Коэффициент мощности cos φ: определение, назначение, физический смысл
Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.
В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.
Математически cos φ
Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).
Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.
Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.
Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.
В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.
Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.
Короткое видео о кратким объяснением, что такое коэффициент мощности:
Повышение коэффициента мощности
Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.
Повышение cos φ преследует 3 основные задачи:
- снижение потерь электроэнергии;
- рациональное использование цветных металлов на создание электропроводящей аппаратуры;
- оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.
Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств.
Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.
Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.
Основные способы коррекции cos φ
1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.
2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности.
Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.
3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.
Подробное видео с объяснением, что такое cosφ :
Источник: https://pue8.ru/elektrotekhnik/803-koeffitsient-moshchnosti-cos.html
Коэффициент мощности, формула и примеры
Средняя мощность переменного электрического тока , выражаемая через действующие значения силы тока (I) и напряжение (U) равна:
где — действующее (эффективное) значение силы тока, — амплитуда силы тока, — действующее (эффективное) значение напряжения, — амплитуда напряжения.
Коэффициент мощности используют для характеристики потребителя переменного тока как реактивную составляющую нагрузки. Величина этого коэффициента отражает сдвиг фазы () переменного тока, который течет через нагрузку, по отношению к приложенному к нагрузке напряжению. Из выражения (1) видно, что по величине коэффициент мощности равен косинусу от этого сдвига. Если сила тока отстает от напряжения, то сдвиг фаз считают большим нуля, если обгоняет, то
Практическое значение коэффициента мощности
На практике коэффициент мощности стараются сделать максимально большим. Так как при малом для выделения в цепи необходимой мощности надо пропускать ток большой силы, а это приводит к большим потерям в подводящих проводах (см. закон Джоуля — Ленца).
Коэффициент мощности учитывают при проектировании электрических сетей. Если коэффициент мощности является низким, это приводит к росту части потерь электрической энергии в общей сумме потерь. Для увеличения данного коэффициента применяют компенсирующие устройства.
Ошибки при расчетах коэффициента мощности ведут к повышенному потреблению электрической энергии и уменьшению коэффициента полезного действия оборудования.
Коэффициент мощности измеряют фазометром.
Способы расчета коэффициента мощности
Коэффициент мощности рассчитывают как отношение активной мощности (P) к полной мощности (S)
где — реактивная мощность.
Коэффициент мощности для трехфазного асинхронного двигателя вычисляют при помощи формулы:
Коэффициент мощности можно определить, используя, например треугольник сопротивлений (рис.1а) или треугольник мощностей (рис.1b).
Треугольники на рис. 1(a и b) подобны, так как из стороны пропорциональны.
Единицы измерения
Коэффициент мощности — безразмерная физическая величина.
Примеры решения задач
Понравился сайт? Расскажи друзьям! |
Источник: http://ru.solverbook.com/spravochnik/koefficienty/koefficient-moshhnosti/
Коэффициент мощности cos фи таблица электрооборудования
Физическая сущность коэффициента мощности (косинуса «фи») заключается в следующем. Как известно, в цепи переменного тока в общем случае имеются три вида нагрузки или три вида мощности (три вида тока, три вида сопротивлений). Активная Р, реактивная Q и полная S мощности соответственно ассоциируются с активным к, реактивным х и полным z сопротивлениями.
Из курса электротехники известно, что активным называется сопротивление, в котором при прохождении тока выделяется тепло. С активным сопротивлением связаны потери активной мощности ? P п , равные квадрату тока, умноженному на сопротивление d P п = I 2 r Вт.
Реактивное сопротивление при прохождении по нему тока потерь не вызывает. Обусловливается это сопротивление индуктивностью L, а также емкостью С.
Индуктивное и емкостное сопротивления являются двумя видами реактивного сопротивления и выражаются следующими формулами:
реактивное сопротивление индуктивности, или индуктивное сопротивление,
реактивное сопротивление емкости, или емкостное сопротивление,
Тогда х = хL – х c . Например, если в цепи хL= 12 Ом, хс = 7 Ом, то реактивное сопротивление цепи x=х L – хс= 12 – 7 = 5 Ом.
Рис. 1. Иллюстрации к объяснению сущности косинуса «фи»: а – схема последовательного включения r и L в цепи переменного тока, б – треугольник сопротивлений, в – треугольник мощностей, г — треугольник мощностей при различных значениях активной мощности.
