Современные энергосберегающие лампы — принцип работы
Энергосберегающие лампы очень компактны, им совсем не нужны стартеры для запуска освещения, не приходится слушать гудящие дроссели и к тому же не нужно подолгу вставлять контактные штырьки лампы в цоколь.
Современные энергосберегающие лампы оборудованы чаще всего резьбовым цоколем и не доставляет большого труда установить их в осветительное оборудование.
Как работает энергосберегающая люминесцентная лампа?
Лампа содержит пары ртути, а также газы аргон, неон, иногда криптон. При подаче электроэнергии на лампу, мощность нагревает катод и он начинает излучать электроны. Электроны ионизируют газовую смесь до образования плазмы. Плазма излучает ультрафиолетовый свет, который человеческому глазу не видим, он “заставляет” светится люминофор, которым покрыты стенки трубки, в итоге, люминофор выдает готовый продукт – видимый свет.
Достоинства и недостатки люминесцентной лампы
- К поверхности лампы можно безопасно прикасаться из-за низкой рабочей температуры. Люминесцентные лампы создают ровный, рассеянный свет, поэтому их называют лампы дневного освещения.
- Сберегают электроэнергию до 80%.
- Световой поток энергосберегающей лампы в 30 Вт способна произвести светопередачу такой же мощности как обычная лампа накаливания в 150 Вт.
- Энергосберегающие лампы надежных производителей по сроку службы превосходят лампы накаливания в 8 – 10 раз.
У ламп есть свои недостатки.
- Начинает светить тускло при низких температурах. Рекомендуется в холодных помещениях использовать в закрытых светильниках.
- Не работает при использовании диммера.
- Снижается ресурс работы при частом включении и выключении освещения. Используйте энергосберегающие лапы в тех помещениях, где они будут работать не менее двух часов непрерывно.
- Некоторые виды энергосберегающих ламп мерцают при наличии индикатора подсветки на выключателе.
По мнению некоторых людей, люминесцентные лампы излучают вредное для здоровья ультрафиолетовое излучение. Действительно избыток ультрафиолетового излучения пагубно для здоровья, которое в итоге может спровоцировать развитие рака кожи или крови.
Например, не рекомендуется долгое пребывание на солнце в часы его активного воздействия, но ни кто не будет спорить с тем, что умеренное воздействие солнечного света на организм человека очень даже полезен: снимает усталость, содействует хорошему обмену веществ, повышает настроение.
Энергосберегающая лампа в сотни раз уступает в излучении солнечного света. Можно сказать, искусственное ультрафиолетовое излучение полезно для здоровья, ведь в зимний период, когда пасмурно и так недостает света, искусственное излучение как раз кстати.Единственное, не рекомендуется частое и долгое пребывания у лампы, на расстоянии примерно 50 см. При удаленном освещении ультрафиолетовое излучение настолько рассеивается, что в общем — то о вреде говорить не приходится.
Из всего сказанного можно сделать вывод: нет необходимости сторонится энергосберегающей лампы, которые благотворно влияют на физическое и психическое здоровье, да и к тому же существенно экономят электроэнергию.
Источник: http://electric-tolk.ru/sovremennye-energosberegayushhie-lampy-princip-raboty/
Блок питания: что можно сделать из энергосберегающей лампы?
Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).
И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.
В чем разница между ибп и электронным балластом
Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя.
Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы.
Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.
Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.
Пример распространенной схемы балласта КЛЛ
Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.
В чем суть реконструкции балласта
Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:
- разборку корпуса балласта КЛЛ. Это можно сделать отверткой, которую надо поочередно, шаг за шагом вставлять по линии соприкосновения его деталей. Прилагаемое к лампе усилие не должно быть чрезмерным для колбы. Надо постараться давить на нее с минимальной силой.Как открыть корпус балласта КЛЛ
- Отсоединение контактов лампы от платы балласта. Для этого их жилки отматываются с четырех штырьков на плате.Отсоединение контактов колбы
- Извлечение платы и соединение всех четырех штырьков перемычками (шунтирование лампы).
Плата балласта извлечена из лампы
Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:
- использовать имеющийся дроссель, доработав его;
- либо применить новый трансформатор.
Трансформатор из дросселя
Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.
https://www.youtube.com/watch?v=E49U6Oogd7E
Удаление ленты, стягивающей половинки сердечника
Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.
Рассоединяем склеенные половины сердечника
Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания.
Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины.
Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.
Разобранный дроссель
Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков.
Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора.
На такое же напряжение можно сделать и драйвер для светодиодов из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.
Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора.
Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста.
Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.
Готовая к тестированию плата с выпрямителемСхема импульсного блока питания
Тестирование ИБП
Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности.
Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу.
При коротком замыкании в нашем устройстве лампочка будет светиться.
Последовательное соединение платы с лампочкой перед подачей напряжения 220 В
Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания.
Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам.
Обычно испытания проходят без проблем.
Более мощный ИБП с отдельным трансформатором
Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.
Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.
ИБП с дополнительным трансформатором
Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки.
Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок.
Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.
Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить.
А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности.
Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.
На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. Энергосберегающие лампочки можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.
Источник: https://lampagid.ru/vidy/lyuminestsentnye/blok-pitaniya-iz-lampy
Как отремонтировать энергосберегающию лампу своими руками
Сегодня производители ламп с энергосберегающими параметрами совсем не оставляют выбора простым потребителям, которые выбирают между лампами накаливания и ЭСЛ. Выбор в пользу последних очевиден.
Сейчас почти не осталось квартир или домов, где бы ни были установлены энергосберегающие лампы. И это не говоря об офисных или промышленных помещениях. ЭСЛ способны сэкономить до девяноста процентов электричества в год.
