Солнечные панели как рассчитать

Расчет мощности солнечных батарей для дома

Если вы решили сэкономить на расходах электроэнергии и установить собственную солнечную электростанцию в доме или на даче, тогда необходимо начать с расчетов показателей как потребления энергии, так и мощности солнечных панелей.

Это самый важный и трудоемкий процесс, который станет залогом правильной работы солнечной системы и выработки нужного количества тока для обеспечения всех потребностей.

Кроме того, рассчитанные показатели смогут послужить основой для увеличения эффективности или экономии энергии.

Показатель мощности солнечной батареи

Если посмотреть описание разных моделей солнечных батарей, то можно обратить внимание, что показателем измерения выступает номинальная мощность (Вт). Этот показатель и будет служить главным критерием для оценки мощности солнечной батареи.

Номинальная мощность указывается из расчета, что на 1 кв. метр панели будет поступать 1 кВт солнечной энергии.

То есть вы сможете рассчитывать на такой показатель мощности батареи, если в месте, где расположена солнечная система, температура не менее 25 градусов, ориентация модулей на юг с учетом угла наклона и отсутствует затемнение.

Зачем нужен расчет мощности солнечных батарей

Сегодня на рынке представлено огромное количество солнечных батарей, они отличаются не только производителем и ценой, но и своими техническими характеристиками. Мощность – это главный показатель, от которого необходимо отталкиваться, если вы хотите получить выгоду от установки солнечной системы.

Важно понимать, что неправильно произведенный расчет или и вовсе отсутствие каких-либо анализов по планируемой мощности могут привести к неудовлетворению ваших электрических потребностей в доме, тогда придется использовать дополнительное питание от сети либо ограничивать себя в электроприборах.

В итоге сложная задумка с солнечными батареями теряет весь смысл.

Порядок расчета

Чтобы рассчитать необходимую мощность батареи, которая покроет ваши затраты электроэнергии, нужно провести ряд действий, основанных на точных расчетах.

Определение потребляемой энергии

Начинать надо в первую очередь с расчета необходимой энергии для обеспечения вашего дома. Сделать это можно двумя способами: первый – посмотреть на счетчике, сколько электроэнергии вы расходуете за месяц или в сутки, а второй – сделать более детальный расчет.

Чтобы произвести второй вариант расчета, нужно взять бумагу с ручкой и составить список всех электроприборов, которые имеются у вас в доме.

Количество потребляемой энергии каждым устройством нужно умножить на количество часов работы, а после все полученные показатели сложить и получить общий расход, который должны покрывать солнечные батареи.

Ниже приведены приблизительные значения самых часто используемых электроприборов в любом доме.

Электроприбор Ватт Сколько часов работы в сутки Вт/час
Холодильник 250 24 6000
Компьютер 100 4 400
Стиральная машина 500 1 500
Электрочайник 1000 0.3 300
Телевизор 150 6 900
Радиоприемник 4 2 8
Экономлампа 1 20 6 120
Экономлампа 2 15 4 60
Экономлампа 3 10 2 20

Если вы не знаете потребление электроэнергии того или иного прибора, то для точности расчетов лучше посмотреть это значение в технической документации или на сайте производителя.

Просуммировав последнюю колонку в таблице, вы сможете посчитать суточный расход электроэнергии. Однако здесь не все так просто. Это не будет конечная цифра для выбора мощности солнечной батареи и их количества. Дополнительно нужно будет прибавить около 30% потребляемой энергии на обслуживание обязательных устройств для работы солнечной системы – аккумулятора и инвертора.

Кроме того, солнечными батареями генерируется постоянный ток, который впоследствии при помощи инвертора перерабатывается на переменный с повышением напряжения для обслуживания дома (220В), где еще теряется около 20%. И еще нужно прибавить около 10%, которые пойдут на пусковую мощность электроприборов.

Так как при запуске техника первые несколько минут потребляет в 3, а то и в 5 раз больше заявленной энергии.

Уровень инсоляции

Суть солнечных батарей заключается в выработке энергии за счет воздействия лучей солнца на фотоэлементы со специальным составом. Чем больше солнечная радиация, тем выше производительность панелей.

Максимальная эффективность зафиксирована при попадании лучей на поверхность пластин под углом 90 градусов, то есть перпендикулярно. Соответственно ночью энергия не вырабатывается, а используется та, которая накопилась в аккумуляторе за дневное время.

Поэтому очень важно правильно установить солнечную панель и рассчитать ее работоспособность в зависимости от климата того или иного региона.

Во время пасмурной погоды, а также захода солнца, уровень выработки энергии солнечной системы падает на 20-30%.

Уровень солнечной инсоляции – это еще один немаловажный показатель, который необходимо учитывать при определении мощности солнечной батареи. В каждом регионе он разный и дает четкое понятие, сколько количества солнечного тепла приходится на единицу площади панели.

Если вы проживаете в регионе с небольшим уровнем инсоляции, тогда вам нужно будет приобретать либо более мощное устройство, либо в большем количестве для полного обеспечения дома электроэнергией. Рассчитывать самостоятельно показатель инсоляции не нужно. Его значение представлено в специальных справочниках, которые можно найти без проблем в интернете.

Подобная информация также представлена на метеорологических сайтах. Указанная информация может быть представлена как за год, так и отдельно по месяцам (для крупных городов).

Выбор мощности панелей

В зависимости от рассчитанного количества потребляемой энергии количество солнечных батарей может быть разным. Также следует учитывать, какие задачи возложены на батарею – полная продуктивность или использование ее в качестве дополнительного источника питания, если в вашем доме часто бывают перебои. Если вы хотите покрыть все электрорасходы в доме, тогда придется хорошо потратиться и приобретать устройства с высокой мощностью и продуктивностью.

Мощность панели напрямую будет зависеть от количества потребляемой энергии как электроприборами в доме, так и техническими устройствами, которые являются обязательными для работы солнечной станции. Здесь нельзя не учесть и количество солнечных дней в месяце, уровень инсоляции, частоту смены угла наклона.

Максимальная производительность панели наблюдается не более 7 часов в сутки и то при условии, что небо чистое, а ночью и вовсе не будет никакой выработки, соответственно, при соотнесении расходуемой энергии с мощностью батареи нельзя приравнивать эти два показателя. Мощность должна быть на 30-40% больше.

Для примера можно взять батарею с указанной мощностью в 1кВт. Это значение нужно умножить на количество часов работы панели с максимальной производительностью, приплюсовать дополнительные расходы на снабжение инвертора и аккумулятора, а также то время в сутках, когда солнечный свет отсутствует. В результате вы сможете получить выработку одной батареи. Если показатель слишком маленький, тогда нужно присмотреться к батареям с более высокой мощностью, однако и цена их будет выше.

Расчет мощности солнечных батарей

Расчет количества панелей

Итак, мы определились, что мощность панелей измеряется в Вт. Чтобы произвести расчет, нам понадобятся все ранее полученные значения, а именно:

  • Количество потребляемой электроэнергии.
  • Уровень инсоляции в вашем регионе.
  • Мощность одной батареи.

Формула для расчета выглядит следующим образом:

W = k*Pw*E/1000, где

к – фиксированное значение/коэффициент 0,5 в летний период и 0,7 в зимний.

Рw – мощность.

Е – значение инсоляции за выбранный период.

Итак, представим, что вы просчитали суточное потребление энергии, которое равно 5600 Вт. Скорректируем это значение на 30% с учетом потребностей инвертора, аккумулятора и преобразования энергии. В результате получается 5600*1,3=7280Вт, можно округлить до 7300 Вт. Теперь посмотрим показатель солнечной радиации для конкретного города, например, он равняется 0,79 для зимы и 4,5 для лета. Стандартная мощность составляет 260Вт.

W зимой = 0,7*260*0,79=143Втч.

W летом = 0,5*260*4,5=585Втч.

Теперь делим общую потребность в электроэнергии на выработку солнечной батареи. Зимой, чтобы обеспечить весь дом электричеством, понадобится примерно 51 панель, а летом 13 штук мощностью в 260Вт и напряжением 24В. Так как полученное значение достаточно велико и для размещения 50 панелей понадобится большая площадь, целесообразнее купить панели с более высоким напряжением и мощностью.

Как увеличить эффективность работы солнечных батарей

Первый шаг, который пытается сделать любой владелец солнечных батарей с целью увеличить эффективность выработки электроэнергии – это заменить обычные электроприборы на экономные. Но, перед тем как это сделать, ознакомьтесь с основными рекомендациями специалистов, которые помогут повысить КПД батареи.

  • Следите, чтобы не происходило затемнения солнечного оборудования.
  • Придерживайтесь правил монтажа, от которых зависит производительность солнечных батарей.
  • Очищайте панели от грязи, пыли и наледи.
  • Старайтесь регулярно менять угол наклона панелей, чтобы солнечные лучи попадали перпендикулярно, в зависимости от месяца и времени года.
  • Используйте электроприборы классов А, А++, А+++.
  • Выбирайте правильные крепления для солнечных батарей.