Полное сопротивление z включает в себя активное и реактивное сопротивления. Для цепи последовательного соединения г и L (рис. 1 , а) графически изображается треугольником сопротивления .
Если стороны этого треугольника умножить на квадрат одного и того же тока, то соотношение сторон не изменится, но новый треугольник будет представлять собой треугольник мощностей (рис. 1,в).
Как видно из треугольника, в цепи переменного тока в общем случае возникают три мощности: активная Р, реактивная Q и полная S
P = I 2 r = UIcosфи Вт, Q = I 2 х = I 2 х L – I2xc = UIsinфи Вар, S = I 2 z = UI Ва.
Активная мощность может быть названа рабочей, т. е. она «греет» (выделение тепла), «светит» (электрическое освещение), «двигает» (электродвигатели приводят в движение механизмы) и т. д. Измеряется она так же, как и мощность на постоянном токе, в ваттах.
Выработанная активная мощность полностью без остатка расходуется в приемниках и подводящих проводах со скоростью света – практически мгновенно. Это является одной из характерных особенностей активной мощности: сколько вырабатывается, столько и расходуется.
Реактивная мощность Q не расходуется и представляет собой колебание электромагнитной энергии в электрической цепи. Переливание энергии из источника к приемнику и обратно связано с протеканием тока по проводам, а так как провода обладают активным сопротивлением, то в них имеются потери.
Таким образом, при реактивной мощности работа не совершается, но возникают потери, которые при одной и той же активной мощности тем больше, чем меньше коэффициент мощности (cosфи , косинус «фи») .
Комфорт эко блок управления котлом
Пример. Определить потери мощности в линии с сопротивлением r л = 1 ом, если по ней передается мощность Р=10 кВт на напряжение 400 В один раз при cosфи 1 = 0,5, а второй раз при cosфи2=0,9.
Решение. Ток в первом случае I1 = P/(Ucosфи 1) = 10/(0 ,4 • 0,5) = 50 А.
Потери мощности dP1 = I1 2 r л = 50 2 •1 = 2500 Вт = 2,5 кВт.
Во втором случае ток I1 = P/(Ucosфи 2 ) = 10/(0 ,4 • 0,9) = 28 А
Потери мощности dP2 = I 2 2 r л = 28 2 •1 = 784 Вт = 0,784 кВт, т.е. во втором случае потери мощности в 2,5/0,784 = 3,2 раза меньше только потому, что выше значение cosфи.
Расчет наглядно показывает, что чем выше величина косинус «фи», тем меньше потери энергии и тем меньше нужно закладывать цветного металла при монтаже новых установок.
Повышая косинус «фи», преследуем три основные цели:
1) экономию электрической энергии,
2) экономию цветных металлов,
3) максимальное использование установленной мощности генераторов, трансформаторов и вообще электродвигателей переменного тока.
Последнее обстоятельство подтверждается тем, что, например, от одного и того же трансформатора можно получить тем больше активной мощности, чем больше величина со sфи потребителей. Так, от трансформатора с номинальной мощностью Sн=1000 кВа при со sфи 1 = 0,7 можно получить активной мощности Р 1 = S нcosфи 1 = 1000•0,7=700 кВт, а при cosфи2 = 0,95 Р2 = S нcosфи2= 1000•0,95 = 950 кВт.
В обоих случаях трансформатор будет нагружен полностью до 1000 кВа. Причиной низкого коэффициента мощности на предприятиях являются недогруженные асинхронные двигатели и трансформаторы. Например, асинхронный двигатель при холостом ходе имеет cos ?хх примерно равный 0,2, тогда как при загрузке до номинальной мощности со sфи н = 0,85.
Для наглядности рассмотрим приближенный треугольник мощности для асинхронного двигателя (рис. 1,г).
При холостом ходе асинхронный двигатель потребляет реактивную мощность, примерно равную 30% номинальной мощности, тогда как потребляемая активная мощность при этом составляет около 15%. Коэффициент мощности поэтому очень низок.
С возрастанием нагрузки активная мощность увеличивается, а реактивная меняется незначительно и поэтому cosфи возрастает. Подробнее об этом читайте здесь: Коэффициент мощности электропривода
Основным мероприятием, повышающим значение cos?, является работа на полную производственную мощность. В этом случае асинхронные двигатели будут работать с коэффициентами мощности, близкими к номинальным величинам.
