии в течение 15-и часов, то есть электростанция обеспечивает непрерывную выработку электроэнергии и в тёмное время суток, как летом, так и зимой. В год электростанция работает 6500 часов (при КИУМ 63%). За год вырабатывает 110 гигаваттчас электроэнергии, что достаточно для обеспечения электричеством 25 тысяч домохозяйств и предотвращая выброс 30 тысяч тонн СО2.

Два года успешной работы

«В течение первых двух лет работы солнечной электростанции Gemasolar, в 2011 и 2012 годах производительность станции соответствовала нашим ожиданиям», – сообщил в интервью для Беллоны.ру Хуан Игнасио Бургалета Ордонез (Juan Ignacio Burgaleta Ordónez), технический директор электростанции. «Мы произвели две запланированные остановки электростанции для обслуживания, в январе 2011 и декабре 2012 года. Сейчас электростанция работает в нормальном режиме», – пояснил он.

Photo: Gemasolar

К примеру, 6 июля 2011 года за сутки электростанция произвела 414 МВтч электроэнергии, что более чем на треть превысило при ожидаемое среднесуточное производство (302 МВтч).

Хуан Игнасио Бургалета Ордонез любезно предоставил графики реальной выдачи электроэнергии 17-18 мая 2011 года и выдачи электроэнергии в период 11-17 июня 2012 года.

Красные линии на графиках наглядно показывают как наличие резервуара с расплавленными солями позволяет сглаживать суточную неравномерность поступления солнечной энергии и добиться стабильного производства электроэнергии ночью и в редкие в Севилье пасмурные дни.

Photo: Gemasolar

Проект Гемасолар реализован компанией Torresol Energy, совместным предприятием энергетической кампанией из Абу-Даби Masdar и испанской SENER. Стоимость проекта оценивается в 230 млн. Евро. В дальнейшем при массовом производстве стоимость оборудования будет снижаться. Можно ожидать дальнейшего строительства подобных электростанций как на Аравийском полуострове, так и в странах Средиземного моря.

Какой источник энергии!

Солнечные электростанции не требуют топлива, не производят отходов, но чувствительны к климату. К сожалению, даже на юге России природные условия не благоприятны для эффективного масштабного использования технологии «башенных» солнечных электростанций.

Однако в соседних странах Центральной Азии (Узбекистане, Казахстане, Киргизии, Таджикистане) подобные электростанции вполне могут использоваться уже сейчас. Эксперты полагают вполне перспективной строительство солнечных электростанций в пустыне Сахара для обеспечения Евросоюза солнечным электричеством.

Точно так же Россия могла бы участвовать в сооружении солнечных электростанций в пустынях Кара-кум, Арал-кум, Кызыл-кум, но, подобные проекты пока даже не обсуждаются.

К сожалению, у нас всё ещё популярна идея 1960-х годов: пытаться развивать термоядерную энергию, «зажигать Солнце на Земле». Это довольно странно и не логично, ибо Солнце должно находиться на своём месте, а на Земле следует просто научиться максимально безопасно и эффективно использовать солнечную энергию.

«Я бы вложил свои деньги в солнце и солнечную энергию. Какой источник энергии!», – сказал Томас Эдисон ещё в 1931 году. «Я абсолютно уверен, что солнечная энергия станет основным источником электроэнергии к концу нынешнего столетия», – считает лауреат Нобелевской премии, академик Жорес Алферов.

Но по какой-то странной причине значительная часть инвестиций на научные разработки всё ещё достаётся «ядерщикам», производящим огромное количество радиоактивных отходов и строящим регулярно выбрасывающие радионуклиды реакторы или «термоядерщикам», кормящим правительства и общественность обещаниями уж более пятидесяти лет, но так и не построивших ни одной коммерческой электростанции.

Хорошо, что нашлись умные люди в Испании и ОАЭ, которые последовали совету Томаса Эдиссона и вложили деньги в солнечную энергетику. Ведь чем больше на Земле будет солнечных электростанций, тем меньше мы будем сжигать угля и газа, меньше строить гигантских плотин или опасных атомных электростанций.

Источник: https://bellona.ru/2013/03/08/solnechnaya-energetika-stala-kruglosu/

Солнечная электростанция для частного дома

как работает солнечная электростанция

Если вы являетесь счастливым обладателем своего загородного дома или планируете его строительство, скорее всего, вам не раз приходилось задумываться над вопросами электроснабжения своего жилища.

Слишком часто бывает так, что мощность ближайшей подстанции не позволяет обеспечить всех желающих электроэнергией и связано это с тем, что степень изношенности многих подстанций сегодня высока, а аппетиты городов и посёлков постоянно увеличиваются в связи со строительством новых зданий и частных домов.

Лампочка горящая в полнакала, перепады и скачки напряжения, которые несут угрозу для всех бытовых приборов в доме, а то и вовсе отключение света. 

Столкнувшись в очередной раз со всеми недостатками централизованных сетей электроснабжения частного дома, мы поняли, что генерация своей собственной электроэнергии станет для нас наиболее разумным решением. Вариантов было несколько: дизель-генератор, ветровая или солнечная электростанции. От установки дизель-генератора отказались по понятным причинам – шумно, да и невозможно использовать дизель-генератор как основной источник электроэнергии.  Это решение больше для аварийных ситуаций.

Ветровая электростанция. Одним из главных критериев для ее установки  являются требования к ветру. Среднегодовая скорость ветра должна быть около 4.0-4.5 м/с., этого показателя должно быть достаточно для того, чтобы домашняя ветряная электростанция была выгодна в использовании. Среднегодовая скорость ветра в Псковской области достигает 2,0 м/с да и то в зимний период. В другие времена года эти значения были еще ниже. 

Для справки:
Среднегодовая или среднемесячная скорость ветра – это усредненный показатель, рассчитанный на основе 10-летних наблюдений. Скорость ветра измеряется на высоте 10 метров от поверхности земли. Эти показатели сильно отличаются в различных регионах страны и напрямую влияют на эффективность использования ветрогенераторов и электростанций на основе энергии ветра.

Солнечная электростанция. В основе расчета солнечной электростанции нужно учитывать два параметра. Это необходимая мощность потребления и количество солнечных дней в году. Исходя из этого необходимо сначала определить сколько понадобится электроэнергии, и сколько дней в году будет работать система. 

Инсоляция определяет количество солнечных дней в году. От этого будет зависеть мощность и количество электроэнергии, генерируемой солнечными батареями. Уровень инсоляции для Псковской области оставляет 3-3,5 кВт*ч/м2/сутки, что уже неплохо. Теперь посмотрим график распределения инсоляции в году.