Многих из нас интересует вопрос — можно ли выполнить ремонт энергосберегающих ламп своими руками.
Ремонт энергосберегающих ламп или как собрать одну лампу из двух
В большинстве случаев изготовители в сроках эксплуатации указывают 8000 часов непрерывной работы. Но практика показывает, что чаще всего лампочки не вырабатывают указанного срока. И это становится довольно неприятным сюрпризом, поскольку стоят они недёшево.
Но это не должно становится большим разочарованием, поскольку энергосберегающие лампочки, оказывается, довольно легко отремонтировать. Не нужно их выбрасывать, ведь из нескольких неработающих можно сделать одну работающую.
Стоит ли начинать ремонт
Для начала нужно выяснить, стоит ли вообще затевать ремонт сгоревшей лампочки и будет ли он оправдан. Многие специалисты утверждают, что здесь всё зависит от того, сколько ламп вы хотите починить. Если речь идёт об одной лампочке, тогда лучше не браться вообще. Единственным исключением является ситуация, когда у вас есть несколько нерабочих лампочек, что и станут основой для одной работающей.
Такую лампочку, как и любую другую, также следует выделять по сроку работы. Если ваша лампа перестала светить после полутора года, причём срок её службы составляет 10000 часов, тогда, возможно, дешевле будет приобрести новую. Ведь вам предстоит потратиться на запчасти, проезд, а также потерять собственное время.
После длительного использования ЭСЛ теряют способность быстро включаться. Они срабатывают через пару секунд после включения. Также нужно учесть, что старые лампочки через время начинают производить больше тепла, чем света. Ещё одним существенным недостатком старых лампочек становится износ люминесцентной колбы, которая со временем тускнеет и лампа становится не такой яркой, какой была.
Если обобщить всё вышесказанное, к ремонту лампочек следует приступать только тогда, когда вы имеете на руках несколько неработающих. Практика подтверждает, что из двадцати можно сделать примерно 5 ламп. Если вы всё-таки решились, тогда спросите у своих друзей или родных — они наверняка помогут вам старыми лампочками.
Как собрать одну лампу из двух
Чтобы понять, что и как нужно чинить, для начала остановимся на том, из чего сделана энергосберегающая лампа. Любая газоразрядная люминесцентная лампа состоит из трёх частей:
- колбы;
- электронной платы (балласта);
- цоколя.
Если на колбе вашей неработающей лампы появились дефекты (в виде трещин, например), то ремонту она уже не поддаётся. В других случаях, обладая желанием и навыками, можно починить.
Чаще всего лампы перестают работать из-за того, что перегорают нити накаливания либо же в результате поломки электронной платы. Перед тем как починить, лампу необходимо разобрать и выявить причину поломки. Для этого нужно сделать некоторые действия.
Первым этапом нужно отключить цоколь от сгоревшей колбы. В качестве креплений устанавливаются такие же, как в корпусах мобильных телефонов или пультов дистанционного управления. Поэтому будьте предельно аккуратны. Лучшим инструментом здесь станет отвёртка с широким и тонким окончанием. Ваша главная задача — не поломать окончательно цоколь.
Соединительные провода обычно небольшой длины, поэтому не стоит отсоединять их чересчур резко. В большинстве случаев первой защёлкой становится та, что располагается под надписями с характеристиками лампочки. В это место необходимо вставить отвёртку и постепенно её проворачивать. После этого лампа должны разложиться на две части.
Вторым этапом станет процесс отключения проводов от нитей накаливания. В колбе находятся две пары проводников — они и есть нити накаливания. Если вы их не отключите, вы не сможете определить работоспособность. Для вас не должно составить особого труда их отсоединить, поскольку в большинстве случаев они не припаяны, а просто намотаны сверху.
Третьим этапом разборки и тестирования станет диагностика нитей накаливания. Для этого нужно прозвонить две нити. Это позволит понять, какая из них вышла из строя. В большинстве случаев лампа состоит из двух спиралей, которые обладают сопротивлением от 10 до 15 Ом. По результатам прозвона вы сможете найти причину поломки. Здесь два варианта:
- повреждён балласт;
- одна из нитей перегорела (лампа с повреждённой спиралью).
В зависимости от типа поломки вам предстоит совершить различные манипуляции. Рассмотрим оба эти варианта.
Ремонт компонентов системы
Восстановление лампы после выхода из строя электронного балласта подразумевает определение всех перегоревших элементов, а также тех, которые ещё пригодны. После разборки лампочки осмотрите плату на наличие внешних видимых дефектов со всех сторон. Также осмотрите каждый из её компонентов. Если при осмотре вы не обнаружили никаких видимых дефектов, тогда переходите к тестированию её главных модулей, а именно:
- ограничительный резистор;
- диодный мост;
- конденсатор фильтра;
- высоковольтный конденсатор.
Предохранитель устанавливается в лампочку с помощью припайки к контакту на цоколе. Он крепится уже в термоусаживающем материале. Чаще всего он страдает после короткого замыкания, после чего разрывается вся цепь. При прозвоне предохранителя нормальным считается сопротивление в 10 Ом, ненормальным — бесконечность. Учтите, что при обрезании проводов после перегорания предохранителя делайте это как можно ближе к нему. Так вы обеспечите себе запас провода, чтобы припаивать новый резистор.
Основной функцией диодного моста является выпрямление напряжения 220 В. В его основе лежат четыре диода. Вы сможете прозвонить их на месте, для этого не требуется их выпаивать.
