Газоразрядные лампы
Продолжая тему энергосберегающего освещения, стоит упомянуть такие распространенные источники света как газоразрядные лампы.
К разрядным источникам света относятся: ртутные лампы, натриевые лампы низкого и высокого давления, металлогалогенные, а так же люминесцентные и ксеноновые лампы. Непосредственно, к энергосберегающим лампам относятся: НЛВД, МГЛ и ЛЛ.
Что касается ксеноновых ламп, в данной статье они затронуты не будут, в виду узкой направленности их применения (ксеноновые лампы широко распространены в автомобильном свете и шоу-освещении).
Далее, более подробно остановимся на самых востребованных газоразрядных лампах:
Люминесцентные лампы
Благодаря обилию геометрических форм, разнообразию цоколей и большого диапазона мощностных характеристик, данный вид лампы является самым распространенным источником искусственного света.
Многие даже и не знают, что данные лампы были изобретены более 150-ти лет назад, а окончательный внешний вид, лампа приобрела 70 лет назад. Развитие технического прогресса позволило многократно увеличить эффективность данного источника света. На сегодняшний день светоотдача люминесцентных ламп достигает 80 Лм/Вт, что ставит их в один ряд по энергоэффективности со светодиодными источниками света.
К сожалению, только одного показателя светоотдачи не достаточно чтобы назвать их самыми экономичными источниками света. Основной минус люминесцентных ламп – это громоздкая конструкция, что не позволяет создавать люминесцентные световые приборы с высоким КПД (более 70%), однако, в виду широчайшей распространенности данного типа источников света они обладают самой низкой на рынке себестоимостью.
Благодаря этому, люминесцентное освещение, как правило, на порядок дешевле светодиодного.
Люминесцентные источники света широко применяются в промышленном, административном освещении и везде, где необходимо осветить максимальные площади при минимальных начальных затратах.
Купить люминесцентные лампы
Натриевые лампы
В процессе развития люминесцентных ламп, в 30-е годы 20-го века был изобретен один из самых эффективных источников света – натриевая лампа высокого давления (НЛВД). Данный вид ламп обладает очень высокой светоотдачей 150 Лм/Вт, что ставит их в один ряд с самыми современными светодиодами.
Низкая себестоимость, большой срок службы (до 20000 часов), широкий диапазон мощностей — делает эти источники света идеальными для освещения улиц, магистралей и промышленного освещения больших открытых площадей.
К основным минусам натриевых источников света можно отнести специфичные условия работы (длительное время запуска, невозможность мгновенного перезажигания) и плохую цветопередачу, что делает недопустимым их применение для освещения магазинов, административных учреждений, выставочных галерей, спортивных объектов и транспортных терминалов (аэропорты, вокзалы, порты).
Купить натриевые лампы
Металлогалогенные лампы
В процессе решения проблемы низкой цветопередачи натриевых ламп, но сохранения при этом их остальных преимуществ были созданы металлогалогенные источники света. Светоотдача МГЛ достигает 110 Лм/Вт, они обладают великолепной цветопередачей в 95% (Ra 90) и производятся в широком диапазоне мощностей от 20 до 3500 Вт.
Металлогалогенные источники света являются лидерами в области создания профессиональных систем освещения технического назначения.
К таким системам можно отнести как объекты закрытого типа, например: торговые помещения, конференц-залы, гостиничные холлы, помещения промышленного назначения, так и открытые объекты: стадионы и спортивные площадки, фасады зданий, логистические терминалы и производственные комплексы, а так же другие открытые площади, где важно решить задачу по яркому и качественному освещению, сохранив при этом великолепную цветопередачу освещаемых пространств.
Купить металлогалогенные лампы
Если вас интересует дополнительная информация по созданию или модернизации системы освещения на вашем объекте, а также оптовая поставка металлогалогенных, люминесцентных или натриевых ламп отправьте нам заявку и мы в кратчайшие сроки решим любую из этих задач.
На поставку оборудования, монтаж или индивидуальный проект освещения
Источник: https://svetoproekt.ru/articles/gazorazradnye-lampy/
Виды газоразрядных ламп
Газоразрядные лампы нашли широкое применение в уличном ипромышленном освещении – здесь им нет равных. В условиях перепадов температурэти источники света работают бесперебойно, что и обеспечило их популярность всфере наружного и производственного освещения.
Газоразрядные лампы дают свет, полученный от электрическогоразряда в газовой среде, которой наполнена колба. Лампы данного типадолговечны, характеризуются высокой светоотдачей. В зависимости от конструкциии принципа действия газоразрядные лампы делятся на несколько видов.
Ртутные лампы
Ртутные лампы содержат в конструкции ртутные пары, проходячерез которые электрический ток генерирует оптическое излучение. Для увеличениясветоотдачи внутреннюю часть колбы ДРЛ покрывают люминофором. Ртутные лампымогут быть высокого давления (ДРЛ) или низкого (люминесцентные).
Основное использование ртутных ламп ДРЛ: уличное,ландшафтное, производственное освещение. Преимущества:
- долговечность
- отсутствие пускорегулирующей аппаратуры (лампа включаетсянапрямую)
- различные вариации по мощности
- хорошая световая отдача
- небольшие габариты
Как и у многих видов газоразрядных источников света, уртутных ламп есть и свои недостатки, связанные с низкой цветопередачей идлительным временем розжига. Их не рекомендуется часто включать и выключать,также они не любят перепадов напряжений в сети.
Металлогалогенные лампы
Это лампы высокого давления, в состав которых помимо ртутивходят галогениды и йодиды некоторых металлов, улучшающие качествоцветопередачи и повышающие световую отдачу лампы. Применяются в наружномосвещении различных спортивных комплексов, рекламных баннеров, архитектурнойподсветки фасадов зданий.
Основная «фишка» металлогалогенных ламп – великолепная передачаоттенков. Их свет максимально приближен к дневному, в нем все предметы ирастения выглядят абсолютно естественно. Именно поэтому МГЛ часто встречаются вподсветке ювелирных магазинов. Главные преимущества:
- долгий срок службы до 20 000 часов
- компактные размеры
- отличная светоотдача
Недостатки те же, что и у ртутных ламп – долгий запуск,невозможность подключения диммеров, сокращение срока службы при неблагоприятныхусловиях эксплуатации.
Натриевые лампы (ДНАТ)
Популярность натриевых ламп растет с каждым годом, несмотряна появление высокоэффективных современных источников света. Помимо основногоназначения (уличное освещение) ДНАТ нашли широкое применение при освещениирастений в теплицах. Использование натриевых ламп в доме нецелесообразно из-заяркого оранжевого света и высокой теплоотдачи.
Использование натриевых ламп в растениеводстве позволяетобеспечить подсветку растениям в зимние месяцы, а также дает дополнительноетепло при использовании в зимних садах или оранжереях. Для такого примененияследует использовать специальные виды светильников с хорошей вентиляцией иотражателями света. Преимущества натриевых ламп:э
- долговечность до 30 000 часов
- высокая светоотдача
- наличие в спектре полезного излучения для растений
Недостатки такие же, как и у всех видов газоразрядных ламп –низкая цветопередача, долгий запуск.