Пиковые значения солнечных дней в году приходятся на май, июнь и июль. В зимний период солнца значительно меньше (данные взяты  для Псковской области, значения уровня инсоляции могут варьироваться от региона к региону). 

Вот такие исходные данные мы получили. И, при весьма скромном бюджете, решили всё-таки реализовать данный проект. Что у нас получилось, с какими трудностями пришлось столкнуться — читайте далее. 

Есть три основных типа солнечных электростанций: сетевые, автономные и гибридные.

Сетевая солнечная электростанция работает без аккумуляторов и используется для уменьшения оплаты за сетевую электроэнергию.  Принцип работы прост:  выработанную от солнца электроэнергию она направляет во внутреннюю сеть, из промышленной сети берется только недостающая мощность. 

Автономная солнечная электростанция строится для электроснабжения там, где нет промышленной сети. Выработанную солнечную энергию она направляет на питание потребителей, а избытки запасает в аккумуляторных батареях. В темное время суток все электроснабжение осуществляется от аккумуляторов. 

Гибридная солнечная электростанция – это комбинированный тип сетевой и автономной солнечных электростанций. Днем солнечная энергия направляется во внутреннюю сеть, уменьшая потребление. Ночью система переходит на питание от промышленной сети или аккумуляторов. При отключении промышленной сети система работает как автономная солнечная электростанция  – энергоснабжение объекта не прерывается и осуществляется от солнечной и запасенной в аккумуляторах энергии. 

ЭТО ИНТЕРЕСНО:  Как выбрать стабилизатор напряжения

В нашем проекте была использована гибридная солнечная станция. Это позволило решить проблему малого количества солнечных дней в зимний период. Но главное – весь год мы теперь не зависели от некачественной сети. И при отсутствии в ней электричества, электроснабжение дома не прерывалось.

Принцип работы гибридной солнечной электростанции

Система состоит из трёх элементов: солнечные панели, аккумуляторы и гибридный инвертор.

Основа всего — гибридный инвертор, который способен в потребляемую от внешней сети энергию «подмешивать» энергию, выработанную солнечными панелями.

Принцип работы таков: дом потребляет энергию от солнечных панелей, но при ее нехватке использует мощности внешней сети. Когда внешняя сеть отсутствует, гибридный инвертор переходит на автономную работу, при которой используется энергия солнечных панелей и энергия аккумуляторов.

Остановимся подробнее на каждом элементе солнечной электростанции.

Список оборудования получился следующим:

  • Солнечная батарея 200Вт  — 4 шт;
  • Гибридный солнечный инвертор SILA 3000M Plus  — 1 шт;
  • Аккумулятор SunStonePower ML12-200 – 2 шт.

Дополнительное оборудование:

  • 7 x Кабель солнечный 6 мм2 ( черный );
  • 7 x Кабель солнечный 6 мм2 ( красный );
  • 2 x Коннектор MC4 30A;
  • 1 x Балансир заряда двух АКБ 12 Вольт;
  • 1 x Коннектор МС4 Y-3;
  • 3 x Диод шоттки МС4 10А;
  • 1 x Перемычка для аккумуляторов 260/25 под болт М8;
  • 2 x Перемычка для аккумуляторов 1500/25 под болт М8;
  • 1 x Предохранитель ANL 200А;
  • 1 x Держатель предохранителя ANL;
  • 1 x УЗИП постоянного тока 2Р;
  • 1 x Предохранитель FDS-32;
  • 1 x Держатель предохранителя FDS-32.

Собирали систему самостоятельно.

Чаще всего, солнечные панели устанавливают на крышах домов, гаражей или хозяйственных построек. Эффективность производства электроэнергии при неправильной установке может сильно снижаться, поэтому необходимо учитывать следующие правила:

  1. На солнечные батареи не должна падать тень от близлежащих зданий, деревьев или опор ЛЭП.
  2. Летом панели должны быть повернуты на юг, зимой – на юго-восток.
  3. Панели необходимо устанавливать на подвижные основания, за счет которых можно будет регулировать угол наклона.

Все четыре солнечные батареи  мы разместили на крыше надворной постройки. Место установки было выбрано неслучайно, так как солнечные панели нужно направить на  юг, чтобы они получали больше солнца в течение всего дня.

Перед установкой нужно тщательно продумать расположение компонентов солнечной электростанции. Протянуть провода от панелей до места расположения инвертора. Провода выбрали сечением 6 мм², так как по ним будет передаваться напряжение до 100 В и ток 25–30 А. Такой запас по сечению позволяет минимизировать потери на проводе.

Солнечные панели были собраны в две группы по две панели в каждой.

Группы панелей между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения — называются MC4. 

Коннектор MC4 30A

Подключение гибридного инвертора  производится с нижней стороны на клеммные колодки и винтовые зажимы:

На передней панели находятся четыре кнопки управления режимами индикации и управления инвертором.

Индикация — дисплей у инвертора LCD и дает полную информацию о состоянии и параметрах во время работы системы. На дисплее отображается схема работы, напряжение и частота входа и выхода по высокому напряжению, потребляемая мощность нагрузки, генерируемая мощность солнечных панелей, напряжение аккумуляторной батареи и потребляемый от нее ток.

Также, на передней панели выведены три светодиода для информирования о состоянии основных режимов работы инвертора.

Помимо органов управления, инвертор обеспечивает легкую и доступную настройку и визуализацию рабочих процессов через ПО, скачать которое можно на сайте производителя. Подключается инвертор к компьютеру через шнур (идет в комплекте поставки) к порту RS232. Если у вас нет данного порта, то нужно дополнительно приобрести переходник USB-RS232.

Установленное ПО автоматически находит подключенный инвертор. Выглядит оно следующим образом:

А вот здесь можно произвести точную настройку инвертора под Ваши задачи:

Этот комплект может выдать до 3 кВт мощности в автономном режиме. Если приобрести такой же инвертор, то можно нарастить мощность до 6 кВт на фазу.

Типовой состав потребителей:

  • освещение 200 Вт до 5 часов в сутки;
  • телевизоры 200 Вт до 5 часов в сутки;
  • ноутбук и телефон 100 Вт до 5 часов в сутки;
  • компьютер 300 Вт до 5 часов в сутки;
  • холодильник 100 Вт до 24 часов в сутки;
  • циркуляционный насос 100 Вт до 12 часов в сутки;
  • стиральная машина 1000 Вт 1 час в сутки.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:
Тип Солнечная электростанция SILA-V
Максимальная мощность 3 кВт
Выходное напряжение 220 Вольт
Общая емкость АКБ 2 x 200Ач
Тип АКБ AGM, необслуживаемый
Срок службы АКБ 10 лет
Общая мощность солнечных батарей 4 x 200 Вт
Тип солнечных батарей поликристаллический

И вот, все смонтировали. Переходим в режим настройки. Готовых вариантов работы данного инвертора предостаточно и любой сможет найти для себя самый подходящий режим работы. Для этого есть вполне подробная инструкция. Мы остановились на приоритете от солнечных панелей и АКБ.