Выполнять все предложенные рекомендации необходимо в комплексе. Если, к примеру, вы будете регулярно менять угол наклона панелей, но при этом забываете их очищать от грязи, то результат от ваших действий не появится. Солнечные батареи прослужат вам долго и бесперебойно при соблюдении правил эксплуатации, которые рекомендованы производителем. Если у вас возникли сложности при расчете, то вы всегда можете обратиться за помощью к специалисту по данным вопросам.

Источник: https://www.termico-solar.com/moshhnost-solnechnyh-batarej/

On-line калькулятор расчета работы солнечной электростанции

Выберите месторасположение объекта, воспользовавшись поиском по названию города или передвигая метку на карте. Введите параметры солнечных панелей, ветрогенераторов, воздушных и/или тепловых коллекторов.

Для расчета солнечных панелей и ветрогенераторов укажите среднесуточное потребление (кВт·ч/сутки) или воспользуйтесь «калькулятором» средней нагрузки, расположенным под картой, справа. Рассчитайте время автономной работы системы, задав данные ёмкости и напряжения аккумуляторных батарей.

Для расчёта тепловой энергии или объема горячей воды выберите тип и количество солнечных коллекторов.

Вы можете воспользоваться подсказками, расположенными под калькулятором или обратиться за помощью в расчётах к нашим специалистам по телефону (812)903-28-88, [email protected].

Как подобрать комплектацию солнечной и/или ветровой электростанции?

1. Мы рекомендуем начать с расчёта необходимого количества энергии или суточного потребления вашего дома/объекта в кВт*ч/сутки. Эти данные можно получить, списав с электросчетчика или рассчитать в калькуляторе средней нагрузки, справа под картой. Обратите внимание, что данные средней нагрузки в летний и зимний период могут отличаться. Рекомендуем заполнить оба показателя. На графике появятся две прямые: синяя линия указывает зимнее потребление, красная – летнее.

2. Выберите регион установки, для этого используйте «поиск города по названию» или двигайте метку на карте. Инсоляция в разных регионах может значительно отличаться.

3. Выберите тип и количество солнечных панелей в соответствии с суточным потреблением вашего объекта. На графике появится кривая жёлтого цвета, она показывает выработку выбранного вами солнечного массива, при условии ориентации его строго на юг и соблюдении рекомендуемого угла наклона (зенитный угол).

4. Чтобы увидеть количество энергии, вырабатываемое панелями в разные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

5. Подберите необходимую ёмкость аккумуляторных батарей, для этого справа под картой выбирайте желаемую ёмкость аккумуляторов и их напряжение. Время автономной работы системы (часов) с выбранным массивом аккумуляторов и при указанной суточной нагрузке высветится ниже.

6. Обратите внимание, что в большинстве случаев перекрыть зимнее (ноябрь-февраль) потребление сложно. Поэтому для зимней эксплуатации используют резервные источники энергии, при полном отсутствии сети это может быть ветрогенератор или топливный генератор.

7. Чтобы добавить к вашей резервной системе ветрогенератор откройте вкладку «Расчет энергии, вырабатываемой ветрогенераторами». Выберите количество и модель ветрогенератра, высоту мачты и окружающий ландшафт. На графике появится голубая кривая, отображающая выработку ветрогенератора в кВт*ч.

Чтобы увидеть количество энергии, вырабатываемое в определенные месяцы года – наведите курсор на точку на графике, над интересующим вас месяцем. Получить данные вырабатываемой энергии в разрезе всего года можно в нижнем, общем графике «Суммарная выработка электроэнергии», для этого достаточно нажать закладку «Среднемесячная выработка, кВт*ч».

Обратите внимание, что в нижнем графике «Суммарная выработка электроэнергии» отображаются общие данные как солнечной, так и ветровой системы в сумме.

Как подобрать тип и количество водяных солнечных коллекторов?

Объем горячей воды, получаемой от того или иного водного солнечного коллектора можно рассчитать, открыв вкладку «Расчет энергии, вырабатываемой водяными солнечными коллекторами».

Выберите модель и количество коллекторов и укажите угол наклона коллектора в графе «зенитный угол». На графике появится жёлтая кривая, указывающая количество воды в литрах нагреваемой в сутки в различные месяцы года. Температура нагрева 25°С.

Как рассчитать количество тепловой энергии и выбрать воздушный солнечный коллектор?

Для расчета объема нагреваемого солнечным коллектором воздуха откройте вкладку «Расчёт энергии, вырабатываемой воздушными солнечными коллекторами» выберите модель и количество коллекторов. Обязательно укажите угол наклона коллектора в графе «зенитный угол». Для моделей с креплением на стену установите значение 90.

На графике появится желтая кривая, отображающая объем горячего воздуха в м³/сутки при нагреве на 44°С.

Обратите внимание, что полученные при расчетах данные приблизительные. On-line калькулятор в своих расчётах опирается на базы данных о инсоляции на земной поверхности в разных точках земного шара.

Период наблюдения, учтённый в базе данных инсоляции земной поверхности — чуть более двадцати лет. Фактическая выработка энергии может отличаться из года в год, и зависит от инсоляции в конкретном периоде.

К тому же данные калькулятора предполагают расположение источников тепловой и электрической энергии (солнечных панелей и коллекторов) строго на юг!

Источник: http://www.helios-house.ru/on-line-kalkulyator.html

Как рассчитать мощность солнечных батарей?

Люди находятся в постоянном поиске новых источников энергии. Одним из последних изобретений в данной сфере стали солнечные батареи.

Использовать энергию солнца учёные мечтали давно, но только с появлением передовых технологий в XX веке стало возможным воплотить эту мечту в жизнь.

Солнечные батареи уже давно активно внедряются в энергетические системы многих стран, особенно в местах с жарким климатом, где солнце светит почти круглый год. Но даже там установки, работающие на его энергии, пока не могут конкурировать с традиционными электростанциями.

Почему это происходит? Прежде всего потому, что установки на фотоэлементах, преобразующих солнечный свет и тепло в электричество, оказались настолько дорогими, что выработка электроэнергии таким путём просто не окупала затрат на их изготовление, монтаж и обслуживание.

Поэтому давно применяемые в таких наукоёмких областях как, скажем, космонавтика, в быту солнечные батареи пробивали свой путь к массовому потребителю долго и трудно. Сначала дома, использующие электроэнергию, получаемую от солнца, были исключительно экспериментальными проектами.

И лишь в последнее время строения с установленными на крышах солнечными панелями перестали восприниматься окружающими, как нечто экзотическое, а интерес к этому альтернативному источнику энергии среди домовладельцев начал приобретать относительно массовый характер.

Проникновение в быт обычных людей солнечных батареек начиналось с мелочей – часов, игрушек, калькуляторов, маленьких осветительных приборов. Именно освещение – первая сфера, где солнечная батарея стала применяться массово.

Сегодня же на рынке существует масса предложений самых разнообразных систем для установки на крышах частных домов, которые технически вполне способны заменить хозяевам традиционное электроснабжение.

Но по-прежнему актуальным остаётся вопрос цены и, конечно же, непредсказуемости погоды в северных широтах.

Для чего нужны расчёты?

Конструкция современных солнечных панелей уже настолько проста, что их установка может производиться самим владельцем дома, внимательно изучившим все инструкции и рекомендации по данному вопросу. Можно пригласить и профессионалов, которые сделают работу более качественно и быстро. Кстати, солнечные батареи устанавливают и некоторые владельцы городских квартир у себя на балконах и лоджиях. Но это всё-таки пока исключения.

В любом случае, хозяин должен решить вопрос, что, как и в каком количестве нужно установить на крыше для получения электроэнергии, достаточной для работы в доме электроприборов, то есть для полноценного функционирования автономной системы электрообеспечения. А для этого нужно понять несколько вещей:

  • Будет ли установка работать круглый год или только летом?
  • Какие именно приборы и аппаратура в доме будут работать на солнечных батареях?
  • Что ещё придётся приобрести из дополнительного оборудования? Желательно составить полный список, так как кроме собственно солнечных панелей вам потребуется целый набор устройств, необходимых для нормального функционирования системы (аккумуляторов, инвертора, контроллера). От их качества также во многом будет зависеть эффективность её работы. Поэтому внимательно выбирать придётся и их.
  • Какие средствами вы располагаете? По окончании расчётов должно стать понятно, имеет ли смысл монтировать у себя дома полностью автономную солнечную электростанцию, или лучше использовать солнечные батареи для отдельных нужд частично и только в солнечные дни.
ЭТО ИНТЕРЕСНО:  Как выбрать тепловую завесу

Ответив на эти вопросы, можно приступать к расчётам.

Как рассчитывается потребление электроэнергии в доме?