Конденсатор фильтра в первую очередь ломается в лампах, которые произведены в Китае. Он служит для выпрямления напряжения. Перегорание этого элемента вначале сопровождается нестабильной работой энергосберегающей лампочки — она издаёт посторонние звуки, не сразу включается, постоянно мигает и так далее. После выхода из строя вы можете заметить внешние дефекты: вздутие, затемнение, потёки и так далее.
Высоковольтный конденсатор предназначен для создания импульса, который, в свою очередь, и создаёт разряд в самой колбе. Выход из строя именно этого элемента и становится причиной большинства поломок энергосберегающих ламп. Вы сможете определить неисправность и без прозвона. Лампа не будет загораться, а нити накаливания будут создавать свечение возле электродов.
Когда вы проверите основные модули платы, переходите к дополнительным: транзисторам, резисторам и диодам. Следует отметить, что при припаянных транзисторах вы получите неправильные показания мультиметра, поэтому их необходимо предварительно выпаять. Также учтите, что одна обнаруженная поломка не исключает возможность возникновения другой, так что вам придётся проверять все элементы.
Но существует метод, который позволит вам избежать выпаивания транзисторов. Вам нужно просто измерять сопротивление элементов на рабочей плате и сравнить их с показателями нерабочей.
Нередко лампочки перестают работать по другим причинам — выход из строя нитей накаливания или схемы. Подсказкой здесь вам станет потемнение в месте сгоревшей спирали. Для проверки померяйте их сопротивление. При перегорании одной из нитей правильным решением будет избавиться от колбы. Причём плату в дальнейшем можно использовать для ремонта других ЭСЛ. Но экономные пользователи смогли и здесь найти выход из положения. Необходимо просто закоротить выводы перегоревшей спирали.
Плата энергосберегающей лампы
Не стоит рассчитывать на то, что так вы сможете снова наслаждаться тысячами часов работы исправленной лампы. На одной исправной спирали лампа много не проживёт. Вот что необходимо сделать.
В первую очередь отсоедините спирали и определите работоспособность каждой из них (как это выполнить — читайте выше). Используя мультиметр, вы сможете найти нерабочую нить (также на ней будут видны следы перегорания). Если вторая нить рабочая, вам придётся просто зашунтировать нерабочую резистором такого же номинала, как и у рабочей. Этот шаг является обязательным, поскольку цепь без шунтирования не будет работать.
Вот и всё. Как видите, ремонт энергосберегающих ламп в домашних условиях непрост, но возможен. Если же вы сами сталкивались с восстановлением таких лампочек, поделитесь своими комментариями под этой статьёй.
Источник: https://repaireasily.ru/volt/remont-energosberegayushhix-lamp.html
Разбилась энергосберегающая лампочка: что делать?
Хотя в последнее время все переходят на светодиодные лампы, в квартирах и на предприятиях остается немало энергосберегающих, которые не очень-то экологичны. Внутри них содержатся пары ртути, а это очень токсичный металл. Что делать, если лампочка разбилась? Стоит ли паниковать, эвакуировать всех из помещения и вызывать МЧС?
Чем опасна разбитая лампочка
Все мы хорошо знаем, насколько опасны старые градусники. В них содержится чистая ртуть — если такой разбить, мелкие шарики разлетятся по всей комнате и будут отравлять жизнь своим существованием. Конечно, до тех пор, пока вы их не соберете и не утилизируете. С лампами все проще: активной ртути в них нет, только ее пары.
Тем не менее, в пересчете на чистое количество, средняя энергосберегающая лампа содержит 3—5 мг ртути. Такого количества достаточно, чтобы вызвать ухудшение самочувствия. В случае легкого отравления это будет слабость, головная боль и головокружение. Если находиться в контакте с парами достаточно долго, то возможно отравление вплоть до комы.
Что делать, если разбилась энергосберегающая лампа
Главное — не паниковать. Ничего страшного не случится, но действовать нужно сразу.
- Если лампа разбилась в комнате, выведите всех домочадцев и питомцев за дверь и плотно ее закройте.
- Никаких шариков тут не будет — ртуть, как мы уже говорили, содержится в виде паров. Достаточно открыть форточки/окна, чтобы помещение как можно быстрее проветрилось.
- Осколки колбы тоже токсичны, поэтому их нужно собрать. Желательно надеть перчатки и сложить все осколки в газету или на плотный лист бумаги. Потом все это уместить в пакет и плотно его завязать.
- Для мелких осколков можно использовать губку. Ее тоже нужно будет отправить в тот же пакет.
- Через 5-10 минут можно входить в комнату: все самое страшное уже позади (и в пакете).
Что обычно делают не так?
Собирают осколки веником или пылесосом. Делать этого нельзя: части колбы тоже токсичны.
Включают кондиционер. Обычно он не забирает воздух снаружи, а «гоняет» тот объем, что находится в комнате. Соответственно, пользы от него никакой.
Выбрасывают осколки в мусоропровод. Конечно, ничего критичного при этом не случится, но безопаснее будет утилизировать их как токсичные отходы.
Как избежать неприятностей?
Энергосберегающие лампы были популярны лет 5-7 назад. Если вы до сих пор используете такие, скорее всего, их ресурс уже выработан как минимум наполовину. Лучше заменить таким лампы светодиодными: они нетоксичны, стоят уже недорого и потребляют гораздо меньше мощности. Как это сделать — читайте в нашей статье «Как выбрать светодиодные лампы для дома».
