Как правильно подключить светодиод

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) (видео)

как правильно подключить светодиод

 Светодиоды — это современные, экономичные, надежные радиоэлементы, применяемые для световой индикации. Мы думаем об этом знает каждый и все! Именно исходя из этого опыта, столь высоко желание применить именно светодиоды, для конструирования самых различных электрических схем, как в бытовой электронике, так и для автомобиля. Но здесь возникают определенный трудности.

Ведь самые распространенные светодиоды имеют напряжение питания 33,3 вольта, а бортовое напряжение автомобиля в номинале 12 вольт, при этом порой поднимается и до 14 вольт. Само собой здесь всплывает закономерное умозаключение, что для подключения светодиодов к 12 вольтовой сети машины, необходимо будет понизить напряжение.

Именно этой теме, подключению светодиода к бортовой сети автомобиля и понижению напряжения, будет посвящена статья.

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

 Прежде, чем перейти к конкретным схемам и их описаниям, хотелось бы сказать о двух принципиально разных, но возможных вариантах подключения светодиода к 12 вольтовой сети.

  Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло.

А значит вторая, оставшаяся, достается непосредственно нашему потребителю — светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы.

У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней.

Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

 Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения. А значит, он также может работать без опасности быть сожженным.

Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор.  В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе.

При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод. Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

 Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы.

В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло.

Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

 Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле.  14,5-3,3= 11,2 вольта.

То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод.  Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается.

R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле  P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.
 Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

 Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети.

  К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV.

Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

 Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт. Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.

Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор. Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен.

По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно.

Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные — завышенные.

 О применение аналогичных микросхем мы уже рассказывали в статье «Зарядное устройство на 5 вольт в машине».

Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

 Подводя итог о подключении светодиода к 12 вольтовой сети можно сказать о простоте выполнения схемотехники. Как со случаем где применяется резистор, так и с микросхемой – стабилизатором. Все это легко и просто. По крайней мере, это самое простое, что может вам встретиться в электронике. Так что осилить подключение светодиода к бортовой сети машины в 12 вольт  должен каждый и наверняка. Если уж и это не «по зубам», то за более сложное и вовсе браться не следует.

по подключению светодиода к сети в автомобиле

а теперь чтобы вам было легче прикинуть какой номинал сопротивления нужен и какой мощностью для вашего конкретного случая, можете воспользоваться калькулятором подбора резистора

Источник: https://autosecret.net/tuning/elektro-tuning/1983-podkljuchenie-svetodioda-k-12-voltam

Как подключить светодиод параллельно, последовательно: схемы, описания, нюансы

как правильно подключить светодиод

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. 
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод). 
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. 

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

ЭТО ИНТЕРЕСНО:  Как отремонтировать диодную лампочку на 220 вольт

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Источник: http://ledno.ru/svetodiody/podklyuchenie-svetodiodov.html

Как подключить светодиод?

как правильно подключить светодиод

Хотя светодиоды (светики) используются в мире ещё с 60-х годов, вопрос о том как их правильно подключать, актуален и сегодня.

Начнем с того, что все светодиоды работают исключительно от постоянного тока. Для них важна полярность подключения, или расположения плюса и минуса. При неправильном подключении. светодиод работать не будет.

Как определить полярность светодиода

Полярность светодиода можно определить тремя способами:

  1. У традиционного светодиода, длинная ножка (анод) является ПЛЮСом. А короткая (катод) соответственно МИНУСом. На пластиковом основании (головке) светодиода есть срез, он обозначает расположение катода или минуса.
  2. Присмотритесь внутрь светика. Контакт в виде флажка — минус. Тонкий контакт — плюс.
  3. Используйте мультиметр. Установите центральный переключатель в режим «прозвонки». Щупами прикоснитесь к контактам проверяемого светодиода. Если светодиод засветится — тогда красный щуп прижат к плюсу светодиода а черный, соответственно к минусу.

N.B. Хотя на практике последний способ иногда не подтверждается.

Как бы там ни было, следует заметить, что если кратковременно (1-2 секунды) не правильно подключить светодиод, то ничего не перегорит и плохого не произойдет. Так как диод сам по себе в одну сторону работает, а в обратную нет. Перегореть он может только из-за повышенного напряжения.

Номинальное напряжение для большинства светодиодов 2,2 — 3 вольта. Светодиодные ленты и модули, которые работают от 12 и более вольт, уже содержат в схеме резисторы.

Как подключить светодиод к 12 вольтам

Подключать светодиод напрямую к 12 вольт — запрещено, он сгорит в долю секунды.  Необходимо использовать ограничительный резистор (сопротивление). Размерность резистора высчитывается по формуле:

R= (Uпит-Uпад)/0,75I,

где  R –величина сопротивления резистора;

Uпит и Uпад – напряжение питания и падающее;

I – проходящий ток.