цель расчётов – выяснить, какое количество солнечных панелей необходимо конкретно вашему дому. При этом, если мощность солнечной панели указана производителем, то потребности вашего домохозяйства и реальное количество электроэнергии, которое способна дать одна такая панель в сутки необходимо рассчитывать самостоятельно.

Если начать с домовладения, сразу возникает вопрос: как считать? Тут есть два варианта, зависящие от наличия у вас электрического счётчика:

  • Если у вас есть счётчик, и вы ежемесячно снимаете с него показания, то высчитать ежедневное потребление электроэнергии просто. Надо разделить месячный показатель на количество дней. Потребляемая энергия исчисляется в кВт•час. Например, в месяц вы расходуете 90кВт•ч. Эту цифру надо разделить на 30, и получится дневной расход – 3кВт•ч.
  • Второй вариант более сложный. Если вы по какой-либо причине не платите за электричество (например, в новый дом его ещё не подвели), то для подсчёта вам понадобится составить полный список всех имеющихся у вас электрических приборов, выяснить потребляемую каждым за день энергию и, сложив всё вместе, получить необходимый результат. То есть нужно взять мощность потребляющего электроэнергию прибора (она, как правило, указана производителем), и умножить на количество часов, в течение которых этот прибор будет работать. Например, стандартная лампа накаливания имеет мощность 100Вт., а работать она у вас будет предположительно 6 часов в сутки. Значит, для вычисления расхода электричества следует 100 умножить на 6. Получается 600Вт•ч. Таких ламп у вас три, и все работают в одинаковом режиме. Значит, дневной расход одной лампы надо умножить на 3. Получится 1800Вт•ч. Подобным образом рассчитывается расход электроэнергии всеми потребляющими единицами в доме.

Сколько энергии может дать в день одна солнечная панель?

Рассчитать, сколько может дать в сутки одна солнечная панель сложнее. Сразу следует подчеркнуть, что расчёт здесь будет достаточно приблизительный, так как источник (в данном случае – солнце) непостоянный. Здесь приходится учитывать несколько факторов:

  • заводская мощность панели;
  • уровень инсоляции в вашей местности в течение года;
  • планируемые потери в процессе работы батареи.

С максимальной заводской мощностью всё понятно – она указана в паспорте изделия. Но это совсем не значит, что на практике солнечная панель будет работать именно с такой мощностью.

Реальный выход энергии зависит от уровня инсоляции — количества света, которое панель сможет получить в течение года (а в разных регионах оно очень разное), и всех предстоящих утечек электроэнергии (например, при зарядке/разрядке аккумуляторов, работе контроллера и т.д.).

На эффективность батареи влияет также правильность установки панели, возможность менять её наклон, чистота фотоэлементов (панели надо регулярно чистить от снега, пыли и грязи).

Итак, мощность солнечной батареи летом и зимой – это две разные величины. Вычисляются они следующим образом:

  • Заводская мощность панели (они могут быть разные) умножается на средний месячный уровень инсоляции по нужному региону летом (берётся верхний показатель). Затем всё это умножается на поправочный коэффициент для лета, равный 0,5. Полученная цифра будет означать реальную мощность солнечной батареи летом.
  • Заводскую мощность панели умножить на средний месячный уровень инсоляции для данного региона в самый тёмный месяц зимы и затем умножить всё на поправочный коэффициент для зимы, равный 0,7. Полученная цифра будет означать реальную мощность батареи зимой.

Разница между зимней и летней мощностью солнечной батареи может быть в регионах с умеренным климатом раз в 5-6. Выяснив реальную мощность батареи, следует возвратиться к расходу электроэнергии.

Для этого к рассчитанному ранее показателю по дому нужно добавить размеры потерь от работы самой солнечной установки (главным образом, аккумуляторов). Например, если такие потери составляют 25%, то расход по дому следует умножить на 1,25.

Получится реальный расход электроэнергии при работе всех приборов в доме и самой солнечной батареи.

И в завершении остаётся выяснить, сколько панелей потребуется для обеспечения вашего дома электричеством. Их количество выйдет разным зимой и летом. Для этого надо разделить общее число расходуемой в доме энергии (включая перерасход аккумуляторов) на мощность батареи.

При делении на зимнюю мощность, получится количество панелей, необходимых зимой. При делении на летнюю мощность — летом. Надо отметить, что разница тоже будет примерно в 5 раз.

Теперь, зная стоимость и необходимое количество панелей, можно подсчитать, насколько выгодна их установка в вашем доме.

Источник: https://econrj.ru/stati/solnechnie-jelektrostancii-i-vsjo-s-nimi-svjazannoe/kak-rasschitat-moshhnost-solnechnih-batarej.html

Расчет солнечной батареи и аккумуляторов, комплекта солнечной электростанции

Очень часто при обращении за подбором оборудования или при выборе солнечной электростанции клиенты задают вопрос: Как рассчитать мощность и количество солнечных батарей и аккумуляторов и какой мощности выбрать солнечную электростанцию. В этой статье мы попробуем разобраться с этим вопросом, и я постараюсь простым языком, без углубления в детали объяснить как это сделать.

В первую очередь нужно узнать сколько электроэнергии вы потребляете в сутки, это можно сделать взяв средние ежемесячные показания счетчика электроэнергии и разделить на 30 дней. Так мы получим среднее потребление в сутки. Например соц норма в РО на двух чел составляет 234кВт, что около 8кВт.ч электроэнергии в сутки. Соответственно нам необходимо чтобы солнечные батареи вырабатывали такое же количество энергии в день.

Расчет количества солнечных батарей и их мощности

Так как солнечные панели вырабатывают электрическую энергию только в светлое время суток, то это необходимо учесть в первую очередь, так же стоит понимать, что выработка в пасмурные дни и зимой очень сильно снижается, и может составлять 10-30 процентов от мощности панелей.

Для простоты и удобства мы будем делать расчет с апреля по октябрь, по времени суток основная выработка идет с 9 до 17 часов, т.е. 7-8 часов в день.

В летнее время интервалы конечно будут больше, с восхода до заката, но в эти часы выработка будет значительно меньше номинала, поэтому мы усредняем.

Итак 4 солнечные батареи мощностью 250Вт. (всего 1000Вт). За день выработают 8кВт.ч энергии, т.е. в месяц это 240кВт.ч. Но это идеальный расчет, как мы говорили выше, в пасмурные дни выработка будет меньше, поэтому можно лучше взять 70% от выработки, 240 * 0,7 = 168 кВт.ч. Это усредненный расчет без потерь в инверторе и аккумуляторных батареях. Так же это значение можно применить для рассчета сетевой солнечной электростанции где не используются аккумуляторные батареи.

Расчет аккумуляторов для солнечной электростанции

Далее перейдем к расчёту ёмкости аккумуляторной батареи для солнечных панелей. Их количестов и емкость должна быть такой, чтобы энергии которая в них запасается хватило на темное время суток, стоит учесть что ночью потребление электроэнергии минимально, по сравнению с дневной активностью.

Аккумулятор на 100А.ч. запасает примерно 100А * 12В = 1200Вт. (лампочка на 100Вт. проработает от такого акб 12 часов). Так если за ночь вы потребляете 2,4кВт.ч. электричества, то вам необходимо установить 2 АКБ по 100А.ч.

(12В), но тут стоит учитывать что аккумуляторы нежелательно разряжать на 100%, а лучше не более 70%-50%. Исходя из этого получаем, что 2 АКБ по 100А.ч. будут запасать 2400 * 0,7 = 1700Вт.ч.

Это верно при разряде не большими токами, при подключении мощных потребителей происходит просадка напряжения и емкость по факту уменьшается.

Если вы хотите рассчитать, какая емкость аккумулятора нужна к солнечной батари, ниже приводим таблицу соответствия (для системы 12В.):

  •  Солнечная батарея 50Вт. — АКБ 20-40А.ч.
  •  100Вт. — 50-70А.ч.
  •  150Вт. — 70-100А.ч.
  •  200Вт. — 100-130А.ч.
  •  300Вт. — 150-250А.ч.

Мощность инвертора и потери в нем

Теперь что касается инвертора, он тоже имеет свой КПД а это порядка 75-90%, т.е. все полученные величины выработки энергии и запаса можно относить к этим процентам. В итоге лучше брать двойной запас емкости для аккумуляторов, Так при потреблении 2400Вт.ч за ночь, устанавливать 4 АКБ емкостью 100А.ч. 100А*12В*4 = 4800Вт.ч. Мощность инвертора показывает номинальную нагрузку которую можно подключить к нему, т.е количество и тип бытовых приборов.

В Итоге получаем солнечную электростанцию на 2,5кВт:

  1. Солнечные батареи 4шт. по 250Вт. Выработка в месяц 170 -240кВт.ч (36тыс.руб.)
  2. АКБ по 100А.ч. 4 шт. запас до 4800 Вт. (AGM аккумуляторы 50тыс.руб.)
  3. Инвертор 2,4кВт номинальная мощность подключаемого оборудования (27тыс.)