Мероприятия по повышению коэффициента мощности делятся на две основные группы:
1) не требующие установки компенсирующих устройств и целесообразные во всех случаях (естественные способы);
2) связанные с применением компенсирующих устройств (искусственные способы).
К мероприятиям первой группы согласно действующим руководящим указаниям относится упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению коэффициента мощности. К этим же мероприятиям относится применение синхронных двигателей вместо некоторых асинхронных (установка синхронных двигателей рекомендуется вместо асинхронных всюду, где требуется повышать соsфи).
Конденсатор какой электроемкости следует подключить к катушке
Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.
В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.
XII. Практическое занятие №4. Расчет сложных цепей переменного тока
1.Как рассчитать ток, потребляемый изсети, при параллельном соединениирезистора, индуктивной катушки иконденсатора, если параметры потребителейи приложенное напряжение известны?
2.Как рассчитать активную и реактивнуюсоставляющие тока отдельной ветви иобщего тока, если известны параметрыпараллельно включенных потребителейи приложенное напряжение?
3.Построить векторные диаграммы токов инапряжений для цепей, содержащихпараллельное соединение Rи L,Rи C,реальной катушки (с активным сопротивлениемRи индуктивностью L)и C.
4.Что такое коэффициент мощностипотребителя? Объяснить экономическоезначение коэффициента мощности.
5.Как рассчитать коэффициент мощностицепи, если известны параметры параллельновключенных потребителей энергии?
6.Как рассчитать активную, реактивную иполную мощности цепи при параллельномсоединении потребителей, параметрыкоторых известны?
7.Как повысить коэффициент мощности цепи?
8.С какой целью повышают коэффициентмощности цепи?
9.Как рассчитать необходимую емкостьконденсатора, включенного для полнойкомпенсации реактивной энергии?
10.Как должен изменяться потребляемый изсети ток при повышении коэффициентамощности цепи?
11.Изменится ли ток в цепи потребителя,если к нему параллельно подключитьконденсатор?
12.Как изменится потребляемая из сетиактивная мощность при подключениипараллельно индуктивной катушке: а)резистора, б)конденсатора?
13.Каковы принципы расчета цепей переменноготока комплексным методом?
2. Расчет цепи с параллельным соединением элементов
Задача1.К источникус напряжением 220 Ви частотой 50 Гцподключены параллельно два двигателя,активные мощности и коэффициентымощности которых P1=0,3кВт,P2=0,4кВт,cosφ1=0,6,cosφ2=0,7.Начертить электрическую схему замещенияцепи.
Определить токи каждого двигателяи ток, потребляемый схемой от источника,ее активную, реактивную и полную мощности.Для повышения cosφцепи до 0,9 подключить параллельнонагрузке конденсатор и определить егоемкость, рассчитать ток, потребляемыйсхемой от источника в этом режиме.
Построить в масштабе векторную диаграммунапряжения и токов.
2.1. Анализ и решение задачи 1
1.Схемазамещения каждого двигателя может бытьпредставлена в виде последовательногосоединения резистивного и индуктивногоэлементов, т.к. в двигателе происходиткак необратимое преобразованиеэлектрической энергии в механическуюи тепловую энергию, так и колебательныйобмен энергией между магнитным полемдвигателя и сетью. Схема замещения кзадаче представлена на рис. 99.
Рисунок 99 к задаче1
2.Токи двигателейрассчитываются по паспортным данным:
А;А.
Сдвигитоков по фазе по отношению к напряжению:φ1=53,1°,φ2=45,5°.
3.Мощности ветвей приведены в исходныхданных, поэтому расчет схемы удобновести через треугольники мощностей.
Реактивные мощностидвигателей:
Q1= UI1sinφ1= 220 · 2,27 · 0,8 = 399 ВАр;
Q2= UI2sinφ2= 220 · 2,6 · 0,713 = 407 ВАр.
Активная и полнаямощности всей цепи:
P= P1+ P2= 300 + 400 = 700 Вт;
Q= Q1+ Q2= 399 + 407 = 806 ВАр;
В
Токв цепи источника: I= S/ U= 1068 / 220 = 4,85 А..