Источник: https://electropara.ru/articles/vidi-gazorazryadnih-lamp/
Устройство газоразрядных ламп
1.Колба;
2.Цоколь;
3.Горелка;
4.Основной электрод;
5.Поджигающий электрод;
6.Токоограничительный резистор
Характеристики газоразрядных ламп
- срок службы от 3000 часов до 20000;
- эффективность от 40 до 220 лм/Вт;
- цвет излучения: от 2200 до 20000 К;
- цветопередача: хорошая (3000 K: Ra>80), отличная (4200 K: Ra>90);
- компактные размеры излучающей дуги, позволяют создавать световые пучки высокой интенсивности.
Газоразрядные лампы делятся на три типа:
- газоразрядные лампы низкого давления (от 0,1 до 25 кПа) — люминесцентные лампы;
- газоразрядные лампы высокого давления (от 25 до 1000 кПа) лампа ДРЛ;
- газоразрядные лампы сверхвысокого давления (от 1000 кПа) РЛСВД лампы.
Разрядные лампы высокого давления это что то среднее между лампами накаливания и люминесцентными лампами. Из за повышенной по сравнению с люминесцентными лампами мощности, газоразрядные лампы позволяют добиться интенсивного, концентрированного света, при этом сохраняя все преимущества газоразрядной технологии (экономичность и гибкость в выборе цветности).
Газоразрядные лампы применяют для общего освещения, облучения, сигнализации и других целей..
Принцип действия газоразрядных ламп высокого давления
Электрические разряды между электродами вызывают свечение наполнителя в разрядной трубке. Излучаемый лампой свет является следствием происходящих в ней дуговых разрядов. Для ограничения тока и для зажигания всем газоразрядным лампам необходимы специальные ПРА.
В отличие от газоразрядных ламп (например, ксеноновых ламп) паросветным лампам после зажигания необходимо определенное время пускового режима (2-3 минуты), чтобы достичь своей полной световой отдачи.
Это время необходимо собственно для того, чтобы вещества-наполнители могли полностью испариться.
Преимущества газоразрядных ламп.
- высокий КПД;
- длительный срок службы по сравнению с лампами накаливания;
- экономичность;
- высокая степень цветопередачи;
- хорошая стабильность цвета;
- хорошие характеристики светового потока в течение всего срока службы.
Недостатки газоразрядных ламп
- высокая стоимость;
- необходимость пускорегулирующей аппаратуры;
- долгий выход на рабочий режим;
- высокая чувствительность;
- наличие токсичных компонентов и как следствие необходимость в инфраструктуре по сбору и утилизации;
- невозможность работы на любом роде тока;
- невозможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
- наличие мерцания и гудения при работе на переменном токе промышленной частоты;
- прерывистый спектр излучения;
- непривычный в быту спектр.
Источник: https://www.calc.ru/Gazorazryadnyye-Lampy.html
Обзор газоразрядных лампах, область применения
Освещение всегда и везде является главным атрибутом, без которого сложно представить современный мир. При этом мало кто задумывается о том, какие источники света существуют на сегодняшний день, а ведь каждый вид ламп создает свой световой поток.
Среди всего разнообразия лампочек, которые можно вкрутить в осветительный прибор, особое место занимают газоразрядные источники света.
Газоразрядные лампы на сегодняшний день встречаются очень часто и в самых разнообразных сферах человеческой деятельности, начиная от подсветки авто и заканчивая домашним освещением. Поэтому не лишним будет знать, что представляет собой это изделие, и как с ним следует обращаться. Обо всем, что нужно знать о газоразрядных лампочках, расскажет сегодняшняя статья.
Обзор
Газоразрядные лампы – современный источник света, который излучает световую энергию в видимом для человеческого глаза диапазоне. В своей основе газоразрядная лампочка имеет стеклянную колбу, в которую под давлением закачивается газ или пары металла. Кроме этого в строении изделия имеются электроды, которые расположены по концам стеклянной колбы.
Строение лампы
Принцип работы лампочки основывается именно на таком строении, так как вся система активируется при прохождении через колбу электрического разряда. В центральной части колбы располагается основной электрод. Под ним установлен токоограничительный резистор.
Благодаря такой конструкции в колбе, при прохождении через нее электрического разряда, формируется свечение.Помимо колбы и электродов, изделие содержит еще и цоколь, благодаря которому может вкручиваться в различные светильники с целью создания домашнего или уличного типа освещения.
Обратите внимание! Наиболее часто газоразрядные лампочки встречаются именно в системе уличного типа освещения. Их часто вкручивают в фонари, в авто и т.д.
Газоразрядные лампы представляют собой специальные устройства, которые способны создавать свечение с помощью электрического разряда.
Как работает лампочка
С конструкционными особенностями, которые имеют газоразрядные лампы, мы разобрались в предыдущем разделе. Также вскользь коснулись и того, какой принцип работы имеет это изделие. Теперь рассмотрим принцип работы более детально, чтобы понять, каким же именно образом формирует освещение подобный тип источника света.
Принцип работы лампы
Газоразрядная лампа – особые источники освещения, которые способны генерировать свет вследствие создания внутри своей колбы электрического разряда. Принцип работы такой лампы основывается на ионизации газа, который находится внутри стеклянной колбы.Принцип, по которому работает газоразрядная лампочка, предполагает, что внутри колбы под давлением закачивается определенный газ.
Чаще всего для освещения домов, улиц и авто используются благородные (инертные) газы:
- неон;
- криптон;
- аргон;
- ксенон;
- смесь газов в различных пропорциях.
Ртутная модель
Очень часто для освещения домов, авто и улиц используются такие источники света, в состав которых входят дополнительные газы. Например, в состав газовой смеси может входить натрий (натриевые модели) или ртуть (ртутные модели).
Обратите внимание! Ртутные лампочки сегодня имеют большее распространение, чем натриевые. Их часто вставляют в фонари при создании уличного типа освещения. Также они применяются для подсветки домов изнутри.
Ртутные и натриевые модели входят в группу металлогалогенных источников света.
Когда на газоразрядную лампочку подается питание, в трубке начинает генерироваться электрическое поле. Оно приводит к ионизации газа и свободных электронов.
В результате этого электроны, которые вращаются на верхних уровнях атомов, начинают сталкиваться с другими электронами атомов металла (специальных добавок в газовые смеси). В результате столкновения происходит переход электронов на внешние орбитали.
В конечном итоге происходит высвобождение энергии и фотонов. Таким образом и формируется свечение лампочки.
Обратите внимание! Освещение, которое получается в результате работы такой лампочки, может быть различным: от ультрафиолетового до инфракрасного видимого излучения.
Вариант свечения лампы
Чтобы добиться различного цветового свечения, на колбу газоразрядных ламп наносят специальное люминесцентное покрытие. Им покрывают внутреннюю сторону колбы. С помощью такого покрытия происходит преобразование ультрафиолетового излучения в видимый свет.
Виды газоразрядных ламп
Натриевые лампы высокого давления
Газоразрядная лампа, которая используется для создания уличного освещения или подсветки авто, может иметь разнообразное строение, которое не отходит от принципов работы. На этом основывается классификация таких источников света.
На сегодняшний день газоразрядные источники света бывают следующих видов:
- газоразрядные лампы высокого давления. Они в свою очередь могут подразделяться на ДРЛ (ртутные модели), ДРИ, ДНат и ДКсТ. Их особенностью является отсутствие необходимости в наличии пускорегулирующего аппарата. Такие модели можно встретить в качестве подсветки улиц (их вставляют в фонари системы уличного освещения), авто, домов и наружной рекламы;
Обратите внимание! Лампы газоразрядного типа высокого давления являются самыми распространенными (особенно ртутные модели). Очень часто с их помощью (натриевые и ртутные модели) формируют подсветку именно улиц. А вот дома такие источники света встречаются достаточно редко.