0.75 — коэффициент надёжности для светодиода (величина постоянная)

Для большей ясности, рассмотрим на примере подключения одного светодиода к автомобильному аккумулятору 12 вольт.

В данном случае:

  • Uпит — 12 вольт (напряжение в авто аккумуляторе)
  • Uпад — 2,2 вольта (напряжение питания светодиода)
  • I — 10 мА или 0,01 А (ток  одного светодиода)

По вышеуказанной формуле, получим R=(12-2.2)/0.75*0.01 = 1306 Ом или 1,306 кОм

Ближайшее стандартное значение резистора — 1,3 килоОм

Это еще не всё. Требуется вычислить требуемую минимальную мощность резистора.

Но для начала определим фактический ток I (он может отличаться от указанного выше)

Формула: I = U / (Rрез.+ Rсвет)

где:

  • Rсвет — Сопротивление светодиода:

Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

из этого следует, что ток в цепи

I = 12 / (1300 + 220) = 0,007 А

Фактическое падение напряжения светодиода будет равно:

 Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец, мощность равна:

P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт).

Следует взять чуть больше мощности стандартной величины. В данном случае лучше подойдет 0,125 Вт.

Итак, чтобы правильно подключить один светодиод к 12 вольтам, (авто аккумулятор) потребуется в цепь вставить резистор, сопротивлением 1,3 кОм и мощностью 0,125 Вт.

Резистор можно присоединять к любой ноге светодиода.

У кого в школе, по математике была твердая двойка — есть вариант попроще. При покупке светодиодов в радиомагазине, спросите у продавца какой резистор Вам нужно будет вставить в цепь. Не забудьте указать напряжение в цепи.

Как подключить светодиод к 220в

Размерность сопротивления в данном случае расчитывается подобным образом.

Исходные данные те же. Светодиод потреблением 10 мА и напряжением 2.2 вольт.

Только напряжение питания в сети 220 вольт переменного тока.

Итак:

R = (Uпит.-Uпад.) / (I * 0,75)

R = (220 — 2.2) / (0,01 * 0,75) = 29040 Ом или 29,040 кОм

Ближайший по номиналу резистор стандартного значения 30 кОм.

Мощность считается по то й же формуле.

Для начала определяем фактический ток потребления:

I = U / (Rрез.+ Rсвет)

где:

Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,

а из этого следует, что ток в цепи будет:

I = 220 / (30000 + 220) = 0,007 А

Таким образом реальное падение напряжения светодиода будет:

Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В

И наконец мощность резистора:

P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59 Вт)

Мощность сопротивления должна быть не менее 1,59 Вт, лучше немного больше. Ближайшее большее стандартное значение 2 Вт.

Итак для подключения одного светодиода к напряжению 220 вольт, нам потребуется в электрическую цепь примостить резистор номиналом 30 кОм и мощностью 2 Вт.

НО! Так как в данном случае ток переменный, то светодиод буде гореть только в одну полуфазу то есть будет очень быстро мигать, приблизительно со скоростью 25 вспышек в секунду.

Человеческий глаз это не воспринимает и будет казаться, что светик обычно горит. Но на самом деле он все равно будет пропускать обратные пробои, хоть и работает только в одном направлении.

Для этого требуется поставить в цепь обратно направленный диод, дабы сбалансировать сеть и уберечь светодиод от преждевременного выхода из строя.

Источник: https://silatoka.net/kak-podklyuchit-svetodiod

Как правильно подключить светодиод

Технические характеристики LED-лампы определяются тремя параметрами: прямым напряжением; номинальным рабочим током; номинальной мощностью.

Самые распространенные чипы с напряжением 3, 6, и 12 вольт.

Если установка осуществляется своими руками, важно знать, как подключить светодиод к бытовой сети, драйверу или другому источнику питания.

Распиновка светодиода

Светодиод – кристалл, дополненный добавками, которые излучают свет в процессе прохождения электротока. Свечение появляется, если на анод подается положительный вольтажа, на катод – отрицательный.

Слово «распиновка» произошло от английского «Pin», которое можно перевести как «вывод» или «ножка». Распиновка светодиода – это определение функций контактов. Они обозначены вместе с предназначением на микросхемах и в таблицах. Схемы достаточно простые, на них видно, куда подключить «плюс», куда «минус». Если лед-лампочка сверхяркая, на ее корпусе или контактах имеется маркировка. Катод – это всегда ножка на широком основании.