Также, при отсутствии внешней сети, система переходит на работу от инвертора. Таким образом, при увеличении емкости  АКБ и мощности солнечных панелей, у нас в автоматическом режиме получается экономить больше энергии.

И чем больше заряжены АКБ, тем дольше система может работать автономно. 

Опыт эксплуатации в различных режимах и в разное время года показал, что оно того стоило. Многократные отключения от внешней сети прошли для нас незаметно. А когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, мы обязательно в нем поучаствуем. Но это совсем другая история.

Экономика проекта

Источник: https://nag.ru/articles/article/105248/solnechnaya-elektrostantsiya-dlya-chastnogo-doma.html

Как работает солнечная электростанция?

Принципы функционирования СЭС зависят от их разновидности. Наиболее популярны станции на модулях из фотоэлементов и варианты башенного типа. Первая разновидность активно используется для частных домов и небольших предприятий, вторая предназначена для снабжения энергией целых регионов. Чтобы разобраться, как работают солнечные электростанции, следует изучить их особенности.

Солнечные электростанции — как это работает?

Чтобы узнать, как это работает, начнем с солнечной электростанции, использующей фотоэлектрические модули. Основная деталь батарей – это фотоэлементы, основой которых служит тот или иной полупроводник. Именно они дают возможность преобразовывать солнечную энергию в электричество.

Фотоэлемент состоит из двух (или более) слоев, которые отличаются различной пропускной способностью. Одни слои имеют на внешних орбитах атомов лишние электроны (n-слой), а второму не хватает этих частиц (p-слой).

Солнечная энергия в виде фотонов, попадая на поверхность панели, воздействует на фотоэлементы, благодаря чему электроны из n-слоя выбиваются и перемещаются в открытые ячейки p-слоя. Дальше эти частицы проходят через аккумулятор и возвращаются обратно в n-слой, а в цепи возникает электрический ток. На этом круг замыкается, и процесс начинается сначала.

Первым материалом, который использовали в солнечных батареях, был селен. Но элемент отличался низким коэффициентом поглощения и выдавал КПД около 1%., из-за чего использовать его для экономически выгодной переработки солнечной энергии было нецелесообразно.

На замену селену пришел кремний, КПД которого ныне доведено до 20-22%, благодаря чему удалось запустить массовое производство панелей.

Сейчас для переработки солнечной энергии используют разные химические элементы – как добываемые из руды, так и синтезируемые искусственно.

Основными из них (в различных комбинациях) на сегодняшний день являются:

  • кремний (монокристаллический, поликристаллический или аморфный);
  • теллурид кадмия;
  • индий;
  • медь;
  • галлий;
  • германий;
  • органика.

Чтобы получить достаточную мощность для питания электроприборов, фотоэлементы соединяются в блоки, и образуется солнечная батарея. При поломке одной детали ее легко заменить без вреда для всей конструкции. Для защиты от внешней среды панель запаивается в особо прочное закаленное стекло.

Принцип действия солнечных электростанций башенного типа?

Станции башенного типа отличаются от СЭС на фотоэлементах. Работа конструкции направлена на получение перегретого водяного пара, вращающего турбину, с помощью сфокусированного на ней солнечного излучения. Пар вырабатывается в металлическом баке, на который направляется свет, отраженный от сотен и даже тысяч зеркал. Башня с баком располагается в центре системы, вокруг которой концентрическими кругами размещаются большие и идеально отполированные зеркала.

Бак окрашивается в черный цвет для максимального поглощения излучения, а температура превращающейся в пар воды достигает 600-700 градусов. В башне находятся насосы, которые перемещают воду к турбогенератору – он располагается уже за пределами сооружения.

Большинство обывателей все равно не понимают, как работают солнечные электростанции башенного типа. Особенность таких СЭС — в зеркалах гелиостатах, которые размещаются вокруг башни с соблюдением определенного интервала. Гелиостат – это зеркало, размером в несколько метров, закрепленное на специальном основании. Вся система меняет свое положение в зависимости от места нахождения солнца на небе.

проблема СЭС башенного типа – размещение гелиостатов таким образом, чтобы в любое время лучи от зеркал, отражались строго на бак по законам преломления света. Такие солнечные электростанции обеспечивают высокий КПД до 20 % и хорошую мощность.

В нашем блоге вы можете узнать как рассчитать мощность солнечной электростанции.

Солнечные электростанции в Украине

Эффективные солнечные станции производит компания First Solar – эксклюзивный представитель Green Tech Trade в Украине. Модули функционируют на фотоэлементах, но в том, как работает солнечная электростанция от First Solar, есть несколько нюансов.

Основой батарей служит не кремний, а теллурид кадмия. Поэтому тонкопленочные монокристаллические панели способны эффективно генерировать энергию даже в пасмурную погоду, на что их кремниевые конкуренты не способны.

  Заказать бесплатный расчет и профессиональный монтаж уникальных модулей можно на официальном сайте компании.

Источник: https://greentechtrade.com.ua/ru/kak-rabotaet-solnechnaya-elektrostantsyya/

Может ли солнечная электростанция вырабатывать электричество по ночам?

Электростанции, работающие на основе солнечной энергии, являются, пожалуй, одной из самых перспективных отраслей, занимающихся выработкой экологически чистой энергии. Однако есть у них один весьма существенный недостаток: в облачную погоду или ночью они «простаивают». А можно ли заставить их работать и в темное время суток? Давайте разбираться.

Как энергостанции будут вырабатывать энергию ночью

Как передает редакция издания Phys.org, благодаря совместным усилиям специалистов из Университета Кертин (Австралия), а также компаний United Sun Systems и ITP Thermal был разработан новый тип термальной батареи, который и поможет электростанциям работать на полную мощность даже в условиях ночи.

«Хранение возобновляемой энергии уже давно является камнем преткновения энергетической сферы, но наш прототип тепловой батареи способен хранить и по мере необходимости выделять солнечную энергию в любое время суток», — сказал один из авторов работы профессор Крейг Бакли.

Что такое термальная батарея и как она работает

Термальная батарея может запасать энергию и хранить ее до тех пор, пока, грубо говоря, «энергии солнца не окажется недостаточно». В этот момент ранее накопленная энергия идет на работу электростанции вместо энергии солнца. После того, как солнце снова сможет обеспечивать полноценную работу турбин станции, батарея снова начнет накапливать заряд.