Итого 113 тыс. руб. за комплект оборудования.

Мощность бытовых приборов, потребление электроэнергии

Теперь что касается потребителей и их мощности, приведем основные из них:

  • Телевизор Led – 50-150Вт.
  • Холодильник класса А – 100-300Вт. (только во время работы компрессора)
  • Ноутбук – 20-50Вт
  • Лампа энергосберегающая – 30Вт, Светодиодная 3-9Вт
  • Котел настенный (электроника + встроенный насос) – 70-130Вт.
  • Роутер – 10-20Вт.
  • Кондиционер 9 – 700-900Вт.
  • Эл. Чайник – 1500Вт.
  • Микроволновка – 500-700Вт.
  • Стиральная машина – 600 – 900Вт.
  • регистратор + 4 камеры – 30-50Вт.

Все мощности указаны в час работы прибора, стоит учитывать, что большинство приборов работают непродолжительное время, чайник подогрев – 5мин, холодильник включается раз в 2-3 часа на час для поддержания темп. Насос котла тоже работает по мере поддержания температуры теплоносителя. Так же можно рассчитать и другие приборы по этому принципу.

на тему расчета солнечной электростанции

Источник: https://enpartner.ru/novosti/raschet-solnechnoj-batarei-i-akkumulyatora-solnechnoj-elektrostantsii

Расчет мощности солнечных батарей

Мощность солнечных панелей для автономных систем выбирается исходя из необходимой вырабатываемой мощности, времени года и географического положения.

Необходимая вырабатываемая мощность определяется мощностью, требуемой потребителям электроэнергии, которые планируется использовать. При расчете  стоит учитывать потери на преобразование постоянного напряжения в переменное, заряд-разряд аккумуляторов и потери в проводниках.

Солнечное излучение величина не постоянная и зависит от многих факторов – от времени года, времени суток, погодных условий и географического положения. Эти факторы также должны учитываться при расчете количества необходимой мощности солнечных панелей.  Если планируется использование системы круглогодично, то расчет должен производиться с учетом самых неблагоприятных месяцев с точки зрения солнечного излучения.

При расчете для каждого конкретного региона необходимо проанализировать статистические данные о солнечной активности за несколько лет.

На основании этих данных, определить усредненную действительную мощность солнечного потока на квадратный метр земной поверхности. Эти данные можно получить у местных или международных метеослужб.

Статистические данные позволят с минимальной погрешностью спрогнозировать количество солнечной энергии для вашей системы, которая будет преобразована солнечными панелями в электроэнергию.

Для примера рассмотрим усредненную дневную инсоляцию по месяцам с одного из серверов метеослужб для г. Москвы. Данные указаны с учетом атмосферных явлений и являются усредненными за несколько лет.

Единица измерения инсоляции в таблице кВт*ч/м2/сутки.

Угол наклона плоскости, градусы по отношению к земле (0°- инсоляция на горизонтальную плоскость, 90 – инсоляция на вертикальную плоскость и т. п.), при этом плоскость ориентирована на Юг.

  Янв. Февр. Март Апр. Май Июнь Июль Авг. Сент. Окт. Нояб. Дек. Среднегодовая инсоляция кВт*ч/м2/сутки 0°
0.75 1.56 2.81 3.87 5.13 5.27 5.14 4.30 2.63 1.49 0.81 0.50 2.86
40° 1.51 2.55 3.78 4.34 5.12 4.97 5.00 4.57 3.22 2.20 1.46 1.08 3.32
55° 1.66 2.70 3.82 4.16 4.70 4.51 4.53 4.31 3.17 2.27 1.58 1.20 3.22
70° 1.72 2.71 3.67 3.79 4.18 3.95 4.00 3.85 2.97 2.24 1.62 1.26 3.00
90° 1.65 2.50 3.19 3.07 3.21 2.99 3.05 3.08 2.51 2.02 1.53 1.22 2.50
Оптимальный угол 72.0 63.0 50.0 34.0 20.0 11.0 16.0 27.0 43.0 58.0 69.0 74.0 44.6

Как видно, самым неблагоприятным месяцем для данного региона является декабрь, дневная усредненная инсоляция на горизонтальную поверхность земли составляет 0,5 кВтч/м2/сутки, на вертикальную – 1,22 кВт*ч/м2/сутки.

При угле наклона плоскости относительно земли 70 градусов инсоляция будет составлять 1,26 кВтч/м2/день, оптимальным углом для декабря является 74 градуса.

Самым благоприятным месяцем является июнь и инсоляция на горизонтальную поверхность составит 5,27 кВтч/м2/сутки, оптимальный угол наклона для июня 11 градусов.

Угол наклона солнечной панели, при круглогодичном использовании в системе, которая потребляет в среднем одну и ту же мощность независимо от времени года, должен совпадать с оптимальным углом наклона самого неблагоприятного месяца по количеству солнечной радиации. Оптимальным углом наклона для декабря в г.

Москва является 74 градус, таким образом и стоит устанавливать солнечную панель, так как в другие месяцы инсоляция заметно больше, и как следствие выработки электроэнергии будет более чем достаточно. Более того, в зимнее время при углах наклона 70-90 градусов, на солнечной панели не будут скапливаться осадки в виде снега.

Если задачей является получение максимальной мощности от солнечных панелей, в течение всего года, то требуется постоянно ориентировать солнечную панель максимально  перпендикулярно солнцу.

Формула расчета мощности солнечных панелей

Pсп=Eп*k* Pинс / Eинс, где:

Pсп — мощность солнечных панелей, Вт;

Еп — потребляемая энергия, Втч в сутки;

Eинс — среднемесячная инсоляция (из таблицы) кВтч/м2/день;

Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);

k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2-1,4.

Формула расчета вырабатываемой энергии солнечными батареями

Eв=Eинс*Pсп/Pинс*k, где:

Pсп — мощность солнечных панелей, Вт;

Ев — вырабатываемая энергия солнечными панелями, Втч в сутки;

Eинс — среднемесячная инсоляция (из таблицы) кВтч/м2/день;

Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);

k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2.

Источник: http://b-eco.ru/articles/calc_power1/

Расчет солнечных батарей для частного дома

Стоимость системы солнечного энергоснабжения зависит от варианта его использования. Если энергию солнца использовать как дополнительный источник электроэнергии, тогда она вам обойдется дешевле.  Общие затраты также будут значительно меньше, если сами будете устанавливать гелиосистему со всем оборудованием.

Правильный выбор производителя, тоже влияет на окупаемость солнечной электростанции. Не нужно ориентироваться на европейский бренд, китайский вариант солнечных панелей и оборудования ничуть не хуже, зато намного дешевле. Самый дорогой элемент солнечной электростанции — это солнечные панели. Можно приобрести отдельные солнечные модули и зимними вечерами их собирать в панели.

Правда их производительность будет ниже заводских, и для достижения необходимой мощности солнечных панелей нужно сделать их больше. За то какая экономия!  Выбрав правильный угол установки солнечных элементов для вашей местности, можно поднять эффективность солнечных батарей.Лучше будет установка панелей на специальную автоматическую подвижную раму, которая поворачивается вслед за солнцем.

Угол наклона солнечных батарей для максимальной эффективности зимой и летом

Батареи будут получать максимальное освещение солнечной энергией в течение всего светлого времени суток. Если в вашей местности преобладает пасмурная погода, то лучше остановиться на микроморфных пленочных панелях, которые вырабатывают энергию и в пасмурные дни. Самой дорогой и самой эффективной является монокристаллическая фотопанель, с КПД 20-25%. Популярные поликристаллические изделия имеют КПД равные 15-20%, и по эффективности мало уступают монокристаллическим.

Расчет солнечных батарей для дома

Расчет мощности солнечных батарей нужно проводить с учетом вашего потребления мощности электроэнергии за час. Для этого нужно знать, сколько времени работает каждый бытовой электроприбор, освещение. Считать потребление мощности электроэнергии нужно в вечернее время, когда включено больше всего электроприборов и техники. Допустим, при расчете вы получили 7 кВт/час.

График зависимости мощности солнечных батарей от погодных условий

Расчет мощности солнечных батарей нужно делать с учетом инсоляции — количества солнечной энергии на единицу площади для вашей местности, которая определяется по карте инсоляции для районов России. Определим инсоляцию 2 кВт/час.

Вы желаете приобрести батарею мощностью 200 Ватт или 0,2 кВт. Из этих данных теперь можно определить количество необходимых панелей. Расчет числа солнечных батарей для частного дома: 7/2/0,2 = 17,5 штуки. Округляем в большую сторону, получаем, что нам необходимо для потребления мощности электроэнергии в 7 кВт приобрести 18 панелей.