Источник: https://ichip.ru/sovety/ekspluataciya/razbilas-energosberegayuschaya-lampochka-chto-delat-560342
Ремонт энергосберегающей лампы своими руками: видео, схемы
Энергосберегающие лампы действительно потребляют значительно меньше электроэнергии, чем аналоги с нитью накала, но стоят они в несколько раз дороже последних. И, как показывает практика, выходят из строя чаще.
Вдвойне обидней, когда это происходит через два-три месяца после приобретения. В таких случаях не стоит их выбрасывать в мусорное ведро по двум причинам. Во-первых, в этих осветительных приборах содержится ртуть, поэтому они требуют утилизации.
Во-вторых, с большой долей вероятности лампу можно восстановить. Расскажем, как это можно сделать.
Особенности конструкции
Прежде, чем приступать к ремонту, необходимо понимать устройство осветительного прибора. Основные элементы конструкции представлены на рисунке 1.
Рис. 1. Устройство энергосберегающей лампы
Обозначения:
- А – Колба спиралевидной формы. По сути это запаянная трубка, внутри нее находится инертный газ (как правило, аргон) и пары ртути. С каждого ее края вплавлены два электрода, между которыми натянута нить накала. Внутренняя часть трубки покрыта люминофором.
- В – Верхняя часть корпуса, к которой крепится колба. Сразу предупреждаем, что вытащить колбу не нарушив целостность корпуса нереально, поэтому их лучше воспринимать как единую конструкцию.
- С – смонтированное на печатной плате пускорегулирующее устройство, его еще называют электронным балластом или просто балластом. Как вы понимаете, при его выходе из строя, осветительный прибор превращается в предмет утилизации. Схема балласта будет приведена в соответствующем разделе.
- D – Предохранитель, как правило, его роль играет низкоомное сопротивление.
- E – Нижняя часть корпуса, в него устанавливается балласт, крепление с верхней частью обеспечивается при помощи защелок.
- F – цоколь. В быту более распространены типы Е14 (миньон) и Е27. Нижняя часть корпуса с цоколем, также представляют собой единую, неразборную конструкцию. На внешней части корпуса нанесена маркировка осветительного прибора, где указаны его основные характеристики.
Основные этапы ремонта
Системный подход к любой задаче обеспечивает оптимальный способ ее решения, поэтому будем действовать по следующему алгоритму:
- Подготовка необходимых инструментов.
- Демонтаж конструкции.
- Поиск и устранение неисправностей.
- Сборка конструкции.
Теперь подробно о каждом этапе.
Необходимые инструменты
В процессе работы нам понадобятся:
- плоская отвертка;
- цифровой мультиметр;
- паяльник мощностью 25-30 Вт и все необходимое для пайки.
Демонтаж
Все действия делаем аккуратно, стараясь не повредить корпус, а тем более колбу лампы, в которой находятся пары ртути, представляющие опасность для человеческого организма.
Как уже было сказано выше, верхняя и нижняя части корпуса соединены между собой защелками. Чтобы их разъединить, необходимо вставить отвертку в щель (показано на рис 2) и слегка повернуть ее. Рекомендуем начинать с места, где нанесена маркировка, как правило, там находится одна из защелок.
Рис. 2. Паз между верхней и нижней частью корпуса
Освободив защелку, передвигаемся далее по пазу и продолжаем процедуру, пока верхняя и нижняя часть не отделятся друг от друга.
Части корпуса разъединились
Теперь нам необходимо отсоединить провода, соединяющие нить накала лампы и плату. Всего их четыре штуки. В большинстве конструкций провода не припаяны на плату, а намотаны на специальные штырьки.
Штырьки, к которым прикручены провода с колбы
После этого этапа можно переходит к поиску неисправностей.
Поиск неисправностей
Осветительный прибор может не работать из-за неисправности колбы (перегорела одна или обе нити накала) или вследствие выхода из строя пускорегулирующего устройства. Начнем проверку с колбы.
Для этой цели нам понадобится мультиметр. Переводим его в режим измерения низкоомного сопротивления и прозваниваем каждую пару выводов. Как правило, их сопротивление не превышает 15 Ом. Может иметь место незначительное расхождение в показаниях по каждой паре, но, это, скорее всего погрешность прибора.
Проведя измерения можно сформировать первоначальные выводы:
- Если обнаружен обрыв нити накала, то пускорегулирующее устройство с большой вероятностью работоспособное. Колба подлежит утилизации, а электронный балласт можно отложить до лучших времен, например, если потребуется произвести его замену на однотипном приборе освещения. Заметим, что при одной перегоревшей нити накала, лампу можно восстановить. Как это сделать будет рассказано в разделе, посвященном пускорегулирующему устройству.
- В том случае, когда с колбой все в порядке, моно констатировать выход из строя балласта. Как и большинство электронных устройств, он подлежит ремонту.
Ремонт балласта
В первую очередь необходимо произвести визуальный осмотр. В большинстве случаев с его помощью можно определить сгоревшие компоненты, например вздутые емкости, разрушенные корпуса транзисторов, следы подгорания и т.д. Заметим, что замена таких элементов может не дать результата, в этом случае потребуется проверка всей цепи.
Если проблемы не обнаружены, необходимо проверить основные элементы. Для этого желательно иметь схему пускорегулирующего устройства.
Схема балласта
Приведенная схема является типовой, она используется практически во всех балластах с небольшими изменениями.
Рисунок 5. Схема электронного балласта
Обозначения:
- Сопротивления: R1 – от 1 до 30 Ом (играет роль предохранителя); R2 и R3– от 220 кОм до 510 кОм; R4 и R5– от 1 до 2,7 Ом; R6 и R7– от 8,2 до 20 Ом.