: Как рождается энергия Солнца?

На самом деле, идея разработки подобной батареи не нова. На сегодняшний день в солнечных электростанциях уже используются литиевые батареи. Но они применяются лишь в качестве запаса и отдают ее для нужд питаемых объектов также, как и ваш телефон начинает терять заряд после того, как вы отключите его от источника питания. В случае с термальной батареей же все гораздо интереснее.

«В то время, как литиевая батарея хранит электрическую энергию, которая может быть использована для обеспечения электроэнергией, когда солнце не светит, термальная батарея хранит тепло от накопленного солнечного света. Это может быть использовано для работы турбины, которая будет производить электроэнергию. Эта технология позволяет получать до 46 кВт энергии и идеально подходит для удаленно расположенных промышленных предприятий или населенных пунктов.»

Сохранение энергии происходит следующим образом: когда солнечная энергия имеется в избытке, она запасается в топливных элементах на основе газообразного водорода. В тот момент, когда наступает ночь или небо застилается тучами, водород вступает во взаимодействие с ионами металлов.

Из-за разницы в температурах между водородом и металлом, происходит реакция с образованием гидрида (то есть соединение металла с водородом), в результате которой выделяется тепло. Именно оно и идет на питание турбины электростанции.

После остывания водород и металл разъединяются, позволяя вновь накапливать солнечную энергию.

Таким образом получается, что солнечная энергия просто «запасается» для работы установки и позволяет получать электричество (с минимальными потерями) в темное или пасмурное время суток.

Обсудить эту и другие новости вы можете в нашем чате в Телеграм.

Источник: https://hi-news.ru/technology/mozhet-li-solnechnaya-elektrostanciya-vyrabatyvat-elektrichestvo-po-nocham.html

Принципы работы СЭС. Солнечные электростанции: строение и принцип действия

Солнечные электростанции достаточно инновационное оборудование. Они составлены из большого количества элементов, принципы работы которых неизвестны большинству владельцев.

На самом деле для большинства главнее понимать, что оборудование исправно и в дальнейшем приносит прибыль, а то, каким образом это происходит не всегда интересно.

Но хотим отметить, что по такому высокотехнологичным оборудованием необходимо следить и выявлять неисправности. Для этого все же надо знать принцип работы солнечной электростанции.

В этой статье мы постараемся раскрыть данную тему и ответить на вопрос, а как все же работают солнечные батареи?

Принцип действия солнечных электростанций

Сегодняшние солнечные батареи составленные из ряда фотоэлементов, которые являются полупроводниковыми устройствами и в момент получают и превращают солнечную энергию в электроэнергию. Сам процесс преобразования принято называть фотоэлектрическим эффектом.

Данное открытие было зафиксировано в 19 в. физиком Беккерелем, а позже Эйнштейн полностью описал данный вид получения электроэнергии. Правда, огромную популярность в мире солнечные электростанции получили только в 21 в. Это связано с изобретением оборудования, одновременно эффективно используется и стоит достаточно недорого.

Вообще многие ученые работали в этом направлении, но основные достижения были получены Беккерелем, Столетовым и Эйнштейном.

Полупроводник, о котором мы уже упоминали ранее — это материал, составленный из атомов, в которых или есть лишние электроны, или их не хватает. Сам полупроводник имеет два слоя с разной проводимостью.

Если вспомнить школьные предметы физику и химию, то там мы наткнемся на составляющие атомов катод и анод.

Так как полупроводник составленный из двух слоев, в которых либо не хватает или имеются лишние электроны, то лучи солнца, попадая на такую ​​поверхность, приводят круговое движение электронов из атомов. Все движение проходит сквозь аккумулятор, который и оставляет в себе часть энергии.

В теории принцип работы солнечной электростанции достаточно прост. Конечно, все вышеописанные действия проходят очень массово и проследить за которыми без оборудования невозможно. Отдельные фотоэлементы очень слабые по отдельности, поэтому мы и видим большие солнечные батареи, визуально составленные из квадратиков.

Чтобы защитить поверхность солнечных батарей, ее накрывают прозрачным стеклом или пластиком. Это ни в коем случае не влияет на эффективность батареи, а лишь значительно увеличивает ее долговечность.

Солнечная электростанция и принцип работы — энергетическая инновация современного мира

Солнечные электростанции — это действительно прогресс 21 ст. ведь наша планета долго не выдержит все прихоти человечества. Получение энергии из бесконечного источника, на наш взгляд, идеальный вариант. Принцип действия солнечных батарей направлен на получение электроэнергии

  • Экологически чисто;
  • Бесплатно;
  • Работают от восхода солнца до его заката;
  • Не требуя обслуживания;
  • Стабильно;
  • долговечны.

Вот такими принципами руководствуются солнечные электростанции. Их нередко называют одной из самых перспективных инвестиций во всем мире. Принцип действия солнечных электростанций, изобретенный в 19 в., Сегодня приобрел колоссальный и положительной репутации, которая определяет вложения в СЭС, как надежное инвестирование. Наша компания поможет и Вам зайти на этот рынок инноваций и быть в том числе счастливых энергетически независимых людей.

ЭТО ИНТЕРЕСНО:  9 квт 380в какой автомат

Источник: https://kssolar.com.ua/ru/blog/solnechnye-elektrostantsii-stroenie-i-printsip-dejstviya

Как работают различные типы солнечных электростанций

19.07.2019

:

При словосочетании “солнечная электростанция” большинство читателей представляет систему из черных, прямоугольных панелей, расположенных в пустыне или на крыше дома. Однако в широком смысле солнечной электростанцией может называться любое устройство, способное тем или иным образом трансформировать тепло и свет солнца в электричество. Именно поэтому существуют разные виды солнечных электростанций, использующих различные способы такой трансформации. 

Солнечное электричество: доступное и разнообразное

Извлекать пригодную для бытового использования электроэнергию из солнечных лучей можно различными методами, технология не ограничивается фотоэлектрическими панелями. Конечно, большинство конструкций слишком сложны или дорогостоящие, чтобы применять их в домашних СЭС, но в некоторых регионах мира на их основе работают полноценные промышленные генераторы. Ниже мы расскажем, как устроены солнечные электростанции: преимущества, недостатки и принцип работы.

Как устроены фотоэлектрические электростанции

Фотоэлектрические электростанции наиболее узнаваемы и распространены по всему миру. Это те самые “черные, прямоугольные панели”, которыми обвешаны крыши европейских домов и усеяна Невада. 