Чтобы как-то сэкономить электроэнергию, нужно лампы накаливания заменить энергосберегающими лампами, и по мере износа электробытовых приборов приобретать энергоэкономную технику. Это приблизительный расчет, без потерь в аккумуляторах (15-30%) и потерь в недорогих контроллерах (15-20%). Поэтому установив 18 панелей нужно предусмотреть место для монтажа еще нескольких фотобатарей.

Устройство солнечной электростанции

ЭТО ИНТЕРЕСНО:  Что такое шаговое напряжение определение

Со временем вы выйдете на точное число солнечных модулей. Все, вы определились с количество панелей, теперь солнечной электроэнергии достаточно даже в месяцы с худшей инсоляцией. А летом, когда солнца вдоволь, куда девать электроэнергию.

Если у вас осталась электросеть как резервный вариант, на случай непредвиденных обстоятельств, тогда договоритесь с энергосбытом на установку обратного электросчетчика.

Излишек солнечной энергии будет перетекать в электросеть, и вы будете получать за это деньги.

Источник: https://electricavdome.ru/raschet-solnechnyx-batarej.html

On-Line калькулятор солнечных батарей, он-лайн расчет солнечных электростанций

Для каждой точки местности России, мы собрали данные по инсоляции с точностью 0,1 градуса по широте и долготе. Данные были любезно предоставлены сервисом NASA где история измерений ведется с 1984 года.

Для использования нашего калькулятора выберите местоположение вашей солнечной электростанции передвигая метку по карте или воспользуйтесь полем поиска на карте. Наш калькулятор работает только по территории России.

1.

Если вы знаете какие солнечные батареи вы будете использовать, или они уже установлены в вашей солнечной станции — выберите солнечные батареи нужной мощности и их количество.

2. Укажите угол наклона вашей крыши, место установки. Также наш калькулятор автоматически показывает оптимальный угол наклона солнечной батареи для выбранной точки местности. Угол показывается для зимы, оптимальный — средний для всего года, для лета. Это особенно важно если вы только планируете установку солнечной станции и при ее строительстве сможете указать строителям необходимый угол для монтажа СБ. Если например вы планируете установить солнечные батареи на крышу вашего дома и угол установки предопределен конструкцией, просто укажите его в поле ввода произвольного угла. Наш калькулятор будет вести расчет учитывая угол вашей крыши. 3. Очень важно правильно оценивать мощность потребителей электроэнергии вашей солнечной станции при подборе необходимого количества солнечных батарей.

В калькуляторе нагрузок для солнечной электростанции выберите электроприборы которые вы будете использовать, задайте их количество и мощность в ваттах, а также примерно время использования в сутки.

Например для небольшого дома выбираем:

  • Электролампа — 3шт мощностью 50Вт каждая, работают 6 часов в сутки — итого 0,9 кВт часов/сутки.
  • Телевизор — 1шт мощностью 150Вт, работает 4 часа в сутки — итого 0,6 кВт часов/сутки.
  • Холодильник — 1шт мощностью 200Вт, работает 6 часов в сутки — итого 1,2 кВт часов/сутки.
  • Компьютер — 1шт мощностью 350Вт, работает 3 часа в сутки — итого 1,05 кВт часов/сутки.

Телевизор современный с плоским экраном, светодиодный потребляет от 100 до 200 Вт, холодильник, в нем работает компрессор и работает не постоянно, а тогда когда нужен холод, т.е.

чем чаще вы открываете дверь холодильника, тем больше электричества он съест. Обычно холодильник работает 6 часов в сутках, остальное время отдыхает. Компьютер например вы используете в среднем 3 часа в сутки. При заданных условиях потребления вы получите необходимую мощность для электропитания ваших электроприборов.

Для нашего примера суммарное потребление электроприборов в сутки составит 3,75 кВт*час в сутки.

Давайте подберем необходимое количество солнечных панелей для нашего примера, в регионе Санкт-Петербург:

Возьмем солнечные модули 250Вт, установим оптимальный угол наклона предложенный программой равный 60 градусов. Увеличивая количество солнечных батарей мы увидим, что при установке 3х солнечных модулей 250Вт потребление наших электроприборов 3,75 кВт час сутки начинает перекрываться на графике выработке уже с апреля по сентябрь, что достаточно для тех людей которые например пребывают на даче летом.

Если вы хотите эксплуатировать СБ круглогодично, то вам понадобится минимум 6 солнечных модулей по 250Вт, а лучше 9шт. Учтите также, что зимой с ноября по середину января в Питере солнца скорее нет, чем оно есть. И в данное время года вы будете использовать бензо-дизель генератор для подзарядки аккумуляторов.

Под графиком выработки находится сводная таблица с числовыми данными о выработке солнечной электростанции в удобном числовом виде.

Заполните форму ниже, отправьте нам данные своего расчета и получите коммерческое предложение для вашей солнечной электростанции

Расчет солнечной электростанции с помощью калькулятора носит предварительный характер. Каждый объект является индивидуальным, для формирования окончательного предложения под «ключ» с учетом монтажа и технико-экономического обоснования мы рекомендуем провести консультацию с нашими специалистами по телефону или заказать выезд инженера к вам.

По итогам общения наши специалисты подготовят и предоставят комплексное предложение по стоимости и монтажу вашей солнечной электростанции.

Для того, чтобы наши менеджеры смогли подготовить для Вас предварительные расчеты по стоимости оборудования и монтажу, отправьте нам данные своего расчета.

Если информации будет недостаточно, наш специалист свяжется с Вами для уточнения.

Источник: https://realsolar.ru/on-line-calc/

Пример расчета мощности и количества солнечных батарей для дома: формула и цены

Регионы: Москва, Новосибирск, Краснодар.

Установка гелиопанелей для энергопитания дома требует тщательного предварительного расчета. Возможности подобного оборудования ограничены и в значительной степени зависят от внешних условий:

  • географическое положение региона
  • климатические и погодные условия
  • продолжительность светового дня

Производительность комплекса всегда зависит от внешних условий. Один и тот же набор оборудования в разных условиях демонстрирует отличающиеся друг от друга результаты, поэтому в каждом случае потребуется специализированный расчет. Его можно заказать в специализированных организациях или выполнить самостоятельно. Рассмотрим, как рассчитать солнечные батареи для дома, чтобы получить эффективную установку по производству электроэнергии.

Потребности в электроэнергии

Расчет солнечных батарей для дачи или частного дома надо начинать с определения потребностей в электроэнергии. Эту величину можно узнать из показаний счетчика электроэнергии или подсчитать по энергопотреблению каждого потребителя и времени его использования. Второй вариант гораздо сложнее и чреват возникновением ошибок, поэтому правильнее руководствоваться показаниями счетчика.

Количество солнечных дней

Вторым действием станет определение количества солнечных дней в регионе, продолжительности светового дня по сезонам. В приложениях СНиП есть карта инсоляции регионов России, в которой дается количество солнечной энергии в разных участках страны. По ней определяется среднегодовое количество доступной энергии для заданного города или региона. Это важный показатель, демонстрирующий верхний предел возможностей оборудования в данном месте.

Определив эти значения можно начинать расчет мощности солнечных батарей для дома.

Расчет мощности солнечных батарей

Начиная расчет солнечной батареи, следует учесть, что световой день — это показатель преимущественно географический. Выполняя расчет солнечных панелей для дома, надо исходить из реального производства энергии, которое в утренние и вечерние часы значительно падает из-за снижения интенсивности свечения солнца.

Обычно в летнее время максимальная производительность панелей отмечается в период с 9 до 16 часов, а в остальное светлое время суток они выдают 20-30 % своей мощности.

Кроме того, существенные коррективы вносят погодные условия, которые способны снизить выработку энергии вдвое или больше.

Поэтому реальную производительность солнечной батареи следует принимать максимум в половину указанной в паспорте и рассчитывать количество энергии на 70 % продолжительности светового дня.

Специалисты рекомендуют вообще не учитывать в расчетах утренние и вечерние часы, отнеся их к необходимому запасу прочности системы. Кроме того, необходимо учитывать самые неблагоприятные условия и прибавлять к ним некоторый процент воздействия отрицательных факторов.

Это не будет излишним, поскольку всегда оказываются неучтенными некоторые детали, значительно меняющие условия работы и требуемую мощность солнечных батарей на квадратный метр.

Формула

Формула расчета солнечных панелей выглядит следующим образом:

Pсп=Eп*k* Pинс / Eинс,

  • где Pсп — мощность солнечной панели
  • Eп — суточное количество энергии, необходимой для питания всех потребителей дома
  • K — коэффициент потерь, обычно равен 1,2-1,4
  • Pинс — мощность инсоляции на земной поверхности
  • Eинс — табличное значение среднемесячной инсоляции в данном регионе

Используя эту формулу, находят требуемую мощность солнечной батареи на 1 кв. метр. По мощности определяется, сколько солнечных батарей нужно для частного дома, расчет количества панелей производится путем деления общего значения на параметры одного элемента.