- Емкости: С1 – 0,1 мкФ; С2 – от 1,5 мкФ до 10 мкФ 400В; С3 – 0,01 мкФ; С4 – от 0,033 мФ до 0,1 мкФ 400В; С5 – от 1800 пФ до 3900 пФ 650В.
- Диоды: VD1-VD5 – 1N4005; VD6 и VD7 – 1N4148.
- Динистор VS1 – DB3 (в осветительных приборах малой мощности может не использоваться).
- Транзисторы: VT1, VT2 – 13003 (вполне возможны другие аналоги).
Катушка L1 совместно с емкостью С1 играет роль фильтра помех, во многих недорогих китайских приборах вместо нее запаяна перемычка.
Катушка L2 может иметь от 250 до 350 витков, которые намотаны проводом Ø 0,2 мм на ферритовый сердечник, имеющий Ш-образную форму. По внешнему виду напоминает небольшой трансформатор.
Трансформатор Т1 в каждой обмотке от 3 до 9 витков, как правило, используется провод Ø 0,3 мм. В качестве магнитопровода используется ферритовое кольцо.
Предохранитель: FU1 – 0.5 A. В большинстве изделий, произведенных в Китае он не устанавливается. В таких случаях роль предохранителя выполняет низкоомное сопротивление R1. Именно оно сгорает в первую очередь. Как правило, замена не дает результата, поскольку его выход из строя является следствием неисправности, а не причиной.
Поиск неисправностей в балласте
Алгоритм действий будет следующим:
- Начинать нужно с замены предохранительного резистора, при проблемах с балластом, он практически всегда выгорает.Предохранительный резистор отмечен красным
- После замены начинаем поиск неисправных компонентов. В приведенной схеме чаще всего из строя выходят емкости, именно с них необходимо начинать проверку. Для этого вооружаемся паяльником и выпаиваем конденсаторы С3-С5 (см. схему на рис. 5). После этого проверяем их при помощи мультиметра (как проверить различные электронные компоненты можно узнать на нашем сайте).
Обратим внимание, что в тех случаях, когда осветительный прибор вышел из строя, но наблюдется небольшое свечение колбы в области нитей накала, можно с уверенностью сказать — необходима замена емкости С5.
Как видно из схемы, она является частью колебательного контура, необходимого для формирования высоковольтного импульса, чтобы вызвать разряд.
При сгоревшей емкости, напряжения для разряда недостаточно, в результате лампа не может перейти в фазу рабочего режима, но на спирали подается питание. Это и проявляется в виде небольшого свечения.
- Если с емкостями все в порядке, следует протестировать диоды, входящие в состав моста. В данном случае тестирование можно произвести без выпаивания с платы. Если хоть один из них вышел из строя. Велика вероятность, что будет пробита емкость С2.Электролитический конденсатор С2 отмечен красным
Соответственно, если при внешнем осмотре обнаружилось вздутие C2, велика вероятность выхода из строя одного или нескольких диодов моста.
- Если перечисленные деталями исправны, то следует проверить транзисторы. Их придется проблема выпаивать, поскольку обвязка не даст точно провести измерения. Как показывает практика, в ходе вышеописанных этапов тестирования неисправность будет обнаружена.
- Обнаружив неисправность, необходимо протестировать работу осветительного прибора, подав питание на цоколь. Делать это нужно аккуратно, поскольку на элементах платы присутствует высокое напряжение.
После того, как лампа зажглась, отключаем ее и приступаем к сборке. С ней проблем, как правило, не бывает.
Ремонт лампы с перегоревшей нитью накала
Необходимо сразу предупредить, что такой ремонт приведет к тому, что балласт будет работать в нештатном режиме. В результате перегрузки пускорегулирующее устройство выйдет из строя. Как правило, оно работает в таком режиме не более года, продолжительность зависит от задействованных в схеме элементов и их состояния.
https://www.youtube.com/watch?v=oaS6Ir1LxLA
Если сгорела только одна нить накала, ее необходимо зашунтировать сопротивлением, так как это продемонстрировано на рисунке.
Установка шунта на сгоревшую нить накала
В качестве шунтирующего сопротивления RШ теоретически необходимо устанавливать резистор с номиналом, соответствующим сопротивлению второй (целой) нити накала.
Но, как показывает практика, это не совсем верно, потому, что мы измеряем сопротивление «холодной» нити. В результате такого ремонта устройство выйдет из строя в течение 10-15 минут «спалив» при этом большую часть активных компонентов.
Поэтому мы советуем использовать резистор номиналом 22 Ома мощностью не менее 1 Ватта.
Источник: https://www.asutpp.ru/remont-energosberegayushhej-lampy-svoimi-rukami.html
Как сделать блок питания из энергосберегающих ламп
> Лампы электрические > Как сделать блок питания из энергосберегающих ламп
Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.
Как выглядит блок питания из энергосберегающей лампы
В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.
Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.
Достоинства импульсных блоков питания
В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.
Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.
Схема блока питания
Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.
В общих чертах работу импульсного блока питания можно описать следующим образом:
- Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
- Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
- Это напряжение через дроссель подается на светильник.
Рассмотрим схему и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.
Схема электронного балласта энергосберегающей лампы
Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.
Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.
Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.
А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.
Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.
TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.
На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.
Переделка блока
Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации. Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему. Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.
Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.
Определяем мощность
Мощность можно вычислить по формуле:
P=I*U, где
Р – мощность, Вт;
I – сила тока, А;
U – напряжение, В.
Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:
Р=2*12=24 Вт
С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.