Лампы низкого давления
- газоразрядные лампы низкого давления. Они подразделяются на ЛЛ (различные модели) и КЛЛ. Такие лампочки сегодня с успехом вытесняют устаревшие лампы накаливания. Они применяются для создания подсветки дома, улиц (в составе системы уличного освещения) и даже авто.
Обратите внимание! Самые распространенные лампы низкого давления – люминесцентные. Такие модели часто применяются для освещения улиц в составе системы уличного освещения. Особенно часто такие лампочки вкручивают в фонари.
Свое широкое распространение газоразрядные лампочки получили из-за наличия у них ряда достоинств.
Достоинства и недостатки
Уличная подсветка
К основным достоинствам подобных лампочек относятся следующие качества:
- высокая светоотдача (на уровне 55 лм/Вт). Она остается достаточно высокой, даже если фонари, в которые была установлена лампочка, имеют непрозрачный плафон;
- длительный период службы. Средняя производительность газоразрядных лампочек составляет примерно 10 тыс. часов. Поэтому такие изделия часто используют для подсветки улиц и авто;
- высокая устойчивость (например, ртутные модели) к плохим климатическим условиям. В результате они часто используются для уличного освещения. Они могут вкручиваться в фонари и другие типы светильников. Но если для региона характерны заморозки, то использовать ртутные модели для совещания улиц, даже если они вкручены в специальные фонари и фары авто, нельзя;
- доступная стоимость;
- экономичность, которая позволяет обходиться без затрат на дорогие комплектующие к осветительной аппаратуре.
Вместе с тем, здесь имеются и свои недостатки:
- лампы имеют плохую цветопередачу. Это связано с ограниченным спектром лучей. Таким образом рассмотреть в созданном лампочкой свете цвет предмета будет несколько затруднительно. В связи с этим, газоразрядные лампочки зачастую используются для освещения улиц и монтируются в фары авто;
- может работать только при наличии переменного тока;
- включение происходит с помощью балластного дросселя;
- имеется период, необходимый для разогрева источника света;
- опасность использования, так как в состав газовой смеси могут входить пары ртути;
- такие лампы обладают повышенной пульсацией испускаемого светового потока.
Отдельно следует отметить, что установка данной продукции осуществляется по стандартной схеме, как и лампы накаливания.
Область применения
Конструкционные особенности, которыми обладают газоразрядные лампочки, обеспечили им обширную область применении.
Сегодня подобная продукция применяется для:
- создания уличного освещения в городской и сельской местности. Отлично такие лампы смотрятся, если они вкручиваются в фонари для создания качественной подсветки парков и скверов;
- освещения производственных сооружений, магазинов, торговых площадок, офисов, а также общественных помещений;
- с помощью газоразрядных источников света, которые вкручены в фонари, можно оформить уличную декоративную подсветку зданий или пешеходных дорожек;
- подсветки наружной рекламы и рекламных щитов;
- высокохудожественного освещения эстрад и кинотеатров. Но здесь необходимо применение специального оборудования.
Освещение в авто
Отдельно стоит отметить, что источники света газоразрядного типа сегодня очень часто используются для освещения транспортных средств. Здесь зачастую применяются грл с высокой интенсивностью (например, неоновые).
Многие авто имеют в своей комплектации фары, которые заполнены газообразной смесью из металлогалоидных солей и ксенона. Такие фары можно встретить в таких марках, как БМВ, Тойота или Опель.Иногда подобные лампочки можно встретить и в подсветке дома.
Но здесь необходимо обязательно учитывать специфику источников света, чтобы их недостатки можно было минимизировать.
Но в целом область применения данной продукции достаточно обширна и разнообразна.
Заключение
Газоразрядные лампочки представляют собой современный и довольно востребованный источник света, который обладает как своими недостатками, так и преимуществами. Для создания уличного освещения такие источники света подходят лучше всего, а вот в домашних условиях они во многом уступают более безопасным лампочкам.
Полезные материалы
Источник: https://1posvetu.ru/istochniki-sveta/gazorazryadnye-lampy-obzor.html
Устройство газоразрядной лампы, история создания
Устройство газоразрядной лампы отличается от привычной лампы накаливания. Этим объясняется разница в их характеристиках. Предлагаем узнать, как была изобретена газоразрядная лампа, из чего она состоит, как работает, и какие разновидности этого источника света существуют сегодня.
Что представляет собой газоразрядная лампа
Газоразрядными называют лампы, которые для излучения света используют свечение электрического разряда между электродами. Само устройство таких ламп простое – оно состоит из колбы и цоколя. Внутрь колбы закачивают ионизированный газ: аргон, неон, криптон, ксенон или какую-либо смесь, или же галогениды, ртуть или натрий. В зависимости от «начинки» внутри колбы, выделяют отдельные типы газоразрядных ламп:
- Металлогалогенные лампы – часто используются в уличной подсветке;
- Натриевые – также распространены в уличном освещении;
- Ртутные, среди которых выделяют ультрафиолетовые;
- Другие.
Принцип работы газоразрядных ламп основывается на мощном электрическом импульсе, который генерирует пуско-регулирующее устройство. Электрический разряд проходит через газовую среду между электродами на разных концах колбы, что ведет к появлению излучения.
История газоразрядных ламп
Появление газоразрядной лампы тесно переплетается с историей изобретения неоновой лампы. Эффект свечения в вакуумной колбе впервые был отмечен французским астрономом Жан-Феликсом Пикаром при переносе ртутного барометра в 1675 году. Транспортировка вызвала ионизацию металлических паров в трубке, а разряд статического электричества вызвал эффект свечения.
Затем ученые сделали ряд важнейших открытий – они доказали электрическую природу молнии, изобрели электрохимический источник энергии, получили электрическую цепь, и даже открыли линейные спектры газовых разрядов. Однако первыми коммерчески успешными газоразрядными лампами стали устройства, изобретенные Гейслером в 1855 году. Позже газоразрядные лампы совершенствовались, чтобы стать такими, какими мы знаем их сейчас.
Источник: https://ledron.ru/ustroystvo-gazorazryadnoy-lampyi-istoriya-sozdaniya/
Резюме
- Электрический гистерезис, склонность компонента оставаться «включенным» («открытым», проводящим) после того, как он начал проводить ток, и оставаться «выключенным» («закрытым», непроводящим) после того, как он перестал проводить ток, помогает объяснить, почему молнии существуют как мгновенные всплески тока, а не непрерывные разряды в воздухе.
- Простые газоразрядные лампы, такие как неоновые лампы, обладают электрическим гистерезисом.
- Более продвинутые газоразрядные лампы были выполнены с элементами управления, поэтому их напряжение «включения» можно было регулировать внешним сигналом. Наиболее распространенная из этих ламп называется тиратрон.
- Простые генераторные схемы, называемые релаксационными генераторами, могут создаваться лишь с помощью цепи заряда резистор-конденсатор и гистерезисного устройства, подключенного к конденсатору.