Коэффициентмощности схемы:
cosφ = P/ S= 700 / 1068 = 0,655.
4.Рассчитаем емкость конденсатора,необходимую для повышения коэффициентамощности схемы до cos
Источник: https://studfile.net/preview/7507376/page:39/
Почему необходимо повышать коэффициент мощности?
Коэффициент мощности – это отношение полезной (активной) мощности к полной (кажущейся) мощности, потребляемой электрооборудованием объекта или электроустановкой. Он является мерой эффективности преобразования электрической энергии в полезную работу. Идеальное значение коэффициента мощности равно единице. Любая величина, меньшая, чем единица, означает, что для получения желаемого результата необходима дополнительная мощность.
Протекание токов приводит к потерям в генерирующих мощностях и распределительной системе. Нагрузка с коэффициентом мощности 1,0 наиболее эффективно загружает источник, а нагрузка с коэффициентом мощности, к примеру, 0,8 является причиной больших потерь в системе и более высоких расходов на электроэнергию. Сравнительно небольшое улучшение коэффициента мощности может привести к значительному снижению потерь, так как они пропорциональны квадрату тока.
Если коэффициент мощности меньше единицы, это указывает на присутствие так называемой реактивной мощности. Она требуется для получения магнитного поля, необходимого для работы двигателей и других индуктивных нагрузок. Реактивная мощность, которую также можно назвать бесполезной мощностью или мощностью намагничивания, создаёт дополнительную нагрузку на систему электропитания и увеличивает затраты потребителя за электроэнергию.
Низкий коэффициент мощности обычно является результатом сдвига фаз между напряжением и током на выводах нагрузки. Также его причиной может стать высокое содержание гармоник, то есть сильно искажённая форма тока.
Коэффициент мощности чаще всего понижается из-за наличия индуктивных нагрузок: асинхронных двигателей, силовых трансформаторов, ПРА люминесцентных ламп, сварочных установок и дуговых печей.
Искажения формы тока могут быть результатом работы выпрямителей, преобразователей, регулируемых приводов, импульсных источников питания, газоразрядных ламп или других электронных нагрузок.
Низкий коэффициент мощности из-за индуктивных нагрузок может быть улучшен с помощью оборудования коррекции коэффициента мощности, а низкий коэффициент мощности из-за искажения формы тока требует изменения конструкции оборудования или установки фильтров гармоник.
Некоторые преобразователи позиционируются как имеющие коэффициент мощности выше 0,95, тогда как на самом деле их реальный коэффициент мощности находится в пределах от 0,5 до 0,75.
Значение 0,95 основано на косинусе угла между напряжением и током и не учитывает провалы в форме тока, которые также приводят к увеличению потерь.
Для работы индуктивной нагрузки необходимо магнитное поле, для создания которого требуется ток, отстающий по фазе от напряжения. Коррекция коэффициента мощности (компенсация реактивной мощности) – это процесс компенсации отставания тока путём генерации опережающего тока при подключении конденсаторов к системе электроснабжения. При этом величина подключаемой ёмкости выбирается таким образом, чтобы коэффициент мощности был максимально возможно близким к единице.
Подробнее о коэффициенте мощности
Представим себе однофазный асинхронный двигатель. Если он является чисто резистивной нагрузкой для источника, ток будет в фазе с напряжением. Но так не бывает. Двигатель имеет магнитную систему, и ток намагничивания находится не в фазе с напряжением.
Ток намагничивания – это ток, который определяет магнитный поток в сердечнике. Будучи не в фазе с напряжением, он заставляет поворачиваться вал двигателя.
Ток намагничивания не зависит от нагрузки двигателя, его величина обычно находится в пределах от 20 до 60% от номинального тока двигателя при полной нагрузке, и он не вносит вклад в выполнение двигателем полезной работы.
Рассмотрим двигатель с током потребления 10 А и коэффициентом мощности 0,75. В этом случае полезный ток равен 7,5 А. Полезная мощность двигателя равна 230 х 7,5 = 1,725 кВт, однако общая потребляемая мощность составляет 230 х 10 = 2,3 кВт. Без коррекции коэффициента мощности для получения требуемой мощности 1,725 кВт (7,5 А) должна подаваться мощность 2,3 кВА (10 А). То есть потребляется ток 10 А, но полезную работу выполняют только 7,5 А.