Новые детали
Добавление новых деталей в схему
Добавляемые детали выделены красным цветом, это:
- диодный мост VD14-VD17;
- два конденсатора С9, С10;
- дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.
Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.
Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:
- на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
- соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
- включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
- полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
- вычисляют необходимое число витков для постоянной обмотки.
Более детальный расчет приведен ниже.
При испытательных включениях рекомендуется применять схему, которая предохранит от выхода из строя блока питания, ее схематичное изображение приведено на рисунке ниже.
Испытательное включение переделанного блока питания
После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.
W=Uвых/Uвит, где
W – количество витков;
Uвых – требуемое выходное напряжение блока питания;
Uвит – напряжение на один виток.
Намотка дополнительной обмотки на штатный дроссель
Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.
Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.
Блок питания повышенной мощности
Диммер для энергосберегающих ламп: устройство и виды
Для этого потребуется более сложная модернизация:
- дополнительный трансформатор на ферритовом кольце;
- замена транзисторов;
- установка транзисторов на радиаторы;
- увеличение емкости некоторых конденсаторов.
В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.
Схема модернизированного блока питания приведена на рисунке ниже.
Блок питания мощностью 100 Вт
Как видно на схеме, резистор R0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно. Далее, С0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В. Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.
Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R5 и R6, до 18–15 Ом, а также увеличить мощность резисторов R7, R8 и R3, R4. Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C3 и C4 – 68n.
Импульсный трансформатор
Таблица мощности энергосберегающих ламп
Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.
Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».
Как выглядит импульсный трансформатор
Расчет, проведенный с помощью этой программы, дал следующие результаты:
Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм2 имеет 63 витка, а две вторичных тем же проводом – 12.
Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.
Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.
Транзисторы
Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см2.
Испытание
Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:
- Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
- К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
- Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.
Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.
Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 600С, то их придется установить на радиаторы.
В качестве радиатора можно использовать как заводской радиатор, что будет наиболее верным решением, так и алюминиевую пластину, толщиной не менее 4 мм и площадью 30 кв.см. Под транзисторы необходимо подложить слюдяную прокладку, крепить их к радиатору нужно с помощью винтов с изолирующими втулками и шайбами.
Блок из лампы.
О том, как сделать импульсный блок питания из эконом лампы, видео ниже.
Импульсный блок питания из балласта энергосберегающей лампы можно сделать своими руками, имея минимальные навыки работы с паяльником.
Источник: https://elquanta.ru/lampa/blok-pitaniya-lamp.html
Что можно сделать из сгоревшей энергосберегающей лампы — Строительство и ремонт
Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).
И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.
Энергосберегающие лампочки почему мигают – Энергосберегающая лампа мигает после выключения
Настоящее время электроэнергия стоит достаточно дорого, поэтому люди стали чаще задумываться о том, как сэкономить свои средства и снизить потребление электроэнергии. Так как старые лампы накаливания не дают нужной экономии, люди стали чаще использовать энергосберегающие люминесцентные лампы.
Используя энергосберегающие лампы, люди часто встречается проблемой, когда при включении они начинают мигать. Давайте попробуем разобраться, почему мигает энергосберегающая лампа, когда выключатель включен.
Существует три основных проблемы возникновения мерцания энергосберегающих ламп:
- наличие у выключателя светодиодного индикатора;
- неправильный монтаж или нарушение электропроводки;
- брак при изготовлении.
Принцип действия энергосберегающих ламп
Согласно схеме, бытовое напряжения 220 В, которое является переменным, через предохранитель поступает на диодный мост. Это диодный мост преобразует переменное напряжение в постоянное напряжение с некоторой пульсацией.
Для сглаживания пульсации используется фильтрующий конденсатор, который и может являться причиной мигания энергосберегающих ламп.
Наличие у выключателя светодиодного индикатора
Этот индикатор предназначен для того, чтобы выключатель можно было видеть в темноте. Индикатором обычно служит светодиод красного свечения. В качествеидикатора может также использоваться обычная неоновая подсветка.
Индикатор в выключателе подсоединен параллельно.
Последовательно с индикатором подключен резистор 100-1000 кОм и мощностью 0,5-1 Вт.
От чего же моргает энергосберегающая лампа? При отключении выключателя (часть цепи разомкнута) ток малого значения протекает через сопротивление и индикатор, а далее поступает на емкость. Зарядившись конденсатор пытается стартовать схему включения лампы. Лампа включается и сразу гаснет, при этом конденсатор полностью разряжается. Мерцание продолжается постоянно в цикле. Как же устранить мигание энергосберегающей лампы?
Способы устранения причины, связанной с индикатором
1. Удалить индикатор. Для этого нужно отсоединить индикатор от цепи выключателя согласно схеме. В отключенном состоянии ток, который заряжает конденсатор в энергосберегающей лампе, не протекает в лампу, так как цепь разорвана.
2. Вставить маломощную лампу с нитью накала, например, 30 Вт, совместно с энергосберегающей. При установке этой лампы небольшая часть тока расходуется на нагревание нити накала и конденсатор, выступающий в роли фильтра пульсаций напряжения, не заряжается. Если люстра рассчитана только на одну лампочку, как быть в таком случае?
3. Установить дополнительный резистор. В электрическую цепь необходимо установить параллельно лампе резистор 2 Вт 50 кОм, выполняющий роль лампы накаливания.
4. Купить выключатель, у которого отсутствует индикатор, и установить его.
Неправильный монтаж или нарушение электропроводки
Стоит упомянуть о том, что причиной также может быть неисправная электропроводка, при нарушении которой возникают токи утечки большой величины.