Как работает солнечная электростанция такого типа объясняют на уроках физики — в основе фотоэлектрической технологии лежат кремниевые полупроводники, способные извлекать энергию фотонов из потока света, которая затем трансформируется в электрическую. За счет этого СЭС может эффективно работать даже зимой — температура воздуха не важна, достаточно только солнечного света. 

Благодаря компактности и дешевизне технологии, купить солнечную станцию можно практически в любом регионе мира по доступной для среднестатистического покупателя стоимости. Из недостатков фотоэлектрических модулей можно назвать:

  • Деградацию полупроводников — со временем они разрушаются и КПД фотоэлектрической СЭС будет постоянно падать; 
  • Относительно невысокую эффективность — большинство панелей выдает 20-24% КПД.

Правда, в защиту фотоэлектрических панелей можно сказать, что технология постоянно развивается, поэтому их стоимость устойчиво падает, а КПД растет — уже есть прототипы с производительностью до 44-46%. 

Что такое параболоцилиндрические концентраторные солнечные электростанции

В основе параболоцилиндрической солнечной станции лежит большое по площади параболическое (полукруглое) зеркало с внутренней отражающей поверхностью. Зеркало фокусирует солнечные лучи на специальный цилиндрический резервуар с тепловым агентом. За счет концентрации лучший теплоагент нагревается и испаряет воду, пар крутит турбину генератора. 

Как работает солнечная электростанция с парабольными зеркалами проверяли в Калифорнии в 80-х, но позже от нее отказались как от нерентабельной и малоэффективной. Однако в регионах с более высокими температурами параболоцилиндрические СЭС используются до сих пор.

Такая станция на 500 мВт и с полумиллионом зеркал работает в марокканской Сахаре. 

Башенные электростанции

Башенные СЭС появились как дальнейшее развитие применения зеркал в получении и трансформации солнечной энергии.

Это крупные солнечные электростанции, принцип работы которых построен на кипячении воды: в центре СЭС стоит башня, на вершине которой резервуар с водой, вокруг нее расположены сотни (или тысячи) отражающих солнечный свет гелиостатов.

Гелиостаты автоматически корректируют угол наклона, чтобы концентрировать свет на резервуаре с водой, при нагревании вода испаряется, а пар крутит турбину генератора. 

Особенности:

  • Как и в параболоцилиндрических, КПД башенных СЭС зависит от температуры окружающей среды.
  • Для нормальной работы требуется большая площадь и сложные системы авторегулирования отражателей.

Крупнейшая башенная электростанция построена на территории Израиля. При высоте башни в 240 м и 500 зеркалах она может вырабатывать до 121 мВт электроэнергии. В 2011-м в Испании тестировалась усовершенствованная технология с соляным теплоносителем вместо воды, такое нововведение позволяет СЭС работать круглосуточно, а не только на протяжении светового дня. 

Чем отличаются тарельчатые электростанции

Тарельчатые электростанции используют тот же принцип работы, что и башенные, но в их конструкции нет центрального элемента — башни. Вместо нее на каждом гелиостате в точке фокуса солнечных лучей установлен фотонный двигатель Стирлинга. То есть солнечная электроэнергия вырабатывается не централизованно, а каждой зеркальной “тарелкой”, после чего подается в общую сеть. 

Технология относительно новая и тестировалась швейцарскими разработчиками в 2015-м на юге Африки. Несмотря на то, что тарельчатые СЭС имеют те же недостатки, что и башенные, их КПД за счет применения фотонных двигателей возросло до 34% — больше, чем у средних фотоэлектрических панелей. 

В более простых и дешевых аналогах двигатель Стирлинга заменяется на резервуар с теплоносителем, который испаряет воду, а пар крутит турбину генератора. Однако КПД в таких моделях ниже. 

Солнечно-вакуумные электростанции: 100% экологические

Вообще, принцип работы солнечной электростанции данного типа был запатентован во Франции еще в 29-м году прошлого века. Такая СЭС генерирует энергию за счет естественного движения теплого воздуха вверх (в область низкого атмосферного давления). Работает это так: 

  1. Стеклянным куполом накрывается большой участок земли. В центре купола устанавливается высокая труба с турбиной. 
  2. При попадании солнечных лучей температура внутри купола растет, а разогретый воздух устремляется вверх через трубу.
  3. Этот поток воздуха крутит турбину генератора, установленную в трубе.

Как можно понять, конструкция максимально проста и не может повлиять на окружающую среду. Однако распространения солнечно-вакуумные электростанции не получили, поскольку:

  • Требуется высокая температура окружающей среды;
  • Купол должен накрывать большую площадь, а это сложно и дорого; 
  • У таких СЭС невысокий КПД.

Экспериментировать с технологией попытались в Китае, где в 2010-м возвели крупнейшую в мире солнечно-вакуумную электростанцию. В результате, чтобы получить 200 кВт энергии, потребовалось накрыть куполом почти 280 Га земли. 

Что такое комбинированные солнечные электростанции

Комбинированными СЭС называют системы, которые используются не только для генерации электричества, но и обеспечения других видов энергоснабжения (как правило, для подогрева воды). Комбинированная станция может включать фотоэлектрические панели и гелиоконцентраторы, которые справляются с подогревом эффективнее. 

Правильно выбранная и установленная комбинированная солнечная электростанция (отзывы подтверждают это) может обеспечить:

  • электроэнергию;
  • горячее водоснабжение;
  • отопление дома.

При наличии достаточного количества модулей и уровня солнечной активности в регионе комбинированные СЭС способны сделать частный дом полностью энергоавтономным или как минимум сократить коммунальные расходы. 

Источник: https://altshop.in.ua/blog/kak-rabotayut-razlichnye-tipy-solnechnyh-elektrostantsij

Солнечные батареи: как это работает

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечная термальная электростанция в испанском городе Севилья

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.

Схема работы фотоэлемента

Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.

Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов

Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.

Мобильный телефон Samsung E1107 оснащен солнечной батареей

Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.

Наручные часы Citizen Eco-Drive с солнечной батареей вместо циферблата

Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.

Монтаж солнечных панелей на крыше жилого дома

В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.

Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.

Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).

Портативная солнечная панель Solarland мощностью 130 Вт и стоимостью $860

Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).

Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западного

На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.

Солнечную батарею Voltaic можно носить у себя за спиной

А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.

«Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф

Крупнейшие производители

Источник: https://itc.ua/articles/solnechnyie-batarei-kak-eto-rabotaet/

Орбитальная электростанция: между фантастикой и планированием

Средства массовой информации Китая рассказали о намерении страны построить орбитальную солнечную электростанцию и начать передачу энергии из космоса на Землю уже к 2030 году. Так что можно прекращать качать нефть и добывать уголь, впереди мир ждет много чистой, возобновляемой, а в перспективе очень дешевой электроэнергии? «Известия» разобрались в ситуации.