Коэффициент мощности можно определить двумя способами:
- коэффициент мощности равен частному активной мощности (кВт) и полной мощности (кВА).
- коэффициент мощности равен косинусу угла между активной мощностью и полной мощностью (cosφ).
Коррекция коэффициента мощности
Коррекция коэффициента мощности (компенсация реактивной мощности) – это название технологии, которая используется с начала 20 века для восстановления значения коэффициента мощности до значения, как можно более близкого к единице. Это обычно достигается подключением к сети конденсаторов, которые компенсируют потребление реактивной мощности индуктивными нагрузками и таким образом снижают нагрузку на источник. При этом не должно быть никакого влияния на работу оборудования.
Обычно для уменьшения потерь в системе распределения и снижения расходов на электроэнергию производится компенсация реактивной мощности с помощью конденсаторов, которые подключаются к сети для максимально возможной компенсации тока намагничивания.
Через конденсаторы, содержащиеся в большинстве устройств компенсации реактивной мощности, проходит ток, который опережает по фазе напряжение, обеспечивая таким образом опережающий коэффициент мощности.
Если конденсаторы подключаются к цепи, которая работает при отстающем коэффициенте мощности, это отставание соответственно уменьшается.
Обычно значение скорректированного коэффициента мощности находится в пределах от 0,92 до 0,95. Некоторые распределительные энергокомпании поощряют работу при коэффициенте мощности, к примеру, больше 0,9, а некоторые штрафуют потребителей за низкий коэффициент мощности.
Имеется много методов достижения данной цели, суть которой сводится к тому, что для снижения потерь энергии в системе распределения потребителю рекомендуется применять коррекцию коэффициента мощности.
В настоящее время большинство сетевых компаний штрафуют потребителей при коэффициенте мощности ниже 0,95 или 0,9.
Необходимость повышения коэффициента мощности
При должным образом выполненной коррекции коэффициента мощности достигаются следующие преимущества:
- экологические: снижение потребления электроэнергии за счёт повышения эффективности её использования. Снижение потребления приводит к уменьшению выбросов парниковых газов и замедлению истощения ресурсов ископаемого топлива для электростанций;
- уменьшение расходов на электроэнергию;
- возможность получения большей мощности от имеющегося источника;
- снижение тепловых потерь в трансформаторах и оборудовании распределения;
- уменьшение падения напряжения в длинных кабелях;
- увеличение срока службы оборудования в связи со снижением электрической нагрузки на кабели и другие электрические компоненты.
Методы улучшения коэффициента мощности
Коррекция коэффициента мощности (компенсация реактивной мощности) достигается установкой конденсаторов параллельно двигателю или схеме освещения, которые могут устанавливаться на оборудовании, распределительном щите или на вводе в электроустановку.
Статическая компенсация реактивной мощности может быть достигнута для каждого отдельного двигателя при подключении компенсирующих конденсаторов к пускателю двигателя.
При этом при изменении нагрузки двигателя может наблюдаться недо- или перекомпенсация.
Статическая компенсация реактивной мощности не должна применяться на выходе регулируемого привода, электронного устройства плавного пуска или преобразователя, так как конденсаторы могут стать причиной выхода из строя электронных компонентов.
При правильно рассчитанной компенсации реактивной мощности не должно быть перекомпенсации. Обычно компенсация реактивной мощности отдельного двигателя рассчитывается исходя из реактивной (намагничивающей) мощности, так как она сравнительно постоянна в отличие от активной мощности, это позволит избежать перекомпенсации.
При применении управления компенсацией реактивной мощности в схеме звезда/треугольник необходимо обратить внимание на то, чтобы конденсаторы не работали в режиме частого подключения и отключения. Обычно устройство компенсации подключается к сети или цепям контактора переключения на треугольник.
Устройство компенсации реактивной мощности, подключаемое на вводе электроустановки, состоит из контроллера, измеряющего реактивную мощность и коммутирующего конденсаторы для поддержания значения коэффициента мощности выше заданного значения (обычно 0,95).
При применении общей компенсации реактивной мощности другие нагрузки теоретически могут устанавливаться в любом месте сети.