Расчет ёмкости аккумуляторной батареи для солнечных панелей

Емкость аккумуляторов должна соответствовать производительности солнечных панелей и обеспечивать потребление дома как в светлое, так и в темное время суток. Необходимо ограничить емкость батарей, чтобы не тратить лишние деньги. Однако, необходимо иметь определенный запас емкости, поскольку полностью разряжать аккумуляторы нельзя.

Величина допустимого разряда у каждого вида АКБ своя, например, заряд автомобильных батарей можно расходовать только до 50 %. Оптимальный вариант — наличие суточного запаса энергии. Больше иметь нецелесообразно, так как это сильно увеличит стоимость системы. Меньший запас может оставить жителей дома без электроэнергии при возникновении неблагоприятных внешних условий.

Кроме того, надо учесть КПД батарей, инвертора и возможность плохого функционирования солнечных панелей из-за плохой погоды, занесения поверхности фотоэлементов снегом и т.п. Эти потери принято оценивать в 40 %, но к ним надо еще прибавить КПД контроллера.

Это важно, так как некоторые модели практически не воздействуют на процесс передачи энергии, но более дешевые модели способны снизить передачу на 20 %.

Расчет и выбор инвертора

Расчет солнечной электростанции завершается выбором мощности инвертора. Это устройство, преобразующее постоянный ток от аккумуляторных батарей, в переменное напряжение со стандартными параметрами 220 В 50 Гц.

https://www.youtube.com/watch?v=x7n_VxoX5Aw

Простейший вариант расчета мощности инвертора — определение суточной потребности жилища в электроэнергии (по показаниям счетчика), которому и должен соответствовать инвертор. Для учета возможных форс-мажорных ситуаций считают пиковую нагрузку, умножая суточное потребление на коэффициент 1,3.

Есть другой вариант расчета инвертора — по производительности солнечных панелей и емкости аккумуляторов. Он привязывает результат к имеющемуся оборудованию, но оно изначально так же рассчитывалось по суточному потреблению энергии, поэтому оба варианта практически равноценны. На этом расчет солнечной электростанции для дома можно считать завершенным и переходить к непосредственному созданию комплекта.

Выбор готового инвертора, как и в случае с аккумуляторами, производится путем подбора устройства по полученным данным. Рекомендуется выбирать инвертор, обладающий несколько увеличенными показателями на 10-15 %, чтобы компенсировать падение производительности со временем.

Стоимость солнечных батарей и аккумуляторов

Цены панелей и аккумуляторов имеют широкий диапазон, обусловленный множеством вариантов конструкции, мощности и прочих параметров. Однако, рассчитывать расходы следует только по расчетному составу солнечной электростанции, включающему в себя вполне определенные виды оборудования.

Внимание! Приобретение аппаратуры по отдельности нецелесообразно, поскольку в результате можно получить разнородное оборудование, не способное работать в связке. Правильнее приобретать готовые комплексы, составленные из полностью совместимого оборудования.

Начальная стоимость станции составляет 5 тыс. руб. и увеличивается пропорционально мощности, емкости АКБ и прочим возможностям комплекса. Верхнего предела практически не существует, так как количество солнечных панелей может быть бесконечно.

Цены на оборудование

Источник: https://energo.house/sol/raschet-solnechnyh-batarej.html

Просчитываем мощность солнечных панелей

Солнечные батареи с каждым годом становятся все более востребованной альтернативой традиционного энергоснабжения. Первое, что предстоит сделать человеку, решившему установить солнечные панели – правильно оценить потребности своих владений, произвести расчеты.

Рассчитываем мощность солнечных панелей

Выяснить необходимую мощность нужно на основании количества потребляемой вами энергии  (показания посмотрите по счетчику).

Нужно понимать, что солнечные батареи вырабатывают электричество исключительно в светлое время суток. Кроме того, лишь чистое небо и падение лучей под прямым углом гарантирует выдачу паспортной мощности. В противном случае выработка электроэнергии падает. Так, при пасмурной погоде мощность батарей подает в 15-20 раз.

Расчет мощности солнечных панелей

Производя расчет солнечных панелей, берите рабочее время, при котором панели функционируют на всю – с 9 до 16 часов. Летом батареи работают от рассвета до заката, но вечером или утром выработка составляет 20-30% от всей дневной.

Следовательно, массив батарей мощностью 1 кВт при солнечной погоде летом за 7 часов выдает 7 кВт/ч энергии, т.е. 210 кВт в месяц. Те 3 кВт, которые вырабатываются утром и вечером, оставьте про запас на случай пасмурной погоды. Кроме того, панели устанавливают стационарно, из чего следует, наклон солнечных лучей тоже будет меняться, что не позволит 100% выработку.

Интересное:

Правильное обслуживание солнечных батарей

Методы расчета мощности солнечных батарей из разных материалов

Преимущества солнечных панелей российского производства

Однако даже на 210 кВт/ч за месяц не стоит полностью полагаться. Существует ряд факторов, которые могут снизить показатели:

  • Географическое положение – не может в нашем регионе в месяце быть 30 солнечных дней. Нужно просмотреть архивы погоды и узнать примерное количество пасмурных дней. Не менее 5-6 дней точно окажутся несолнечными, солнечные панели не дадут и половины обещанной электроэнергии. Вычеркиваем 4 дня, получаем уже не 210 кВТ/ч, а 186.
  • Смена сезонов – осенью и весной световой день короче, а пасмурных дней больше. Если собираетесь пользоваться энергией солнца с марта по октябрь, увеличьте массив модулей на 30-50% в зависимости от места жительства.
  • Дополнительно оборудование – происходят серьезные потери в инверторе, а также аккумуляторах.

Рассчитываем емкость аккумулятора для панелей

Расчет мощности АКБ для солнечной панели.

Минимальный запас емкости должен быть таким, чтобы его хватало на работу ночью. Например, если с вечера до утра вы потребляете 3кВт/ч энергии, то запас энергии для аккумулятора должен быть именно таким.

Аккумулятор нельзя разряжать полностью.

Специализированные АКБ можно разрядить до 70% максимум. В противном случае они быстро выходят из строя. Обычные автомобильные АКБ нельзя разряжать более чем на 50%. Поэтому аккумуляторов нужно ставить вдвое больше, чем требуется, чтобы не менять их каждый год.

Оптимальный запас емкости АКБ – суточный запас энергии. Так, 10 кВТ/ч за 24 часа требует такой же рабочей емкости АКБ. Лишь тогда вы сможете прожить пару пасмурных дней без перебоев. В обычные дни аккумуляторы будут разряжаться частично (на 20-30%), что продлит срок эксплуатации АКБ.

Немаловажная деталь – КПД свинцово-кислотных аккумуляторов, равный 80%.  Т.е. при полном заряде аккумулятор берет на 20% больше, чем сможет отдать. Кроме того, КПД зависит от разряда и заряда тока, чем они больше, тем ниже КПД. Например, подключая чайник на 2кВт через инвертор и аккумулятор на 200Ач, то в последнем напряжение резко упадет, т.к. ток разряда будет около 250А, а КПД отдачи упадет до 40-50%.

С учетом потери полученной от батарей энергии в аккумуляторе и преобразовании постоянного напряжения в переменный ток 220 В, потери составляют 40%. Поэтому при расчете солнечных панелей и емкости АКБ, массив батарей нужно увеличить на 40%, чтобы перекрыть затраты.

Существует еще один похититель энергии – контроллер заряда аккумулятора. Их производят двух типов: PWM(ШИМ) и МРРТ. Первые более простые и дешевые, но они не трансформируют энергию, а потому панели не отдают в АКБ всю мощность (максимум 80% от паспортной мощности). МРРТ отслеживает пик мощности и может преобразовать энергию, понижая напряжение и поднимая ток зарядки, что увеличивает отдачу до 99%.

Интересное:

Как подключить солнечные батареи

Выбор комплектующих для солнечных батарей

Контроллер заряда солнечной батареи

Ставя дешевый PWM, прибавьте массив солнечных батарей еще на 20%.

Расчет солнечных панелей для дачи

Если вы не знаете потребление, а только планируете питать дачу энергией солнца, то рассчитать расход солнечных панелей достаточно просто. Холодильник, потребляющий 370 кВт/ч, значит, в месяц он потребит 30,8 кВТ/ч энергии (1,02 кВт/ч).

Считаем свет: энергосберегающие лампочки по 12 ватт каждая, а их у вас 6 штук и светят они около 6 часов за сутки. Значит, вам необходимо 12*6*6 =432 Вт/ч.

Источник: https://ekobatarei.ru/energia/raschet-solnechnykh-paneley

Как рассчитать мощность и стоимость солнечных батарей для дома?