Брак при изготовлении
Еще одной причиной возникновения мерцания лампочки может являться некачественное изготовление. В настоящее время на рынке встречается много брака, изделия выполняются не по стандартам и поэтому выходят из строя практически сразу. Осуществив покупку лампочки в магазине, необходимо сразу же ее проверить и в случае обнаружения неисправностей попросить заменить ее на исправную.
Немалая часть потребителей уже заменила стандартные лампы накаливания на более экономные источники света. Однако в процессе эксплуатации многие сталкиваются с необычным явлением — мерцанием источника света при отключенном питании.
Данный феномен не только сокращает рабочий ресурс лампочек, но и крайне нагружает глаза. О том, почему моргает энергосберегающая лампочка при выключенном выключателе, и что с этим делать, пойдет речь ниже.
Устройство и принципы работы энергосберегающих лампочек
Современная промышленность выпускает две разновидности энергосберегающих ламп — люминесцентные и светодиодные. Они отличаются по внутренней начинке, но обе способны функционировать в широком диапазоне токовый значений. Разброс может достигать десятков Ампер. И ртутные, и светодиодные лампочки дают яркий свет, потребляют немного электричества.
Принцип работы люминесцентной лампочки
Энергосберегающие источники освещения базируются на свойстве ртутных паров светиться. Принципиальные особенности люминесцентной лампочки:
- При подключении электропитания ток направляется через электронный пускорегулирующий аппарат (электронный балласт). Предназначение ЭПРА — придание току нужных параметров, разогрев электродов. В аппарате ток трансформируется и подается на электроды.
- Благодаря покрытию смеси оксидов металлов на вольфрамовых электродах происходит ионизация ртутных паров. Реакция осуществляется в стеклянной колбе. Ртутные пары издают ультрафиолетовое свечение.
- Стеклянные стенки колбы покрыты люминофором, который превращает ультрафиолетовый спектр в заданный. Нужный спектр зависит от химических составляющих люминофора.
Принцип работы светодиодной лампы
Источник: https://esr-energy.ru/raznoe/energosberegayushhie-lampochki-pochemu-migayut-energosberegayushhaya-lampa-migaet-posle-vyklyucheniya.html
Блок питания из энергосберегающей лампы: переделка своими руками
Очень часто причиной поломки электроприбора становится неисправность аккумулятора. Вследствие этого нужен ремонт или же покупка нового оборудования. Но можно избежать больших затрат, сделав блок питания из энергосберегающей лампы своими руками. Все необходимые детали можно взять из обычной люминесцентной лампы, стоимость которой невелика.
Балласт люминесцентной лампы
В каждой энергосберегающей лампочке имеется небольшая схема, которая предотвращает мигание во время включения, а также способствует постепенному разогреву спиралей устройства. Её название — электронный балласт. Именно с помощью него газ может испускать свечение (частота 30−100 кГц, а иногда и 105 кГц).
Вследствие того, что устройство может иметь такие высокие показатели частот, коэффициент потребления энергии возрастает до единицы, а это, в свою очередь, делает энергосберегающие лампы экономично выгодными.
Значительным преимуществом таких устройств является отсутствие какого-либо шума во время работы, а также электромагнитного поля, который негативно воздействует на организм человека.
Важную роль в схеме балласта энергосберегающей лампы играет электронный дроссель. Именно он определяет, будет ли устройство загораться сразу же с полной силой или же разогреваться постепенно в течение нескольких минут. Стоит отметить, что производитель никогда на упаковке не указывает время разогрева. Проверить это можно лишь во время эксплуатации устройства.
Те балластные схемы, которые выполняют функцию преобразования напряжения (а таковых большая часть), собираются на полупроводниковых транзисторах. В дорогостоящих устройствах схема более сложная, чем в дешёвых лампочках.
Из сгоревшей энергосберегающей лампы можно сделать заготовки для будущего импульсного блока питания. Также для этого можно взять и работающее устройство.
В составе компактной люминесцентной лампочки (КЛЛ) имеются следующие элементы:
- Биполярные транзисторы с защитными диодами. Как правило, они выдерживают напряжение в 700 В, а также силу тока до 4 А.
- Трансформатор импульсного тока.
- Электронный дроссель.
- Конденсатор (10/50 В, а также 18В).
- Двунаправленный триггерный неуправляемый диод (динистор).
- Очень редко в устройстве содержится униполярный транзистор.
Во время изготовления БП из энергосберегающей лампы своими руками с использованием недешёвых экономок достаточно дополнить источник некоторыми деталями. Также в качестве основы будущего блока можно взять драйвер для светодиодов, которые зачастую устанавливают в фонарики.
Важно отметить, что для выполнения ИБП брать схему, имеющую электролитический конденсатор, не рекомендуется. Это связано с тем, что она в приборе в качестве блока питания прослужит недолго. Также для этой цели не подходят электронные балласты, в составе которых имеются специальные платы небольших размеров.
Особенности импульсного блока питания
ИБП — это инверторная система, в которой входное напряжение выпрямляется, а затем преобразуется в импульсы. особенность ИБП заключается в значительном увеличении частоты тока, передающегося на трансформатор. Также стоит отметить небольшие габариты такого устройства. Ещё одним преимуществом является то, что БП во время работы не имеет никаких потерь энергии, в отличие от линейных, которые теряют значительную часть во время преобразования на трансформатор.
Принцип функционирования импульсного блока питания из энергосберегающей лампы заключается в следующем:
- Входной выпрямитель, состоящий из диодного моста и конденсатора, превращает переменный ток (входной) в постоянный.
- Инвертор, в свою очередь, трансформирует постоянный ток в переменный, но частота при этом возрастает с 50 Гц до 10 кГц, что является выше в 200 раз.