Источник: https://khomovelectro.ru/articles/pochemu-neobkhodimo-povyshat-koeffitsient-moshchnosti.html
Что такое cos f в электричестве. Определение коэффициента мощности. Увеличение косинуса фи асинхронного двигателя
Асинхронный двигатель Увеличение косинуса фи асинхронного двигателя
Уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.
Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.
Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.
Неправильный выбор типа электродвигателя
Двигатели быстроходные и большой мощности имеют более высокий «косинус фи», чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ .
Повышение напряжения в сети
В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.
Неправильный ремонт двигателя
При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается рассеяния, что приводит к уменьшению cos φ двигателя.
При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.
Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.
Способы увеличения «косинуса фи»
Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ . К мерам увеличения cos φ относятся:
- Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
- Увеличение загрузки двигателей;
- Недопущение работы двигателей вхолостую продолжительное время;
- Правильный и высококачественный ремонт двигателей;
- Применение статических (то есть неподвижных, невращающихся) .
Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.
Отрезок ос , представляющий активную слагающую тока I 1 , равен:
ос = I 1 × cos φ 1 = оа × cos φ 1 .
Источник: https://carscomfort.ru/asinhronnyj-dvigatel/uvelichenie-kosinusa-fi-asinhronnogo-dvigatelya.html
Увеличение косинуса фи
25 апреля 2015.
Категория: Электротехника.
Недо электродвигателей переменного тока
При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.
Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет «косинус фи», равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.
Двигатели, работающие вхолостую, имеют «косинус фи», равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.
Измерение реактивной мощности – 6.3-4
Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.
Измерение мощности в цепи постоянного тока
Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.
Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:
А при большом значении R такую схему:
Измерение мощности в однофазных цепях переменного тока
Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная. Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.
Замер же активной P=UIcosφ и реактивной Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:
Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.
Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.
Измерение мощности в трехфазных цепях переменного тока
Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:
Uл – напряжение линейное, I- фазный ток.
Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:
При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:
Общей энергией потребляемой из сети будет сумма показаний ваттметров:
Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):
Сумму их показаний можно выразить следующим выражением:
При симметричной нагрузке применима такая же формула как и для полной энергии:
Где φ – сдвиг между током и напряжением (угол фазового сдвига).
Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:
Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.
Процесс измерения активной и реактивной мощности
Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.
elenergi.ru
Измерение реактивной мощности. | учёт и контроль
ИЗМЕРЕНИЕ РЕАКТИВНОЙ МОЩНОСТИ.
При индуктивной нагрузке энергия, вырабатываемая генератором, только частично потребляется абонентом, остальная же часть возвращается к генератору.
По сети не только передается энергия потребителю, но кроме этого происходит непрерывный обмен энергией между генератором и абонентом, имеющим индуктивную нагрузку. Этот обмен энергией сопровождается излишними потерями в проводах.
Энергия, поступающая от генератора к потребителю и используемая им, называется реактивной энергией (W). Количество активной энергии, потребляемо» в 1 сек., называется активной мощностью Р и вычисляется по формуле
P = IU cosФ
Энергия, циркулирующая между генератором и абонентом при индуктивной нагрузке и не используемая потребителем, называется реактивной энергией (Wp). Количество ее, проходящее по линии в секунду, называется реактивной мощностью (Рр) и может быть определено по формуле
PР = IU sinФ
В этой формуле sinФ (синус фи) является коэффициентом, на который нужно умножить произведение тока на напряжение, чтобы получить реактивную мощность; sinФ определяется по величине cosФ по таблицам.
С увеличением сдвига фаз cosФ уменьшается, а sinФ увеличивается. Другими словами, с увеличением сдвига фаз уменьшается активная, полезно передаваемая током мощность и увеличивается количество реактивной энергии создающей излишние потери в сети. Чтобы заставить абонента заботиться об уменьшении сдвига фаз или, как говорят, повышать cosФ,
устанавливают такой тариф, что плата за активную энергию повышается с увеличением количества реактивной энергии, идущей к абоненту и возвращающейся потом к генератору. Кроме обычных счетчиков, учитывающих только активную энергию, устанавливают счетчики реактивной энергии.
Реактивная энергия непроизводительно загружает генераторы, трансформаторы и вызывает излишние потери энергии во всех частях электрических установок. Необходимость улучшения использования оборудования и всемерного уменьшения потерь требует такого же внимания к измерению реактивной мощности и учету реактивной энергии; как и к измерению активной мощности и учету активной энергии.