Солнце. Практически неисчерпаемый источник энергии под боком у человечества. Проекты использования солнечной энергии человечество копит с античности, и до последних лет пятидесяти их все отличали два основных критерия: принципиальная возможность и неэффективность. Панели солнечных батарей были созданы уже более ста лет назад, но и до сих пор количество солнечных электростанций в общем количестве энергообеспечения нашей планеты относительно невелико.

Есть несколько серьезных причин, мешающих повсеместному распространению солнечных электростанций. Во-первых, это атмосфера и погодные явления, сильно снижающие эффективность использования. Даже в самый ясный день земная атмосфера минимум на 36% уменьшает количество получаемого фотоэлементами солнечного света, а про плохую погоду, когда фотоэлементы практически бесполезны, и говорить не стоит.

Еще одна серьезная проблема — это невозможность использовать солнечную энергию постоянно. В ночное время электростанция опять же стоит без дела, что приводит к ее сильному удорожанию. Требуется наличие аккумуляторов для хранения выработанной за дневное время энергии и специальной сети подстанций для сглаживания пиков потребления.

Кроме того, солнечные электростанции обладают большей эффективностью при расположении ближе к экватору, в идеале в пустынях, а значит, требуется передавать энергию к пользователям на значительные расстояния.

Остаются еще регулярная необходимость очистки фотоэлементов или зеркал от пыли, необходимость постоянно поворачивать их для максимального получения солнечных лучей и до кучи вопросы экологов.

Большую часть этих проблем можно было бы решить, просто запустив солнечную электростанцию в космос, что и собирается сделать Китай. Впрочем, при этом возникнет много других, возможно, еще более сложных вопросов.

Космический концепт

Судя по имеющейся информации, ничего кардинально нового китайцы пока не придумали. Подобные идеи выдвигаются учеными и инженерами по всему миру уже более 70 лет.

Если вкратце, предлагается вывести на околоземную орбиту космическую станцию с большим количеством солнечных панелей, которые преобразуют энергию фотонов нашего светила в постоянный электрический ток.

Всё точно так же, как на Международной космической станции, только в гораздо больших размерах собственно космического аппарата и количестве получаемой энергии.

Единственным принципиальным отличием является то, что орбита будущей электростанции должна быть геостационарной, она пролегает в 35 786 км от поверхности Земли. Тогда скорость полета электростанции будет совпадать с вращением Земли и станция будет находиться всё время над одним местом на поверхности нашей планеты.

На такой же орбите чаще всего работают спутники связи, организующие вещание в конкретном регионе. Кроме того, подобная орбита хороша еще и небольшим количеством космического мусора.

На Международной космической станции солнечные панели достаточно быстро (менее чем за 10 лет) выходят из строя и теряют эффективность за счет повреждения фотоэлементов микроскопическими частицами космического мусора.

За счет размещения на орбите, вне действия плотных слоев земной атмосферы, станция окажется гораздо эффективнее, чем земная электростанция таких же размеров. «Если вы поставите солнечные панели в космосе, они будут работать 24 часа в сутки, семь дней в неделю, 99,9% времени в году», — говорит Пол Яффе, космический инженер Научно-исследовательской лаборатории ВМС США, работающий над подобным проектом по заказу американских военных. Его слова приводит Business Insider.

За счет того что в космосе нет атмосферы, солнечные панели работают на 36% эффективнее. За счет отсутствия ночей и плохой погоды работоспособность увеличится еще более чем вдвое.

Кроме того, панели направлены на солнце всегда под идеальным углом. Ученые считают, что космическая солнечная электростанция примерно в восемь раз эффективнее, чем ее земной аналог.

ЭТО ИНТЕРЕСНО:  Как работает понижающий трансформатор

Ток без права передачи

Правда, при космическом расположении появляется новый серьезный вопрос: как передавать электричество на Землю? В настоящее время есть два способа сделать это: лазер и электромагнитные волны вроде тех, что используются для передачи радиочастот или разогрева еды в микроволновой печи. Передача энергии при помощи лазера долго изучалась специалистами NASA, после чего от этой идеи отказались как от неэффективной.

Правда, это было в 80-х годах прошлого века, когда коэффициент полезного действия (КПД) лазеров не превышал 10–20%. С учетом потерь на передачу и преобразование световой энергии в электричество получалось, что потребитель получит лишь несколько процентов от передаваемой изначально энергии.

Однако с появлением новых технологий в начале 2000-х годов ситуация серьезно изменилась. В настоящее время есть инфракрасные лазеры с КПД до 40−50%.

Серьезно улучшилось качество фотоэлементов, принимающих энергию лазерного луча (модули на основе арсенида галлия способны преобразовывать в электричество до 40%, а при определенных условиях до 70).

Даже в условиях работы в земной атмосфере при помощи лазера можно передавать энергию, например заряжать висящий в воздухе беспилотник (таким проектом, например, в России занимаются Виталий Капранов, Иван Мацак и группа молодых инженеров из Комитета инновационных проектов молодежи (КИПМ) РКК «Энергия»).

В случае с лазерным лучом, бьющим из космоса, тоже особых проблем не будет — на Земле будет построена специальная структура с модулями из арсенида галлия, и они будут максимально эффективно преобразовывать прилетевший из космоса луч в электричество, за счет фотонов определенной длины волны это будет гораздо эффективнее, чем с солнечной энергией.

Кстати, российский ЦНИИмаш шесть лет назад выступал с идеей создания российских космических солнечных электростанций (КСЭС) мощностью 1–10 ГВт с беспроводной передачей электроэнергии наземным потребителям. И российские исследователи считают лазерную передачу энергии на Землю более эффективной.

Вот что говорит об этом главный научный сотрудник ЦНИИмаша Валерий Мельников: «Значительно меньшая расходимость лазерного луча по сравнению с СВЧ-сигналом дает на порядки меньшую площадь передающих и приемных систем, а из-за малой площади приема появляется возможность энергоснабжения высокоширотных регионов России, Канады, Гренландии и других островов в северных широтах, а также Антарктиды от КСЭС, находящейся на геостационарной орбите».

Второй вариант, который как раз и рассматривают китайцы, — это передача сигнала на Землю при помощи радиоволн. Специальное устройство на солнечной электростанции будет переводить постоянный ток в радиоволны и посылать их массивный пучок на Землю. Проблема в том, что для создания радиоволн требуется специальная каркасная конструкция большого размера.

Практически вся площадь солнечных панелей с обратной стороны будет занята под специальную систему генерирующего радиоволны и передающего их на Землю устройства. На Земле же пучок радиоволн будет улавливаться ректенной (от англ.

rectifying antenna — выпрямляющая антенна). Это специальное устройство будет представлять собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на нее волны в энергию постоянного тока.