Оригинал статьи:
Теги
Газоразрядная лампаГистерезисОбучениеРелаксационный генераторТиратронТиристорЭлектроника
Источник: https://radioprog.ru/post/449
Применение газоразрядных ламп различных типов
НИЗКОГО ДАВЛЕНИЯ
ВЫСОКОГО ДАВЛЕНИЯ
Газоразрядные лампы относятся к осветительным приборам, источником видимого излучения которых служит электрический разряд в газовой среде.
Разряд в газах, сопровождающийся выделением электромагнитного излучения может иметь различные формы в зависимости от условий его возникновения и протекания.
На характер разряда влияют следующие факторы:
- величина приложенного напряжения и расстояние между электродами;
- состав среды, в которой происходит разряд;
- давление газа в колбе с электродами.
В газоразрядных лампах различного типа в основном используется два вида электрических разрядов — тлеющий и дуговой.
Тлеющий разряд характеризуется малым значением протекающего электрического тока и практически полным отсутствием выделения тепла. Обычно разряд такого вида протекает в условиях пониженного давления.
Структура тлеющего разряда содержит два участка — тёмное пространство, прилегающее к катоду и участок, излучающий свечение, который распространяется до анода.
Цвет видимого спектра излучения, выделяемого при тлеющем разряде, зависит от состава газовой смеси, в которую помещены электроды.
Дуговой разряд сопровождается выделением значительной энергии, как световой, так и тепловой. Ионизированный газовый промежуток при горении дуги находится в состоянии плазмы. В дуговых газоразрядных приборах используются электроды из тугоплавких сплавов, компонентом которых обычно является вольфрам.
В зависимости от типа и характеристик применяемого наполнителя колб газоразрядных источников света, спектр их электромагнитного излучения может быть смещён в зону, находящуюся за пределами восприятия человеческого глаза. Обычно это излучение ультрафиолетового спектра.
В этом случае на внутреннюю поверхность колбы наносится специальный состав — люминофор. Слой люминофора поглощает ультрафиолетовые волны, излучая при этом видимый спектр.
Газоразрядные лампы низкого давления
К данному типу световых источников относятся приборы, работающие при давлении газа в колбе от 0,15 до 104 Па. Примером приборов низкого давления могут служить традиционно применяемые люминесцентные лампы дневного света, а также так называемые энергосберегающие газоразрядные лампочки.
Лампа дневного света представляет собой герметичную цилиндрическую стеклянную колбу, в торцах которой расположены цоколи с контактными штырьками для подключения.
Штырьки соединены с электродами, выполненными в виде вольфрамовых спиралей. Для обеспечения условий, благоприятных для термоэлектронной эмиссии, поверхность электродов покрыта оксидами щелочноземельных металлов.
Внутреннее пространство колбы люминесцентной лампы заполнено инертным газом — аргоном и парами ртути, обеспечивающими хорошее её зажигание.
При запуске, в парах ртути начинает протекать электрический ток, вызывая излучение электромагнитных волн частицами ртути. Свойства ртути таковы, что выделяемое ей излучение лежит в ультрафиолетовой области спектра, то есть невидимо.
Для преобразования ртутного излучения в видимый свет используется специальный химический состав, наносимый на внутреннюю поверхность колбы. Состав называется люминофором и представляет собой соли кальция, бериллия, кадмия и других металлов.
Люминофор поглощает выделяемые парами ртути ультрафиолетовые волны, выделяя при этом излучение видимого светового спектра.
В результате этого двойного энергетического преобразования световой коэффициент полезного действия люминесцентной лампочки составляет 12%, что впрочем, существенно превосходит соответствующую характеристику лампочек накаливания.
К недостаткам осветительных люминесцентных приборов можно отнести следующие характеристики:
- необходимость использования для их питания специальной пускорегулирующей аппаратуры;
- линейчатая характеристика спектра излучения с отсутствием отдельных световых диапазонов;
- высокочастотное мерцание, вызывающее стробоскопический эффект;
- потенциальная опасность паров ртути и необходимость соблюдения определённого порядка утилизации вышедших из строя приборов.
Бактерицидные газоразрядные лампы
Этот вид газоразрядных источников излучения низкого давления не относится к приборам освещения. Выделяемое парами ртути ультрафиолетовое излучение используется этими устройствами в медицинских целях.
Бактерицидные свойства ультрафиолетовых газоразрядных ламп используются для обеззараживания помещений в медицинских учреждениях.
Разумеется, люминофор в этом случае не применяется. Правда, спектр излучения ртути приходится фильтровать, для чего в этих устройствах используются колбы из специального увиолевого стекла. Характеристики увиолевого стекла таковы, что оно пропускает преимущественно длинноволновое ультрафиолетовое излучение.
Это необходимо для защиты людей и растений от вредного воздействия жёсткого коротковолнового ультрафиолета и препятствию концентрации озона в воздухе.
Индикаторные газоразрядные лампы
Данный вид газоразрядных лампочек применяется в электронных приборах для числовой или символьной индикации. Наиболее распространённый тип таких индикаторов представляет собой газоразрядное устройство, имеющее один анод и десять тонких сетчатых катодов.
Каждый катод соответствует одной из цифр от 0 до 9. Катоды расположены слоями, один над другим. Управляются они раздельно, при подключении одного из катодов загорается соответствующая цифра.
Громоздкость этих приборов и необходимость их питания относительно высоким напряжением привела к их полному вытеснению индикаторами светодиодного типа.
Лампы газоразрядные высокого давления
К данному виду приборов относят источники, рабочее давление газа в колбах которых составляет от 3х104 до 106 Па. Повышенное давление газа позволяет повысить уровень создаваемого светового потока, но при этом, предъявляет особые требования к материалу и конструкции колб.
Ртутные газоразрядные лампы
Наиболее распространёнными приборами данного вида являются устройства типа ДРЛ (дуговые ртутные люминесцентные). Зажигание таких световых источников осуществляется с применением специальных пусковых устройств, создающих высоковольтные импульсы.
Основными конструктивными элементами приборов типа ДРЛ являются:
- колба из стекла высокой прочности;
- цоколь с резьбой для вкручивания в электрический патрон;
- кварцевая горелка;
- электроды (главные и дополнительные).
Горелка дуговой ртутной лампочки представляет собой высокопрочную стеклянную герметично запаянную трубку, расположенную внутри общей колбы. Внутри горелки под давлением находится аргон с ртутными парами.
В горелке может быть два или четыре электрода, во втором варианте два из них — основные, два других играют роль дополнительных. Наличие дополнительных электродов обеспечивает более лёгкое зажигание дуги и стабильное её горение.
Розжиг ДРЛ до номинальной яркости происходит в течение некоторого времени, которое зависит от температуры окружающего воздуха и может достигать нескольких минут после включения.
В процессе работы лампа разогревается до значительной температуры, поэтому используются такие приборы, как правило, с электрическими патронами из керамики.
Применяются дуговые ртутные лампочки для наружного освещения либо для освещения больших производственных помещений — цехов, складов и т. п.
Натриевые газоразрядные лампы
Излучающей средой приборов этого типа являются пары натрия. Отличительная характеристика натриевой газоразрядной лампы — яркий оранжево–жёлтый цвет свечения. Такой цвет обладает преимуществами в условиях тумана или задымлённости, поэтому широко применяется для уличного освещения.
Самый распространённый представитель источников света этой категории — газоразрядная лампа ДНаТ (дуговая натриевая трубчатая).
Натриевая лампа подобно ртутной содержит две колбы — внешнюю и внутреннюю, являющуюся горелкой. Стекло горелки изготовлено из оксида алюминия.