Для определения величины реактивной мощности можно поступить следующим образом: включив ваттметр, амперметр и вольтметр, определяют по показаниям приборов активную мощность Р, ток / и напряжение U. Зная эти три величины и воспользовавшись формулой для мощности однофазного тока
P = IU cosФ,
можно получить величину cosФ,
cosФ= P/ IU
т. е., разделив мощность (в ваттах) на произведение тока на напряжение, мы получим значение коэффициента мощности cosФ.
После этого, пользуясь таблицами, можно по значению cosФ найти соответствующее ему значение sinФ и затем подсчитать реактивную мощность по ранее приведенной формуле:
PР = IU sinФ
Таким же путем можно поступить и при трехфазном токе, мощность которого выражается формулой
P =3IU cosФ,
откуда определяется cosФ:
cosФ= P/3IU
Зная cos ф, определяем по номограмме sinФ и затем подсчитываем реактивную мощность
PР =3IU sinФ
Следует иметь в виду, что для трехфазной сети этот способ подсчета реактивной мощности пригоден только при равномерной нагрузке фаз. При неравномерной же нагрузке фаз нужно производить измерение и подсчеты отдельно для каждой фазы. Однако, определение реактивной мощности по ваттметру, амперметру и вольтметру не только связано с большими подсчетами, но и неудобно из-за необходимости одновременного отсчета по трем измерительным приборам, что значительно снижает точность измерения.
Показания обычного ваттметра дают активную мощность, но можно путем некоторых изменений в нем сделать «реактивный ваттметр», т. е. прибор, показывающий непосредственно реактивную мощность. Однако, такие приборы обладают рядом недостатков, из-за которых они до сего времени не получили распространения.
По этой причине для измерения реактивной мощности однофазного тока приходится пользоваться исключительно описанным выше методом подсчета ее по показаниям обычного ваттметра, амперметра и вольтметра.
При трехфазном же токе кроме этого способа имеется возможность измерить реактивную мощность непосредственно обычными ваттметрами, включая их по особым схемам.
Наиболее употребительными из этих схем являются следующие.
Схема с одним ваттметром. Эта схема изображена на рис 1.
Рис.1. Схема измерения реактивной мощности в трёхфазной цепи одним ваттметром.
Последовательная обмотка ваттметра включается в один из проводов трёхфазной сети, параллельная же цепь прибора включается на напряжение двух других «чужих» фаз. Показания включённого таким образом ваттметра будут зависеть уже не от активной, а от реактивной мощности. Однако он показывает не действительное значение реактивной мощности, а величину, в 3 раза меньшую. Поэтому для получения действительного значения реактивной мощности РРнужно показание ваттметра Р умножить на 3:
PР = P3
При пользовании этой схемой нужно иметь в виду, что она пригодна только при условии равномерной нагрузки фаз.
Схема Арона. Схема Арона, применяющаяся для измерения активной мощности рис.2, оказывается при некоторых условиях пригодной и для измерения реактивной мощности.
Рис.2. Схема Арона для измерения активной мощности.
Активная мощность при измерении по схеме Арона получается путем сложения показаний обоих ваттметров:
P = N1 + — N2
В этой формуле поставлен двойной знак (+ — ), показывающий, что если стрелка одного из ваттметров при нормальном включении отклоняется влево от нуля, то показание его, полученное после переключения проводов на зажимах параллельной цепи, нужно не прибавлять, а вычитать из показаний другого прибора.
Оказывается, схема Арона обладает таким свойством, что если показания ваттметров при нормальном отклонении их стрелок (вправо от нуля) не складывать, а вычесть одно из другого и затем полученную разность умножить на 3 , то получится значение реактивной мощности, т. е.
PР = 3 (N1 ± N2 )
Источник: https://biysk-tv.ru/raznoe-2/izmerenie-reaktivnoj-moshhnosti-6-3-4.html
Что такое коэффициент мощности и его влияние на сеть переменного тока
Площадь поперечного сечения кабеля линии электропередач, обмоток электрической машины и трансформатора, а также других электротехнических аппаратов и приборов выбираются исходя из значения тока (проверка на нагрев), протекающего в проводнике.