- Такой ток передаётся на трансформатор. Он будет или повышать, или понижать напряжение.
- Выходной выпрямитель преобразует переменный ток в постоянный, но при этом частота остаётся высокой.
Как правило, в современных схемах используются MOSFET — транзисторы. Их главная особенность — очень быстрая скорость переключения. Соответственно в таких балластах должны быть использованы и быстродействующие диоды. Они размещаются в выходном выпрямителе.
При изготовлении ИБП лучше использовать диоды Шоттки, поскольку они меньше всего теряют энергию во время работы на высокой частоте (в отличие от кремниевых, у которых этот показатель значительно выше).
Если же выходное напряжение очень низкое, тогда функцию выпрямителя может выполнять транзистор. Кроме того, можно вместо этого использовать дроссель. Такие простые преобразователи тока встречаются в схемах энергосберегающих ламп на 20 Вт.
Вам это будет интересно Ремонт светодиодных светильников своими руками
Изготовление ИБП своими руками
Чаще всего во время изготовления импульсного БП требуется незначительно изменять строение дросселя, если для этой цели используется двухтранзисторная схема. Конечно же, некоторые элементы в устройстве нужно будет удалить.
Если же изготавливается БП, который будет иметь мощность 3,7−20 Ватт, в таком случае трансформатор не является основной составляющей. Вместо него лучше всего сделать несколько витков провода, которые закрепляются на магнитопровод. Для этого необязательно избавляться от старой намотки, их можно выполнить поверх.
Рекомендуется для этой цели использовать провод марки МГТФ, имеющий фторопластовую изоляцию. Понадобится небольшое его количество. Несмотря на это обмотка будет полностью покрыта, поскольку большая часть отводится на изоляцию. Из-за этого такие устройства имеют низкие показатели мощности. Для её увеличения требуется использовать трансформатор переменного тока.
Использование трансформатора
Главным преимуществом при изготовлении блока питания своими руками является то, что есть возможность подстраиваться под показатели трансформатора. Кроме этого, не потребуется цепь обратной связи, которая чаще всего является неотъемлемой частью в работе устройства. Даже если во время сборки были сделаны какие-либо ошибки, чаще всего такой блок будет работать.
Для того чтобы сделать собственноручно трансформатор, потребуется иметь дроссель, межобмоточную изоляцию, а также обмотку. Последнюю лучше всего выполнить из лакированного медного провода. Следует не забывать о том, что дроссель будет работать под напряжением.
Обмотку нужно тщательно изолировать даже тогда, когда она имеет заводскую специальную защитную плёнку из синтетического материала. В качестве изоляции можно использовать или электрокартон, или же обычную бумажную ленту, толщина которой должна быть не меньше 0,1 мм. Только после того, как будет сделана изоляция, можно поверх неё наматывать медный провод.
Что касается обмотки, то провод лучше всего выбрать как можно толще, а вот количество необходимых витков можно подобрать исходя из требуемых показателей работы будущего устройства.
Таким образом, можно сделать ИБП, который будет иметь мощность более 20 Вт.
Вам это будет интересно Ремонт реле стабилизаторов напряжения Ресанта
Назначение выпрямителя
Для того чтобы в импульсном блоке не произошло насыщение магнитопровода, требуется использовать только двухполупериодный выходной выпрямитель. В том случае, если трансформатор должен понижать напряжение, рекомендуется использование схемы с нулевой точкой. Чтобы выполнить такую схему, нужно иметь две абсолютно одинаковые вторичные обмотки. Их можно сделать самостоятельно.
Следует учитывать то, что выпрямитель по типу «диодный мост» для этой цели не подходит. Это связано с тем, что значительное количество мощности во время передачи будет теряться, а значение электрического напряжения будет минимальным (менее 12В). Но если делать выпрямитель из специальных импульсных диодов, тогда стоимость такого устройства обойдётся значительно дороже.
Наладка устройства
После того как БП будет собран, требуется проверить его работу на максимальной мощности. Это необходимо для того, чтобы измерить температуру нагревания трансформатора и транзистора, значения которых не должны превышать 65 и 40 градусов соответственно.
Чтобы избежать перегрева этих элементов, достаточно увеличить сечение провода обмотки. Также часто помогает изменение мощности магнитопровода в большую сторону (учитывается ЭПР). В том случае, если дроссель был взят из балласта светодиодного фонаря, увеличить сечение не получится.
Единственным вариантом будет контролировать нагрузку на прибор.
Подключение к шу
руповёрту
Чтобы установить импульсный блок питания в шуруповёрт, потребуется разобрать электроинструмент. Как правило, его внешняя часть состоит из двух элементов. Следующим этапом требуется найти те провода, с помощью которых двигатель соединяется с аккумулятором. Именно их нужно соединить с блоком питания (самоделкой), используя термоусадочную трубку. Также можно спаять провода. Скручивать их настоятельно не рекомендуется.
Чтобы вывести кабель наружу, потребуется сделать отверстие в корпусе шуруповёрта. Также рекомендуется установить предохранитель, который защитит провод от повреждений у основания. Для этого можно сделать специальную клипсу из тонкой алюминиевой проволоки.
Таким образом, переделка схемы балласта в импульсный блок поможет заменить повреждённый аккумулятор у шуруповёрта. К тому же, если учитывать все нюансы из области экономики во время изготовления, то можно утверждать, что сделать ИБП своими руками выгодно.
Источник: https://rusenergetics.ru/remont/blok-pitaniya-energosberegayushhej-lamp