Это обусловлено тем, что при работе внутренняя колба может разогреваться до температуры 1200°С. Внутри горелки расположены два электрода, находящихся в пространстве, заполненном смесью инертных газов.
Материалом внешней колбы служит специальное боросиликатное стекло, обладающее повышенной тугоплавкостью. При изготовлении из внутреннего пространства внешней колбы производится откачка воздуха. Создающийся при этом вакуум является надёжной защитой от высокой температуры горелки. Такая конструкция работает подобно термосу.
Наибольшее распространение имеют ДНаТ с резьбовым цоколем Е40.
Газоразрядные металлогалогенные и ксеноновые лампы
Особенностью металлогалогенных источников света является скорректированная спектральная характеристика. Коррекция достигается путём добавления в содержимое горелки кроме паров ртути специальных добавок — галогенидов некоторых металлов (йодид натрия и скандия).
Благодаря добавке галогенидов происходит заполнение провалов в области красного и жёлтого цветов, свойственным характеристикам ртутного излучения.
В ксеноновых лампах излучающей средой является ксенон, находящийся в колбе под высоким давлением, которое может достигать в некоторых типах ламп 25 атм. Колбы таких источников изготавливаются из кварцевого стекла и даже из сапфира. Ксеноновые газоразрядные лампы дают очень яркое белое свечение, близкое по спектру к дневному свету.
2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Источник: https://eltechbook.ru/lampa_gazorazryadnaya.html
Ксеноновые лампы для фар, газоразрядные лампы и ксеноновые технологии. Что выбрать?
Для тех, кто не совсем в курсе, что такое ксенон, а так же ксеноновые лампы — мы доступным языком расскажем об этом, а потом представим все ксеноновые фары, лампы и фонари, которые есть у нас в ассортименте.
.
Все, знают, что такое обычная галогенная лампа. Это лампа внутри которой проходит нить накаливания(обычно из вольфрама) при пропускании через которую электрического тока — нить раскаляется и испускает свет, который впоследствии фокусируется оптической системой фары в нужном направлении.
.
.
.
Для того, что бы нить не перегорала сначала из ламп просто откачивали воздух. Но в последствии было выяснено, что если не просто откачать воздух, а еще и закачать газ, то срок службы нити повысится и ее можно будет разогреть до более высокой температуры, что увеличит яркость. Такие лампы стали называть галогенными лампами и эффективная светоотдача большинства массово производимых галогенных ламп составляет от 15 до 22 лм/Вт.
.
Что же такое ксенононовая лампа и как она работает?
.
.
Внутри колбы ксеноновой лампы находятся 2 электрода, а сама колба заполнена газом — ксеноном. При подаче на электроды высокого напряжения между ними возникает электрическая дуг, которая и является источником света. Благодаря этому явлению ксеноновые лампы для автомобилей так же называют газоразрядными.
.
КАТАЛОГ КСЕНОНОВЫХ ЛАМП. ВЫБРАТЬ И ЗАКАЗАТЬ.
.
Как выше было сказано — для розжига дуги в ксеноновой лампе нужно высокое напряжение порядка 15-30 кВ. Для получения таких значений используют специальные ксеноновые блоки розжига (см фото). Без этих блоков ксеноновые лампы работать не будут.
.
Ниже показана схема установки ксеноновой лампы в фару, а так же подключения её к блоку розжига и проводке автомобиля.
.
.
Преимущества ксеноновых ламп перед галогенными неоспоримы. Это:
.
- Яркость ксеноновых ламп в 2-3 раза превышает яркость галогенных ламп при более низком энергопотреблении
- Газоразрядная автомобильная лампа более долговечна, т.к. в ней нет механических частей, подверженных сотрясению.
.
.
.
.
Ксеноновые лампы для автомобильных фар
.
Ксеноновые лампы так же, как и галогенные имеют различные типы цоколей под различные фары. У нас в ассортименте представлены ксеноновые лампы для передних головных фар, лампы для ближнего и дальнего света, а так же лампы ксенон для противотуманных (ПТФ) фар.
.
.
Воспользуйтесь нашим подбором цоколя лампы по марке автомобиля, что бы узнать какие лампы вам необходимы.
.
Так же у нас в наличии ксеноновые лампы для дополнительных фар дальнего света, фар рабочего света, а так же лампы для дополнительных противотуманных фар Wesem. В большинстве фар Wesem используются лампы с цоколем H3.
.
КАТАЛОГ КСЕНОНОВЫХ ЛАМП ДЛЯ ПЕРЕДНИХ ФАР, ПТФ, ДОПОЛНИТЕЛЬНЫХ ФАР
.
При заказе ксеноновых ламп ламп необходимо помнить, что для работы ламп так же необходимы ксеноновые блоки розжига, которые вы так же можете заказать у нас с доставкой в любой регион России. Для каждой ксеноновой лампы необходим свой блок розжига.
.
.
.
Какой блок розжига для ксеноновых ламп выбрать?
.
Блоки розжига бывают в классическом исполнении, а так же в виде тонких блоков. Тонкие блоки рекомендуются для установки в ограниченном пространстве. При заказе блока розжига так же стоит обратить внимание на напряжение питания. Для легковых автомобилей используются 12 вольтовые блоки розжига. Для некоторых грузовиков, тракторов, а так же спецтехники необходимы 24 вольтовые блоки розжига, они так же есть у нас в ассортименте.
.
.
.
Так же у нас в ассортименте:
.
.
Ксеноновые лампы для головных, противотуманных и дополнительных фар Wesem
Источник: https://wesem-light.ru/stati/cpravochnye-materialy/ksenonovye-lampy-dlya-far-gazorazryadnye-lampy-i-ksenonovye-tekhnologii-chto-vybrat/
Устройство и принцип работы газоразрядной лампы
В наш век повсеместной электрификации мы привыкли считать электрический разряд чем-то неправильным и где-то даже опасным. Поэтому в словах «газоразрядная лампа» многим видится некий парадокс.
Уже давно электричество перестало быть диковинкой. Оно окружает рас буквально со всех сторон. В стенах домов, квартир проложена проводка, по которой непрерывно течет электрический ток, даже если не включен телевизор и выключены все лампочки. Холодильник все равно все время тихо включается и сохраняет нам продукты, подпитываясь от сети. Так же и прочие приборы: светодиоды на выключателях – и те хоть чуть-чуть, но ток пропускают.
А вот разряд в наших сетях – нечто неординарное. Если нечаянно замкнутся два провода в одной розетке, будет короткое замыкание, то есть разряд. А это авария и мгновенное отключение сети защитной автоматикой. Или если мы сами зарядились, просто от трения одежды, то, как только прикоснемся к чему-нибудь металлическому – будет разряд: несильно, но чувствительно уколет или даже тряхнет. Но обычно один раз. Ну, и заряженный конденсатор может ударить током, то есть через нас разрядиться.
Разновидностей разрядов достаточно много. Чаще всего нам встречается искровой разряд, как раз его-то мы и не любим. Хотя знаем, что в автомобиле он заставляет двигатель работать.
Виды электрических разрядов
Искровой разрядДуговой разрядКоронный разрядТлеющий разрядЧастичный разряд
Слева направо: искровой, дуговой, коронный, тлеющий. Есть еще экзотические виды – частичный и таунсендовский (темный – здесь его нет).