Естественно, что ректенна тоже теряет энергию при получении и переработке радиоволн.

Важно подобрать частоту таким образом, чтобы передача излучения была не ионизирующей во избежание возможных экологических проблем. Именно эту задачу и будут решать китайские ученые в 2021–2025 годах, пытаясь передавать энергию в условиях земной атмосферы. Экспериментальная база для таких опытов уже построена в городе Чунцин.

Поэтому можно не бояться, при передаче энергии планету не поджарит гигантской микроволновкой, люди даже не заметят дополнительного излучения. Как не замечаем мы огромного количества радиоволн, постоянно находящихся в атмосфере планеты. Предполагается, что плотность сигнала будет довольно низкой и не будет угрожать людям, самолетам или птицам, пролетающим через него.

Однако точно сказать об этом получится лишь после натурных опытов.

По расчетам ректенна получится больше размером, чем специальная станция с фотоэлементами для переработки лазерного луча. А вот как с эффективностью передачи — пока непонятно. Российские ученые настаивают на лазерном варианте, Китай и США — на использовании микроволнового излучения.

Пора или не пора

Так что же тогда удерживает людей от создания экологичных и практически бесперебойных солнечных электростанций? Прежде всего высокая цена проекта. Современные ракеты могут доставить на геостационарную орбиту подобные электростанции только за достаточно большое количество запусков. А ведь их требуется на орбите собирать, и не факт, что это можно сделать без человеческого участия.

Современные подсчеты показывают, что подобные электростанции будут окупаться десятилетиями и дольше, пока на Земле существует множество альтернативных, хоть и гораздо менее наукоемких способов получать электроэнергию.

Китайцы говорят о возможности использования 3D-печати отдельных элементов прямо на орбите, чтобы сэкономить на запусках. Да, первый космический принтер, печатающий объекты прямо на орбите, вот уже несколько лет находится на Международной космической станции, и с его помощью даже было напечатано несколько пластиковых инструментов, однако использовать такой способ для изготовления электростанции прямо в космосе пока не пробовал никто.

Вторая проблема — это эффективность подобной солнечной электростанции. Пока по расчетам вроде получается, что она эффективнее, чем солнечная, расположенная на Земле, даже с учетом множества потерь на передачу электроэнергии. Но как это будет в реальности, без эксперимента не сможет сказать никто.

Вот и получается, что ничего сверхфантастического в создании космической электростанции на орбите нет, однако объем финансовых вложений и неясный результат отпугивают от таких проектов потенциальных инвесторов.

Если же Китаю получится создать и запустить солнечную электростанцию на орбите, то это станет не сверхвыгодным способом получения энергии, а скорее показателем научной и инженерной силы стремительно растущего «восточного дракона».

По крайней мере у других держав дальше планов и разработок пока дело не сдвинулось.

Источник: https://iz.ru/849526/mikhail-kotov/orbitalnaia-elektrostantciia-mezhdu-fantastikoi-i-planirovaniem

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

В 2017 году я установил на участке одну солнечную батарею мощностью 260Вт для выработки электроэнергии. В июне выработка панели составила 34кВт электроэнергии, что в 4.5 раза превысило её нормативную мощность.

Далее я расскажу о том, как работает солнечная электростанция, из каких элементов состоит, кому подойдет и как её подключить. Кроме того, поделюсь реальной статистикой выработки одной панели.

Кому подойдет домашняя солнечная электростанция

  1. Тем, у кого на участке нет электричества. Солнечные батареи смогут автономно обеспечивать объект электроэнергией. В качестве альтернативы также можно рассматривать ветряк (для которого должна быть соответствующая роза ветров) или дизельный генератор (который не очень удобен в эксплуатации и неэкономичен).
  2. Также солнечную станцию можно рассматривать как инвестицию, чтобы на фоне постоянно растущих тарифов в будущем меньше платить за электроэнергию. К тому же срок службы батарей очень большой, а солнце светит всегда.
  3. И последний вариант — всем, кто хочет заработать.

    В Украине существует закон о зеленом тарифе, согласно которому государство выкупает выработанную электроэнергию с помощью альтернативных источников энергии по особой цене.

Как устроена солнечная батарея

Солнечная батарея (или ФЭМ – фотоэлектрический модуль) работает за счет кремниевых элементов, которые преобразовывают световую энергию в электрическую (в отличие от солнечных коллекторов, которые работают за счет солнечного тепла).

Сзади у панели есть выход двух кабелей, которые подключатся на инвертор или аккумулятор, в зависимости от схемы использования (об этом далее подробнее).

Как подключить, если на участке нет электричества

Если участок не подключен к сети, то главная задача — накапливать электроэнергию, чтобы использовать её в будущем по мере необходимости.

Какое оборудование понадобится:

  • Солнечные батареи.
  • Аккумулятор для накопления заряда.
  • Контролер заряда (чтобы контролировать ток заряда аккумулятора).
  • Преобразователь в 220В. По умолчанию солнечная панель выдает 12В, 24В, тогда как большинство электроприборов подключаются к 220В. Если вы используете приборы, работающие от 12В, то преобразователь не понадобится.
  • Оборудование для фиксации и крепежа самой батареи.

Самый простой вариант, «своими руками»

Самый примитивный, но рабочий вариант «для дачи»: солнечная батарея + аккумулятор, которые соединяются между собой клеммами. В таком виде станция уже готова к эксплуатации и её можно даже не ставить на крышу, а просто установить на землю. Электроэнергия будет накапливаться на аккумуляторе, от которого можно зарядить телефон, подключить освещение и т.д.

Такую станцию очень легко собрать своими руками. Достаточно просто купить аккумулятор (подойдет даже обычный автомобильный), солнечная батарея, провода и клеммы. Если вы приезжаете на дачу только по выходным, то станция может быть переносной, так как легко разбирается и прячется (или увозится с собой).

Более сложная реализация

Схема для повседневной эксплуатации и разводкой по розеткам. Солнечные батареи устанавливают на крышу (или отдельную металлическую конструкцию), а кабель от них прокладывают к аккумулятору, от которого электричество через преобразователь поступает на розетки.

По мере необходимости станцию легко масштабировать, подключая дополнительные батареи и аккумуляторы.

Как подключить, если на участке есть электричество

Если участок подключен к сети, то установка солнечной электростанции сделает дом более энергонезависимым, позволит сократить затраты на электроэнергию и даже заработать на этом благодаря зеленому тарифу.