Каждая электроустановка имеет свое номинальное напряжение, которое нельзя не превышать, ни занижать, для нормальной ее работы. Соответственно значения тока будет прямо пропорционально значению полной мощности S.
Энергия, которая преобразуется из электрической в другие ее виды (тепловую, механическую и другие) и используется для выполнения полезной работы, будет пропорциональна активной энергии и соответствующей ей активной мощности Р.
Известно, что между мощностями переменного напряжения существует определенная зависимость:
Входящий в первое выражение cos φ имеет название коэффициент мощности. Он показывает, какую часть от полной мощности S будет составлять активная мощность Р:
Предположим, что Р электроустановки, значение которой в основном зависит от мощности электроприемников, величина постоянная. Теперь выясним, к чему приведет изменения коэффициента мощности cos φ.
Из приведенных выше формул следует, что при увеличении cos φ будет снижаться S. При этом Р = const. Из чего следует, что данное явление может происходить только за счет снижения реактивной мощности Q. Уменьшение S приводит к снижению линейного тока Iл. Снижение Iл повлечет за собой снижение потерь в ЛЭП, обмотках трансформаторов и электрических машин, а также другого электрооборудования.
Также отсюда выплывает и следующий вывод, раз значение линейного тока Iл снижается, то возможно уменьшение поперечного сечения токоведущих частей. В отношении трансформаторов и электродвигателей данное явление влечет за собой снижение веса, габаритов, стоимости.
В действующей электроустановке повышение коэффициента мощности позволит увеличить количество электроприемников при существующих площадях поперечного сечения, которые могут быть подключены к данной сети.
Как видим, повышение cos φ положительно скажется на работе электрической цепи переменного напряжения.
Известно, что большая часть электроприемников переменного тока потребляет помимо активной еще и индуктивную (реактивную) мощность. И самый главный потребитель – асинхронный электродвигатель. Значительную часть потребляют и трансформаторы, применяемые в различных установках. Индуктивная мощность потребляется и электрическими аппаратами, такими как магнитные пускатели, реле, контакторы, электромагниты и прочие.
Для уменьшения реактивной мощности рекомендовано:
- Не завышать мощность асинхронных электродвигателей;
- Избегать недогрузки электродвигателей;
- Максимально сокращать время работы трансформаторов и электродвигателей в режиме холостого хода;
Но довольно часто коэффициент мощности оказывается недостаточно высоким в промышленных электросетях, даже не смотря на предпринятые выше меры.
Для его повышения прибегают к подключению к электросети специальных компенсирующих устройств, таких как конденсаторные батареи, тиристорные компенсаторы и синхронные компенасторы.
Последние в настоящее время практически нигде не применяются и активно модернизируются на тиристорные компенсаторы. Батареи конденсаторов обычно соединяют в треугольник, как показано на рисунке ниже:
При подключении компенсирующего устройства общий cos φ сети повышается, но у электроприемников он остается прежним. Чтобы максимально снизить сечение токоведущих частей от подстанции к электроприемнику, компенсирующие устройства стараются разместить как можно ближе к потребителю.
Рассмотрим небольшой пример
К трехфазной сети (рисунок выше) с линейным напряжением Uл = 220 В подключены два трехфазных электроприемника. У первого потребителя электроэнергии известно Р1 = 10 кВт и cos φ = 0,7. У второго rф = 6 Ом, ХLФ = 8 Ом. Нагрузка симметричная.
Необходимо определить мощности, токи, cos φ электроустановки из двух приемников. Найти емкость, токи и мощность батареи конденсаторов для поддержания cos φ = 0,95. Определить токи и мощности электроустановки из двух электроприемников и батареи конденсаторов.
Решение
Для первого электроприемника:
Полное сопротивление и ток фазы второго приемника:
Отсюда следует:
Теперь можем вычислить мощности всей электроустановки:
Линейный ток и cos φ электроустановки из двух потребителей электроэнергии:
Мощность электроустановки, состоящей из электроприемников и конденсаторной батареи:
Линейные токи электроустановки и батареи конденсаторов:
Фазные токи и сопротивление фазы батареи конденсаторов:
Емкость одной фазы и всей конденсаторной батареи:
Источник: https://elenergi.ru/chto-takoe-koefficient-moshhnosti-i-ego-vliyanie-na-set-peremennogo-toka.html