Какие-то из них мы используем, какие-то только пытаемся поставить на службу, с какими-то боремся.
Но вот тлеющий разряд, быть может, и назван так «смягченно», чтобы сообщить: да, это разряд, но не такой уж и страшный. Действительно, он не бьет, как искра или молния, в доли секунды, чтобы сразу же и прекратиться. Он тлеет, то есть течет, как обыкновенный и привычный для нас всех электрический ток. И не просто течет, но и светит – это все электрические лампы, где светится газ, а не металлическая проволока. Именно газоразрядные лампы.
Самое интересное во всей этой истории то, что обнаружили свечение газа под действием разряда еще до того, как появились «настоящие» электрические приборы. То есть такие устройства, в которых бы гарантированно работала электрическая энергия.
Сначала свечение газа показывали как фокус. А в качестве источника энергии использовались не генераторы, не аккумуляторы, а электризация предметов путем различных ухищрений, что позволяло вызвать некоторый заряд на поверхности. Электризация была известна давно, просто ее старались как-то усилить, в соответствии со своим пониманием.
Например, рукой крутили большой шар из серы, насаженный на металлический стержень, и получали в довольно большом количестве «электричество», которое заявляло о себе искрением или свечением газа. Были и другие опыты, которые принято было проводить со сцены для публики или в модных светских салонах для избранного общества.
Изучали и демонстрировали «животный магнетизм», алхимические превращения, которые уходили корнями в «герменевтическую философию».
Соответственно, и сбор электроэнергии для целей демонстрации мог происходить не на промышленном каком-то оборудовании, а на вещах, скорее принадлежавших к разряду театральной бутафории.
Опыты
Однако от таких опытов получилось благое дело: люди увидели не просто физическое – то есть не магическое – явление, а поняли, что в нем заключена определенная, доступная людям, сила, которую можно накопить и измерить.
И с тех пор дальнейшее изучение электричества пошло в направлении его приручения и широкого использования человечеству во благо.
Изучение электричестваПриручение электричества
Многие исследователи тех времен получали таинственное свечение. Например, Ломоносов обнаружил свечение в стеклянном сосуде газообразного водорода. И не все эти свечения являлись тем, что теперь называется «тлеющий разряд». Дело в том, что газ способен получать энергию разными путями, и потом эту энергию излучать в виде света определенной длины волн.
Это может быть внешнее электрическое напряжение, приложенное к двум установленным в сосуде с газом электродам. При некоторой величине напряжения, а также при некоторой разреженности газа, поток электронов устремится от электрода с избыточностью электронов к электроду с их недостаточным количеством. И, «натыкаясь по дороге» на атомы газа, электроны их активируют, при этом и получается тлеющий разряд.
Но нечто подобное может происходить не только от потока бегущих электронов. А, например, непосредственно от воздействия внешнего магнитного поля. Будет тлеющий разряд, очень похожий на полярное сияние.
Я сам такое видел на лампах дневного света, отключенных от сети питания, но на которые воздействовало магнитное поле от вращающихся магнитных барабанов. На старых компьютерах иногда встречались такие устройства, большие как шкаф.
Вот в темноте около таких шкафов лампы дневного света и давали интересные световые разводы, похожие на Северное сияние.
Газоразрядные лампы
Цвет свечения газоразрядных ламп не зависит от источника энергии. Газ состоит обычно из однородной массы простейших молекул в один-два атома (H2 – водород, Ar – аргон) и работает как один атомарный механизм.
В нем электроны, получая энергию от внешнего источника, перескакивают на другой уровень – в «возбужденное» состояние, а потом возвращаются обратно, выбрасывая свою «возбудившую» их энергию в виде кванта света строго определенных длин волны. Так и получаются свечения одного цвета, монохромные. Или нескольких цветов, соответствующих энергетическим переходам электронов в электронных оболочках атомов газа.
Таким образом можно получить лампы, светящиеся конкретными цветами, в отличие от солнца с его непрерывным спектром или пламени костра, свечи или света лампы накаливания.
Энергетические процессы при этом очень просты, поэтому и весьма эффективны, имеют высокий КПД. То есть лампа накаливания дает целый спектр, который получается от хаотического теплового движения молекул твердой вольфрамовой спирали. Молекулы раскаленного вольфрама мечутся как угорелые вокруг своих мест в кристаллической решетке и исступленно испускают во всех возможных направлениях кванты света всех мыслимых энергий и частот.
В этом спектре есть видимый нам свет, и есть инфракрасное излучение, которого мы не видим. А есть еще просто конвекция – передача непосредственно молекулам газовой среды лампы энергии тепла. От этого нагревается стеклянный баллон, который, в свою очередь, нагревает воздух в помещении, цоколь, патрон, провода Получается, что на свет от лампы накаливания идет энергии всего лишь 5–10 %.
Тогда как газовый свет дает, по разным оценкам, от 25 до 40 %.
Разновидности газоразрядных ламп
Газоразрядные лампы представляют собой стеклянный (из стекол особого состава) баллон, накачанный газом и с электродами, установленными внутри. Электрическое напряжение на него подается через цоколь. Газ внутри может быть под низким давлением или под высоким.
По этому признаку и различаются газоразрядные лампы низкого давления, лампы высокого давления и лампы сверхвысокого давления. Остальные различия касаются, в основном, составов газовых сред внутри баллона и покрытия баллона. От этого зависят характеристики свечения ламп.
Еще одна важная конструктивная особенность ламп (газоразрядных в том числе) – конструкция и размер цоколя, от чего зависит конструкция патрона для лампы, а значит, и возможности установки таких ламп в светильниках.
Виды газоразрядных ламп
Газоразрядные лампы:а, б – низкого давления;в, д – высокого давления;г – сверхвысокого давленияа – натриевая, б – люминесцентная, в – ртутная, г – ксеноновая, д – натриевая
(с особым покрытием колбы – поликристаллическим оксидом алюминия)
Источник: https://lampagid.ru/vidy/lyuminestsentnye/gazorazryadnye-lampy
Газоразрядная лампа
Газоразрядная лампа – осветительный прибор, принцип действия базируется на горении дуги ионизированного газа. Это обширное семейство, в начале XXI века захватившее в мире едва ли не три четверти сегмента иллюминации. Сюда входят популярные люминесцентные лампы дневного света, лампы ДРЛ. Ещё до внедрения в обиход осветительные устройства, работающие за счёт газового разряда, встречаются в романе Жюля Верна «Путешествие к центру Земли» (1864 год).
История развития электростатической ионизации газов
Принято считать годом рождения газоразрядных ламп 1675. Однажды ночью французский учёный Жан-Феликс Пикар заметил свечение ртутного барометра, когда переносил его из обсерватории в порт святого Майкла. Чтобы читатели представили явление, нужно учесть особенности конструкции. В ртутном барометре имеется трубка, запаянная с конца. Вдобавок наличествует чаша. Оба предмета заполнены металлической ртутью.
Для определения давления трубку резко переворачивают и опускают в чашу. Тогда ртуть под действием земного тяготения стекает вниз, образуя выше себя вакуум. В результате запаянный конец трубки остаётся полым, и протяжённость пустого пространства зависит от атмосферного давления, которое, действуя на ртуть в чаше, призвано уравновесить силу тяжести.