Перед покупкой комплекта солнечных батарей всегда возникает множество вопросов. Какие панели выбрать, какого производителя предпочесть, сколько нужно таких модулей и какую мощность они будут выдавать? Но главное – сколько все это будет стоить? Поэтому перед покупкой необходимо сделать несколько расчетов, в первую очередь – расчет мощности, поскольку именно этот параметр во многом определит и итоговую стоимость комплекта.

Как определить мощность

Основополагающий критерий при подсчетах мощности – это энергонагрузка. Ведь именно от того, сколько электроэнергии требуется для обеспечения дома, зависят число и производительность модулей солнечных батарей. К примеру, для полноценных домашних станций применяют панели мощностью 150-250Вт, а если требуется всего лишь поддерживать работоспособность дачного освещения, то можно обойтись и панелями в 50Вт.

ЭТО ИНТЕРЕСНО:  Что не проводит ток

Базовое энергопотребление

Итак, на первом этапе нужно рассчитать, какова будет общая мощность всех потребителей, которые будут питаться от фотобатарей. Для этого надо энергопотребление каждого прибора (лампочки, бытовой техники) умножить на примерное время работы в течение суток. Причем лучше всего запитывать от солнечных панелей энергосберегающую нагрузку, это будет гораздо эффективнее с практической точки зрения. Энергопотребление бытовой техники можно посмотреть в инструкции.

Второй этап – суммирование полученных данных. Итог – норма энергопотребления за сутки в киловатт-часах. Иными словами, именно столько должны вырабатывать солнечные батареи (причем минимум!), чтобы обеспечить снабжение нужных потребителей. От этой цифры и будут отталкиваться все дальнейшие подсчеты (количество, цена и т.д.).

Но поскольку в систему солнечной станции входят не только батареи, но и вспомогательное оборудование (инверторы, аккумуляторы, зарядные контроллеры), это нужно учитывать. Дело в том, что, например, в аккумуляторах происходит определенное падение энергии (порядка 20%). Дальнейший расчет должен это учесть, поэтому полученное базовое значение надо увеличить на данную величину.

Рациональность

Для частного дома лучшим решением будет подключение к гелиостанции энергосберегающих лампочек и части бытовой техники, рассчитанной на 12В (именно столько выдают фотопанели).

Дело в том, что полный перевод дома на альтернативное энергоснабжение потребует установки очень большого числа батарей и разного дополнительного оборудования (аккумуляторов, инверторов, контроллеров заряда).

Причем это оборудование обязательно (за исключением инверторов, если к солнечным батареям подключают 12-вольтовую нагрузку постоянного тока, их можно исключить).

Учет инсоляции

Инсоляция (грубо говоря, количество солнечной энергии, попадающее на единицу площади) – очень важный параметр. Расчет солнечных батарей для дома должен обязательно его учитывать.

Ведь если в ходе эксплуатации гелиосистемы солнца постоянно будет недостаточно, то даже самая производительная фотопанель не сможет выдавать заданную мощность, а значит, не обеспечит требуемого энергоснабжения.

Значения инсоляции различны для разных широт и указываются в справочниках или на сайтах метеорологов. Максимум их приходится на лето – минимум же – на зиму.

Итоговые значения

Зная базовое энергопотребление и солнечную активность региона, рассчитать количество солнечных батарей очень просто. Сначала надо базовую энергонорму за сутки поделить на соответствующую инсоляцию для нужного месяца.

Очень важно вести расчет именно по месяцам, поскольку из-за изменений инсоляции итоговые значения будут сильно варьироваться (в несколько раз). Полученное в результате число нужно разделить на мощность выбранной панели (по паспорту). Итог округляется в сторону большей величины и показывает, сколько потребуется солнечных батарей.

Разумеется, чем больше заявленная производительность одной панели, тем меньше их нужно будет установить.

Очень важно заранее определить, в какие именно месяцы будет работать вся система. Связано это с падением инсоляции, из-за чего для обеспечения одной и той же нормы потребления потребуется в несколько раз больше солнечных батарей.

К примеру, базовая норма за сутки для дома, согласно расчетам, 10 кВтч, а солнечная активность – 2кВтч/м2 (берем ориентировочно). Тогда при мощности фотопанели в 200Вт (0,2 кВт) надо смонтировать 10/2/0,2 = 25 штук. Зимой же инсоляция упадет несколько раз, средние значения обычно варьируются от 0,5 до 1,6. Соответственно возрастает и число фотобатарей. Так, при инсоляции 0,7 получим 10/0,7/0,2 = 72 штук (округленно). Разница весьма ощутима.

Окончательная стоимость

Расчет стоимости солнечных батарей основывается на требуемой мощности. Но существуют и другие параметры, которые ощутимо влияют на итоговую цену. Это фирма-производитель, тип ячеек и, как следствие, габариты.

Так, панели на монокристаллах стоят несколько дороже, поскольку обладают большей эффективностью. Кроме того, они имеют меньшие размеры. Панель поликристаллическая с аналогичной мощностью будет несколько габаритнее.

Этот фактор может иметь решающее значение, ведь пространство для установки фотобатарей может быть ограниченным.

Имеет значение и фирма-изготовитель. Немецкие или американские панели, естественно, будут дороже китайских или российских аналогов. Однако качество последних зачастую ничуть не хуже. Дело в том, что подавляющее большинство российских компаний собирает свои изделия из европейских комплектующих, по сути, являясь не производителем, а сборщиком солнечных батарей. Примерно такая же картина складывается и в Китае. Поэтому смысла переплачивать за европейский бренд нет никакого.

Источник: http://solarb.ru/kak-rasschitat-moshchnost-i-stoimost-solnechnykh-batarei-dlya-doma

Расчет себестоимости производства солнечной электроэнергии для собственных нужд домохозяйства в центре Европы

Как ответ на комментарии к цене электричества в Германии и резонному вопросу «Так доколе народ будет это терпеть?» я решил привести свой расчет в данной статье.

Вступление

Данный расчет я делаю уже второй раз. Первый делал пару лет назад, и следующий буду делать как только появятся обновленные данные.

Он не рассчитывает на объективность, а служит только для ответа на вопрос «Есть ли смысл?» Задача рассчитать себестоимость солнечной электроэнергии, выработанной у себя дома с учетом сегодняшних цен на оборудование и текущие сроки эксплуатации и без учета различных субсидий, «зеленых тарифов» и прочей фигни, так это все равно рано или поздно отменят, а Солнце — оно постоянно.

Полученную цифру можно будет сравнить с текущей ценой электроэнергии в данном регионе и понять будут ли окупаться инвестиции в собственный ВИЭ. Я специально учитываю только основное оборудование и не учитываю стоимость монтажных работ, проводки и т.д, так как это не должно сильно влиять, но усложняет расчет.

Начальные условия

Для расчетов возьмем такие начальные условия.

  • Пусть у нас будет дом где-то в центре Европы, например под Мюнхеном. Это необходимо для определения инсоляции и соответственно необходимой площади солнечных батарей.
  • У нас есть достаточно большая площадь для установки батарей, направленная на юг.
  • Годовое потребление нашего домохозяйства пусть будет 4000 кВт*ч. Пусть оно будет равномерно распределено по месяцам. Т.е.

    месячное потребление составит 4000 / 12 = 333 кВт*ч.

Расчет оборудования и его стоимости

Первый дисклеймер — сразу скажу, расчет будет делаться для «честной» системы, в которой пик потребления может не совпадать с пиком производства, и поэтому система будет состоять из солнечных батарей + аккумуляторов + инвертора. Это на мой взгляд единственный вариант системы, позволяющий в лучшем случае полную автономность и независимость от сетевых тарифов. В худшем случае вы будете изредка подсасывать электричество из сети.

Примерная схема данного решения приведена на рисунке внизу. В общих словах это работает так: солнечные панели подключены к домашней сети переменного тока через инвертор. Батареи тоже подключены к этой же сети через свой инвертор. Домашняя сеть также соединена с обычной сетью. Умный менеджмент контролирует работу инверторов таким образом, чтобы всегда максимально использовался потенциал солнечных батарей. Т.е.

если энергии солнца достаточно для питания всех домашних устройств, избыток энергии забирается батареей из домашней сети и она заряжается. Когда же солнце исчезает, домашняя сеть начинает питаться от батареи, разряжая ее. Только в том случае, когда батарея полностью разряжена и солнца нет, дом начинает забирать электричество из сети. Второй дисклеймер — так как погода непостоянна, мы говорим о средне статистических цифрах.

В реальности может месяц идти дождь и тогда все расчеты не имеют никакого значения.

Солнечные батареи

Итак начнем с солнечных батарей. Нам надо узнать сколько их нужно, чтобы обеспечить нашу потребность в электричестве в худшем случае. Мы знаем две цифры — необходимое количество электричества — 4000 кВтч/год и местоположение — г. Мюнхен.