В этой схеме подключения отсутствует аккумулятор, так как не нужно накапливать электроэнергию (но если вы хотите иметь резервный источник питания на случай выключения света, то аккумулятор необходим).

Для подключения такой станции нужна только солнечная батарея (или несколько), которая через сетевой инвертор подключается в розетку. В таком виде станция уже готова к работе. Батарея вырабатывает электричество и вы сразу же его потребляете для внутренних нужд: работы холодильника, освещения, чайника и т.п.

Например, выработка станции в сутки — 1кВт электроэнергии, а здание суммарно потребляет 5кВт. По факту из сети вы берёте лишь 4кВт. Но если станция вырабатывает в сутки 5кВт, а вы реально потребляете только 2кВт, то остаток (3кВт) сгорает. В этом случае можно подключить зеленый тариф и продавать разницу государству по более высокой цене, либо же поставить аккумулятор и накапливать избыток на него.

Сейчас существуют компании которые подключают зеленый тариф «под ключ». Начиная от подбора и установки станции, до заключения договора с ОБЛЭНЕРГО.

Реальная выработка солнечной электростанции для дома

Выработка зависит от мощности и угла наклона панелей, интенсивности солнца и продолжительности светового дня.

Между собой батареи отличаются площадью, что отражается на их мощности. Это может быть 10Вт, 100Вт, 150Вт, 260Вт и так далее. Однако реальная выработка панели обычно выше её номинальной мощности, так как необходимо учитывать коэффициент интенсивности солнца. В южных регионах солнце светит сильнее и дольше, а в северных слабее и меньше, поэтому одна и та же панель вырабатывает разное количество электроэнергии.

Пример из практики

Это график выработки электроэнергии одной панелью мощностью 260Вт за июнь 2018 года. Суммарная выработка станции за месяц — 34,89 кВт. Из расчета, что номинальная месячная мощность батареи — 7,8кВт (260Вт Х 30 дней), её фактическая мощность оказалась в 4.5 раза выше (поправочный коэффициент). Летом он больше, зимой – меньше или вообще отсутствует.

Из графика видно, что выработка непостоянна и присутствуют резкие спады – это пасмурные дни, когда световой день короче, а солнечная активность очень слабая. Худшая производительность была зафиксирована 17.06 — около 0.4кВт, а максимальная 25.06 — около 1.4кВт.

А вот так выглядит выработка солнечной батареи по часам в течение дня:

Выработка начинается ближе к 9 утра, достигает пика к 13:00, затем постепенно снижается и прекращается около 19:00. В течение дня есть небольшие провалы — когда солнце было закрыто облаками.
Примерно с 13:00 до 15:00 выработка электроэнергии была нестабильна из-за облачности.

Но и это не сильно сказалось на итоговой производительности станции — 1.32кВт.
В течение дня было множество провалов, что и отразилось на итоговой выработке станции — 0.98кВт.

    
А это пасмурный дождливый день, когда солнечная активность очень слабая и выработка в течение дня составила 0.45кВт.

Из этого можно сделать вывод, что целиком полагаться на солнечную электроэнергию сложно. Производительность станции сильно зависит от интенсивности солнца и даже летом она может быть непостоянна из-за пасмурной погоды.

Угол наклона солнечной батареи

Панель вырабатывает максимум электроэнергии тогда, когда солнечные лучи падают на неё под прямым углом. В этом случае лучи практически не отражаются и потери энергии минимальны. Но так как солнце в течения дня постоянно движется и меняет высоту, то поддерживать постоянным угол падения в 90° сложно.

Для этого существуют специальные механизмы, которые поворачивают панель вслед за солнцем в течение дня и изменяют угол её наклона, что дает максимально возможную выработку электроэнергии. Однако для домашней станции они нецелесообразным: при малой мощности станции дополнительные 5-15% электричества не покроют затраты на их установку.

Поэтому рекомендуется универсальное положение солнечной панели: для северного полушария направление на юг (которое охватывает максимальную траекторию движения солнца) и угол наклона в 30 ° на лето и 60 ° на зиму. Либо же средний вариант в 45 °, если панель работает круглый год.

Как рассчитать мощность электростанции на солнечных батареях

Оттолкнуться нужно от того, сколько электроэнергии вам нужно для нормального функционирования здания. Самый простой способ — выписать все эл. приборы, которые вы планируете использовать, время их работы и потребляемую мощность.

Пример:

  • Холодильник: 100Вт – 24ч – 2400Вт
  • Освещение: 100Вт – 5ч – 500Вт
  • Чайник: 15мин – 1,5кВт – 0,03кВт
  • Стиральная машина:
  • Ноутбук:
  • Итого: 3кВт

3кВт — это мощность, которую должна производить солнечная электростанция для нормальной жизнедеятельности здания. Т.е. понадобится 12 панелей мощностью по 260Вт. На практике их производительность будет выше (при коэффициенте солнечной активности 4.

5 суточная выработка станции составит 14кВт), однако мы отталкиваемся от самого пессимистичного сценария, при котором каждый день — пасмурный.

Также учитывайте: если вы не подключены к зеленому тарифу или не запасаете энергию на аккумулятор, то избыток будет сгорать.

Если вы устанавливаете солнечную электростанцию для заработка на зеленом тарифе,  то начать можно с любой мощности и постепенно её наращивать.

Заключение

Солнечные электростанции для дома решают две основные задачи:

  • могут обеспечивать электроэнергией участок, который не подключен к сети. В самом простом варианте вам понадобится только панель, аккумулятор и контролер заряда, которые уже способны генерировать электроэнергию. Также возможна более сложная реализация, когда станция генерирует электричество и через инвертор передает его в розетки. В этой схеме дополнительно необходим преобразователь из 12В в 220В.
  • служить инвестицией и источником дохода. В Украине существует  закон о зеленом тарифе, согласно которому государство готово покупать у населения электроэнергию, выработанную на альтернативных источников энергии, по более высокому тарифу. Другими словами: каждый может установить в доме солнечную электростанцию и продавать электроэнергию государству.

Производительность станции зависит от мощности панели и коэффициента интенсивности солнца. Для южных регионов, где солнце светит долго и интенсивно, выработка панелей может быть в 4.5 — 5 раз больше номинала. Зимой коэффициент практически отсутствует.

При пасмурных днях даже летом выработка сильно падает. Поэтому целиком полагаться на солнечную энергию не стоит (особенно если у вас автономное энергообеспечение объекта) и не лишним будет иметь резервный источник, например — дизельный генератор.

Все про солнечную электростанцию для дома: подключение, реальная выработка, подключение, особенности

Источник: http://term.od.ua/blog/solnechnaya-elektrostanciya-dlya-doma/

Понравилась статья? Поделиться с друзьями:
220 вольт