Барометр Пикара
При транспортировке барометра Пикар спешил и сильно растряс прибор. В результате произошла электризация стекла трением о ртуть, и статический заряд вызвал ионизацию металлических паров. Процесс сильно облегчался, благодаря созданному вакууму. Пары ртути и сегодня используются в отдельных газоразрядных источниках света. К примеру, ультрафиолетовая составляющая свечения активизирует люминофор лампы дневного света.
Пикар не смог объяснить обнаруженного явления, но немедленно доложил о произошедшем в научных кругах. Позднее изучением занялся известный швейцарский математик Иоганн Бернулли.
Ему задача оказалась также не по зубам, но сей учёный муж активно практиковал опыт со свечением, дал представление французской академии наук. В 1700 году на демонстрации явление лицезрел английский механик, по совместительству учёный, Фрэнсис Хоксби.
На базе Королевского научного общества Британии Хоксби принимается активно ставить опыты.
За основу решающего эксперимента Хоксби берет модель электростатического генератора Герике (1660 год). По описаниям машина представляла солидных размеров шар из серы, вращающийся на железном стержне. Трением о ладони оператора объект приобретал при вращении значительный заряд.
Дальнейший ход мыслей Хоксби понятен. В инструкции Герике фигурировало предложение залить серу в стеклянный шар, потом разбить. Английский учёный пропустил указанный шаг.
К сожалению, неизвестно, имели ли ранние работы (к примеру, трактат Гильберта 1600 года) представление об электризации стекла, но Хоксби выдвинул соответствующее предположение.
Модель электростатического генератора Герике
В результате экспериментальная установка содержала вместо серного шара стеклянный с каплями ртути на дне, а внутри по возможности создали вакуум.
При вращении сферы на железном стержне и электризации путём трения ладонями наблюдалось свечение, чтобы читать книгу в непосредственной близости. В 1705 году английское научное общество продемонстрировало первую газоразрядную лампу.
Предоставлялось верное объяснение, что к обнаруженному явлению причастны пары ртути. Потом – ход работ замер на целый век. Не находилось практического применения вновь открытому явлению.
Первые газоразрядные лампы
Нельзя сказать, чтобы XVIII век прошёл бесполезно для исследований в сфере электричества, несмотря на фразу, оброненную выше. Значимыми считаются работы Дюфе, в 1733 году предположившего наличие двух родов зарядов с целью теоретического обоснования наблюдаемого явления. Он их назвал смоляными и стеклянными. Речь идёт об объяснении феномена, рассмотренного Гильбертом в 1600 году:
- Наэлектризованный шар притягивает тела.
- Соприкоснувшись с шаром, тела начинают от предмета отталкиваться.
В понимании Дюфе объект приобретал заряд аналогичного знака при соприкосновении. Чем объясняется рассмотренное явление. Но истинный прогресс в науке начался, когда государства отменяли наказание за занятие колдовством.
В результате на свет появилась Лейденская банка, а Бенджамин Франклин доказал электрическую природу молнии, Вольта изобрёл первый электрохимический источник энергии.
В 1729 году произошло революционное открытие, ставшее основой для прочих: Стивен Грей додумался собрать проводники воедино и получил первую в мире электрическую цепь. С тех пор ток стали передавать на расстояние.
Изобретённая в 1746 году Вильямом Ватсоном электрическая машина сплавляла заряд по шёлковым шнурам, что позволило Жану-Антуану Нолле продемонстрировать эффектную дугу в среде разряженного газа.
В указанное Готфрид Груммерт высказал предположение, что подобное освещение подойдёт для использования в шахтах и местах, где открытое пламя повышает вероятность взрыва.
Иоганн Винклер заметил, что неплохо вместо шаров использовать длинные колбы, согнутые по форме букв алфавита, предвосхитив появление на свет трубок Гейслера и экрана телевизора.
Чуть позднее, в 1752 году, Ватсон частично реализовал перечисленные задумки (первый дисплей запатентован в 1893 году). К примеру, демонстрируя опыт с горением дуги в трубке длиной 32 дюйма. Благодаря столь блистательным открытиям, в 1802 году произошло сразу два значимых для рассматриваемой темы события:
- Англичанин Хампфри Дэви открыл явление свечения накаливаемой электричеством платиновой проволоки.
- Наш соотечественник, В. Петров при помощи вольтова столба, состоящего из 4200 (по другим данным – 2100) пар медных и цинковых пластин. Для сравнения – источник энергии сэра Хампфри Дэви показывал вдвое меньшую мощность (2000 пластин).
Достижения Петрова оказались забыты под влиянием событий Отечественной войны 1812 года и в силу российского наплевательства. В Англии к электричеству подошли серьёзно. Заслуга Хампфри Дэви немалая.
Он, будучи химиком, повторяя опыты зарубежного коллеги, начал экспериментировать с различными газовыми средами.
Конечно, член Королевского научного общества был знаком с опытами Фрэнсиса Хоксби и захотел проверить, не стало ли новое открытие повторением ранних попыток создать искусственные источники света.
Опыты Фрэнсиса Хоксби
Эти эксперименты привели к открытию линейных спектров газовых разрядов. Попутно замеченные Волластоном и Фраунгофером особенности излучения Солнца в последующем позволили Кирхгофу и Бунзену высказывать предположения о составе атмосферы светила. Это тесно связно с рассматриваемой темой, спектр разряда также линейчатый.
К примеру, натриевые лампы дают оранжевый свет, и при помощи люминофора приходится распределение частот корректировать (лампы ДРЛ). Потом эстафету принял Майкл Фарадей (с середины 30-х годов XIX века), показал процесс возникновения дуги в среде разреженных газов. Внёс лепту и Генрих Румкорф, предоставив в руки физиков инструмент для получения импульсов высокого напряжения (катушка Румкорфа, 1851 год).
В 1835 году Чарльз Уитстон зарегистрировал спектр разряда дуги в парах ртути, попутно отметив ультрафиолетовую составляющую.
Газоразрядные лампы Гейслера
Первыми коммерчески успешными считаются творения Гейслера. Датой рождения принято считать 1857 год. Упомянутый стеклодув и по совместительству физик догадался в колбу с разряженным газов вставить 2 электрода. Подавая на них напряжение, лицезрел красочный разряд дуги. Гейслер соединил воедино открытия Петрова и Хоксби. Дуга тлеет в колбе с атмосферой из паров газа. А дальнейшее – выбор цвета – уже не составило труда, опираясь на наработки сэра Хампфри Дэви и Майкла Фарадея.
С 80-х годов трубки Гейслера широко выпускаются для целей развлечения населения. Сегодня неоновые огни считаются лицом США.
Примечательно, что будучи помещены рядом с источниками сильного электромагнитного излучения – катушки Тесла – лампы Гейслера загораются самопроизвольно. Выполняются условия ионизации разреженной газовой среды.
Исследования, сопряжённые с поиском технических решений для целей освещения привели учёных к открытию электрона, измерению его заряда и массы, появлению на свет электронных ламп.
Лампа Гейслера
Тем временем в России
Возможность розжига порохового заряда электрической искрой известна примерно с 1745 года. Но едва ли сапер мог унести лейденскую банку или терпеливо натирать шерстью янтарь в любых погодных условиях. Долгое время военное дело не брало во внимание подобные мелочи.
В 1812 году российский офицер Шиллинг сумел через электрический элемент питания произвести подводный взрыв. Считается, что военное дело дало толчок к развитию исследований электричества в России. Первая дуговая лампа установлена в 1849 году изобретателем (Якоби) на башне Адмиралтейства Санкт-Петербурга.