Расчет инсоляции

По местоположению нам надо получить среднее количество солнечной радиации на квадратный метр. Оно считается в кВтч/м2/день. То есть сколько энергии получает от солнца каждый квадратный метр поверхности за один день. Для расчета используем вот этот калькулятор, который даст нам статистику по месяцам с учетом облачных дней, туманов и т.д.

Так как нам надо наше электричество и зимой, когда солнце светит мало, нас интересует месяц с самой низкой инсоляцией — декабрь или январь. Это даст нам наихудший вариант для расчетов. Можно считать для плоской поверхности и потом находить оптимальный угол солнечных батарей, но калькулятор сделает это за нас, поэтому сразу кликаем на оптимальный наклон для зимы (27 градусов) и получаем заветные цифры: Т.

е минимальная инсоляция у нас будет в декабре и составлять 1.51 кВтч/м2/день. Мало? Но не забываем, что это в день. А в месяц наберется 1.51*30,5= 46кВтч/м2.

Определение количества панелей

Чтобы перевести полученную цифру в электричество, нам надо: а) Определиться с типом солнечных панелей и их КПД б) Определиться с количеством солнечных панелей

По а) я не долго думая выбрал вот эти.

Почему их? Не знаю, наверное потому, что мы на Хабре и для нас важно наличие технических данных, даташитов и прочих пруфов. По ссылке все это присутствует. В чем прикол в солнечно-батарейном строении? В том, что производители всех солнечных батарей уже в названии модели приводят заветную цифру — выработку при номинальной инсоляции в 1000Вт/м2. В данном случае она равна 330Вт и одной этой цифрой привязывает и КПД и площадь. Площадь этой солнечной панели стандартная – 1,6м. Значит ее КПД будет 330/(1000*1,6)=20,6%, что соответствует даташиту. И прикол получается, что умножив 330Вт на 1.51 — среднюю инсоляцию в декабре, мы получим 498Вт*ч — именно столько электричества выработает нам одна такая панель в Мюнхене зимой в день, настроенная на зимний угол. Это важная цифра для дальнейших расчетов. По б) необходимое количество панелей определяем так. Так как нам калькулятор выдал генерацию в день, то и потребление надо пересчитать на дни. Т.е. делим 4000 кВтч на 365 и получаем 10,96 кВтч/день. Зная, что одна панель нам выдаст 498 Вт*ч легко определить, что нам понадобится 10,96/0,498= 22 панели. Много это или мало — каждый решает сам. Тут есть такие нюансы:

  • эти панели должны быть установлены строго на юг под углом 27 градусов. То есть если брать плоскую крышу, реально занимаемая площадь панелями будет больше. Гораздо больше.
  • если же крыша имеет скат, но не направлена строго на юг, производительность батарей будет меньше.
  • Следует учитывать, что 22 панели понадобятся в случае, если мы хотим даже в декабре получать всю потребляемую электроэнергию от солнца. Если же мы смягчим это условие, например решив, что в ноябре, декабре и январе мы можем подсасывать из сети, то минимальная инсоляция у нас уже будет 2.59 (в Октябре) и общее количество необходимых панелей уменьшится до 10,96/(2,59*0,330)= 13. Т.е почти в 2 раза меньше.

Мы еще вернемся к вопросу выбора количества панелей, когда будем считать себестоимость. Хотя нет, наверное. Давайте сразу определимся здесь.

Цена вопроса

Итак идем на сайты по продажам солнечных батарей и гуглим нашу панель VBHN330SA16. У меня получились цены от 250 до 280 евро за одну панель. Т.е 22 панели обойдутся нам в 22*270(среднее)= 5 940 Евро. Теперь, внимание! Так как это не ноунейм мы читаем даташит и видим, что Панасоник дает гарантию на панели в 25 лет. При этом он гарантирует, что панели деградируют не более, чем на 10% за это время.

Беря этот срок за срок жизни и считая, что через 25 лет мы выбрасываем эти панели, нетрудно расчитать и себестоимость киловаттчаса при условии, что мы будем отбирать только наши 4000кВтч в год. За 25 лет мы снимем 100 000 кВтч(100МВтч). Делим 5 940 евро на 100000, получаем 0,0594 евро/кВтч или грубо говоря 6 евроцентов за кВтч. Напоминаю, что это только составляющая от солнечных батарей.

И это только в том случае, если мы будем запасать все вырабатываемое электричество где-то и потом использовать (в декабре, конечно).

Солнечный Инвертор

Идем дальше — инвертор. Тут я немного плаваю, поэтому прошу в комментариях подсказать, если неправильно посчитал.

Выбор

Если считать, что нам в день надо потребить не менее 10кВтч, я думаю, что пиковая мощность должна быть где-то киловатта в 4-5. Может где-то есть данные о пиковой инсоляции в полдень в декабре, чтобы посчитать хватит его или нет.

Себестоимость за кВтч

Итоговая себестоимость солнечного электричества у нас оказалась равна:

  • Солнечные батареи: 0,06
  • Инвертор: 0,01
  • Аккумуляторы: 0,36

Всего: 0,43 евро. Из этой суммы львиная доля приходится на аккумуляторы, и в основном из-за возможно малого срока службы — всего 10 лет. Но будем надеяться, что это скоро изменится в лучшую сторону. Возможна экономия за счет того, чтобы солнечные панели подключались напрямую к Powerwall через DC/DC преобразователь.

Так можно сэкономить на одном инверторе. Но это в итоге будет опять же пара центов в стоимости киловатт-часа. Интересно, что стоимость солнечных батарей в итоговой себестоимости оказалась достаточно низкой — в основном благодаря долгому сроку службы. Поэтому тут экономить на железе не имеет смысла, а лучше вложиться в надежную технику, чтобы избежать дорогостоящих замен батарей на высоте. Ну и варьировать количеством панелей можно без особого влияния на итоговую цену электричества.

Кредит

Так как денег на такие инвестиции у нас обычно нет в наличии, и мы хотим платить за наше электричество желательно небольшим ежемесячным платежом, надо брать кредит. Итак мне нужно 43 тыс евро разовых инвестиций на оборудование. Точнее не так. Мне нужно 7000 евро на солнечные батареи на 25 лет и 14400 за два Powerwallа на 10 лет, так как Powerwallов нам нужно сперва только 2 шт.

ОК, я иду в ближайший банк и беру два кредита под 2% — например вот тут.

Забиваем указанные суммы в Darlehen-калькулятор и получаем ежемесячные платежи в 29,67 и 132,50 евро в месяц или суммарно 162,17*12=1946 евро в год — вот цена нашего дармового электричества с учетом кредита и выплачивания ежемесячных сумм вместо одноразовых инвестиций. В результате электричество дорожает с 43 до 49 центов или на 14%.

Итоговый дисклеймер

  • Если сравнить полученную цену с ценой электричества из розетки в Германии в 0,30 евро, то можно предположить, что данный проект пока не окупается. Но, стоит учесть, что если статистика покажет, что Powerwall может прожить те же 25 лет без замены, то общая стоимость солнечного кВтч снизится до 0,21-0,22 евро (0,25 с учетом кредита), что может стать уже гораздо интересней.

    Поэтому я принципиально считаю, что 30 центов — это психологический барьер, выше которого народ начнет серьезно задумываться о том, чтобы переходить на локальную генерацию в данном регионе. И этот барьер снижается, так как батареи дешевеют, а электромобили появляются.

  • Так как погода непостоянна, все это всего лишь статистика.

    Можно поиметь всего два солнечных дня в декабре и придется сосать электричество из сети или подключать другие варианты генерации (дизель, или брать из своего электромобиля).

  • Поэтому сеть нужна по-любому, но из нее надо будет сосать достаточно маленькую мощность.
  • Понятно, что летом у нас будет гораздо большая выработка электричества, чем зимой — примерно в 2,7 раза, или почти 30кВтч/день при потреблении в 11кВтч/день. Т.е.

    летом надо максимизировать потребление, так как оно фактически бесплатное — кондиционеры можно не выключать. И вообще, чем больше вы сможете расходовать электричества летом, тем дешевле оно будет. Т.е всякие бойлеры и прочее надо переводить на электричество тоже.

  • И вообще летом за неделю будет набегать лишнего электричества почти на один «бак» для Теслы Модел С, поэтому электромобиль — это маст хэв в таком случае. На халяву рассекать.

  • Ну и есть такое преимущество — если свет везде отключат, у вас он все равно останется. В Германии, конечно, не принципиально, но все же.
  • Существует мнение, что солнечная электростанция на крыше поднимает стоимость дома. То есть инвестиции окупаются еще и за счет этого.

Короче преимуществ ИМХО больше, чем недостатков.

В комментариях предлагаю обсудить именно статью, дисклеймеры, нюансы и возможности получения лучших цифр, уточненных данных, для другой территории и т.д. Зеленую энергетику же вообще предлагаю обсуждать в уже упомянутой в начале статье.

Спасибо, что прочитали эту статью.

Источник: https://habr.com/ru/post/482876/

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]