Ее свет оказался столь ярок, что сравнивался обывателями с солнечным.
Применение прожекторов с разрядными лампами ограничивается военным делом, за малым исключением, когда источники указывают путь кораблям с маяка. Нас в теме интересуют наработки Джона Томаса Рея, датированные 1860 годом, догадавшимся объединить электрическую дугу (Петров и Якоби) с атмосферой паров ртути (Майкл Фарадей) при нормальном давлении.
От Эдисона до современных газоразрядных ламп
Несмотря на явные преимущества, газоразрядные лампы Гейслера демонстрировали существенные недостатки. К примеру, малый срок службы. С 90-х годов XIX века некто Дэниэл МакФарлен Мур работал в компании Эдисона и вскоре после поступления на службу стал изучать историю. Его заинтересовали газоразрядные лампы Гейслера. Что не так с моим светом? – вопрошал Эдисон. Мур ответил: он слишком тусклый, слишком горячий и чересчур красный. Это вся правда о лампах накаливания того времени.
Современная лампа
В 1892 году ртутная газоразрядная лампа усовершенствована Мартином Лео Аронсом. Наработка в 1901 году усовершенствована Петером Купером Хьюиттом и обрела коммерческий успех.
С 1894 Мур организовывает две собственные компании, занимающиеся проблемами освещения. Главной особенностью ламп (1896 год) стало то, что газ по мере расходования возобновлялся. В результате устройство работало сколь угодно долго.
Первое коммерческое использование зарегистрировано в 1904 году. Лампа с отдачей 10 люменов на 1 Вт осветила магазин оборудования и приборов. Как писали очевидцы, несмотря на сложность и громоздкость (50 ярдов длиной) отдача того стоила.
КПД новых газоразрядных ламп в 3 раза превышал аналогичные цифры для ламп накаливания.
Отличительной особенностью стало использование в лампах Мура паров азота и углекислого газа. В результате получался дневной свет. А пары азота давали мягкое свечение и низкую цветовую температуру. Появление на свет вольфрамовых нитей сделало невыгодным дальнейшее производство, компании поглощены (1912 год) Дженерал Электрик, а патенты скуплены. Но Мур не остался без работы, перейдя в лаборатории своего преемника в бесконечной эстафете. Позже изобрёл неоновую лампу.
Желающие узнать больше могут заглянуть в разделы про лампы ДРЛ и люминесцентные лампы.
Источник: https://vashtehnik.ru/enciklopediya/gazorazryadnaya-lampa.html
Газоразрядные лампы: принцип устройства, особенности и характеристики
Газоразрядные лампы: характеристики, свойства, описание
Итак, лампа газоразрядная что это? Это тип осветителя, в котором светоизлучение происходит, когда в газовых соединениях определенного давления, возникает электрический заряд. Электродуга, по сути, является этим самым излучателем. От состава газовой смеси или пара, зависит какой будет цветовой поток света. Вместе с тем состав влияет и на силу светового потока, которая будет выделяться при возникновении разряда в газообразной среде.
Она состоит из колбы, выполненной из стекла, металла или керамики. Форма такого сосуда может быть самая разнообразная: дуговая, цилиндрическая и другие. В колбе, кроме газовых соединений и примесей химических веществ, находятся электроды, которые и создают разряд. Все процессы происходят в небольшой емкости, которую именуют «горелкой». Разряд, созданный с помощью электродов, создает свечение газообразных соединений.
Рабочий ресурс у разных видов может колебаться в пределах, от 3 000 до 18 000-20 000 часов работы. Что же относительно показателя цветопередачи, то он достаточно высок уже при 4200 К. Сам же параметр цвета излучения в некоторых лампах может достигать 20 000 К.
Преимущества таких ламп:
— компактный размер;
— высокая светоотдача;
— устойчивость к изменениям во внешней среде (потому их легко можно использовать под открытым небом);
— работа при температуре ниже нуля;
— высокий ресурс работы;
— экономичность.
Высокая световая отдача позволяет широко применять газоразрядную лампу в световом оборудовании, предназначенном для освещения всевозможных культурных мероприятий. Независимость от температурных условий дает возможность использовать такой осветитель на улице в любую погоду и пору года.
Принцип работы газоразрядной лампы
Главными элементами ламп из зарядом газа являются электроды, что помещены в прозрачную колбу, форма которой может значительно отличаться в продукции от разных производителей. Такая емкость заполняется газом, который поддается под высоким давлением. Вместе с газообразным веществом в колбу попадают элементы металлов с паровой упругостью. Как правило, это: ртуть или натрий. Их испарение, позволяет выделить высокое световое свечение в видимом спектре.
Между электродами создается разряжение, в результате которого, наполнение колбы начинает светиться. Здесь, от качества наполнителя и самого давления, во многом, зависит яркость. Крохотные размеры, способствуют тому, что световые потоки действуют довольно интенсивно.
От состава газа, внутри, зависит то, насколько высокое напряжение будет необходимо для создания разряда, что позволит выделить свечение в смеси. Кроме этого, напряжение зависит и от силы тока. С ее увеличением — напряжение уменьшается. Поэтому, такой лампе для долговечной работы необходим ограничитель тока.
Газоразрядная лампа загорается не сразу. Она постепенно нагревается и световой поток становится ярче. Это связано с процессами горения внутри. Световая реакция требует определенных затрат времени, порядка двух минут.
В этот период происходит процесс полного испарения веществ, что находятся внутри емкости. От температуры воздуха в месте, где используется освещение, тоже зависит длительность полного насыщения светом.
Многие производители, сегодня, увеличивают число электродов, чтобы ускорить процесс загорания.
Советы по выбору
Прежде чем определится с выбором такой лампы, нужно рассмотреть какие ее типы, сегодня представлены на рынке. Итак, выделяют три группы:
— металлогенные;
— натриевые;
— ртутные.
Наиболее популярными сегодня являются металлогенные. Они содержат в себе ртуть и примеси разных металлов. Разряд в них возникает благодаря высокому давлению. Это, в свою очередь, обеспечивает возникновение яркого света большой мощи. Так, при мощности в 250 Ватт, лампа способна выдавать световой поток, который аналогичен показателю 900-1000 Ватт света традиционной лампы. Рабочий ресурс такого продукта может достигать 16 000 часов.
Натриевая лампа, имеет, как правило, более высокую световую отдачу. При этом показатель рабочего ресурса значительно вырастает. В составе лампы находятся натриевые соединения. Они позволяют создавать желтоватый теплый оттенок света. Если в составе присутствует ксенон, то цвет потока будет белым. Натриевый осветитель не содержит ртути, при этом, она достаточно экономична. Стоит различать лампы низкого и высокого давления.
Ртутная лампа, при своих крохотных размерах, позволяет создавать свет большой яркости. В качестве газа в них используются пары ртути, которые способны создавать разряд, даже при небольшом давлении. Колба такой осветителя зачастую покрывается люминофором, компонентом, что позволяет увеличить светоотдачу. От качества сборки, во многом зависит и срок службы. Стоит отдавать предпочтения моделям с плотным стеклом и дорогостоящими типами электродных соединений.
Источник: https://luxpro.ua/articles/89-gazorazryadnie_lampi_printsip_ustroystva_osobennosti_i_harakteristiki