Схема подключения

Существует всего 2 схемы подключения светодиодов:

  • к напряжению (подключается резистор);
  • к источнику постоянного тока (блоку питания или драйверу).

Если подключить чипы через резистор, вольтаж стабилизируется до уровня, который превышает снижение на светодиоде. При использовании второго варианта сила электротока стабильная, поэтому резистор не нужен, подключить источник света можно параллельно, последовательно или по смешанной схеме. Перед расчетом важно определить работоспособность и параметры диодов.

Как определить полярность диода

При правильном подключении светодиодов электроток течет в верном направлении, лампочка светится. Если подключить контакты на оборот, свечения нет, возможен выход LED-лампочки из строя. Для предотвращения перед созданием схемы обязательно следует определить полярность.

Использование тестирующих устройств

Мультиметр (тестер) обладает некоторыми преимуществами:

  • определяется плюс и минус;
  • можно узнать цвет света;
  • определяется работоспособность чипа.

Чтобы узнать полярность, нужно:

  • установить прибор на проверку при 2 кОм и коснуться выводов щупами (если на экране значение число 1600–1800, LED-лампочку можно подключать);
  • установить прибор на прозвон, коснуться черным щупом минуса, красным – плюса (на экране должно появиться число);
  • использовать в PNP гнезда C (коллектор) и E (эмиттер) – если в C вставить минус, в E – плюс, исправная лампочка светится.

Внимание! При использовании для тестирования NPN исправный источник света будет работать, если плюс и минус поменять местами.

Визуальное определение полярности

Если лампочка новая, плюсовой контакт всегда длиннее. Некоторые производители помечают минусовой контакт срезом на корпусе или точкой. У б/у диода контакты одной длины. В подобной ситуации может помочь осмотр кристалла. У плюса внутри линзы контакт меньших размеров, минус внешне похож на флажок.

Подключение к источнику питания

Для проверки подходит источник тока на 3-6 В (простая батарейка или аккумулятор). К одному контакту припаивается резистор на 300–470 Ом. Если коснуться анодом плюса, а катодом минуса, исправный диод светится.

В ремонтных мастерских лучшими источниками питания считают батарейки из настенных часов или плат компьютеров на 3 вольта (если электроток до 30 мА). Их на короткое время вставляют между ножками (резистор не нужен). Плюс и минус определяются по свечению.

Как рассчитать ограничительный резистор

Ограничительный резистор нужен при подключении светодиодов к источнику напряжения. Его следует последовательно подключить в цепь. Предназначение – ограничить проходящий через диод электроток.

Формула для вычисления параметров ограничительного резистора: R=(Us – UL)/ I*0,75, где:

  • Us – вольтаж на входе;
  • UL – расчетное напряжение одного диода (2-4 В);
  • I – ток диода (максимально допустимое значение);
  • 0,75 – коэффициент надежности led-лампочки.

Если резистор, соответствующий рассчитанному значению, подобрать не получается, нужно взять деталь с большим номиналом.

По закону Ома формула: R=U/I, где:

  • U – вольтаж при прохождении тока через резистор;
  • I – ток при прохождении через резистор.

Так как U= S- UL, где S – входной ток, в итоге формула для расчета сопротивления все равно: R=(Us – UL)/ I*0,75

Включение светодиода через блок питания без резистора

Блок питания – это прибор, который понижает напряжение. Он бывает трансформаторный или импульсный. Первый нужно подключать прямо к сети, но он к ней не привязан (током не бьет), КПД в пределах 50-70%. Трансформаторный блок питания не способен создать стабильный электроток, при котором LED-лампы работают. В сети должен быть ограничивающий резистор. Но его нельзя считать эффективным (при скачках напряжения греется).

Драйвер – импульсный блок питания, стабилизирующий ток. У него нет выходного напряжения, есть выходная мощность и выходной электроток. Если к схеме подключить исправный драйвер, выдается исключительно тот ток, на который прибор рассчитан.

Но это не совсем блок питания, дополненный резистором. В драйвере его заменяет схема, способная подстраиваться под скачки значений вольтажа. Количество светодиодов, которые возможно подключить, ограничивается мощностью драйвера.

Резистор в схеме не нужен.

Важно! Лучший вариант для того, чтобы без резистора подключить светодиоды – драйвер. Он не позволяет лед-лампам взять больше ампер, чем им нужно для свечения.

К импульсным блокам питания относятся батарейки мобильных телефонов и аккумуляторы автомобилей, блоки компьютеров, нетбуков, ноутбуков, зарядчики с USB. Если устройство низковольтное, к нему можно подключить светодиод своими руками, сэкономив на покупке драйвера. Если вольт много, нужно подключить регулируемый стабилизатор.

Светодиод (или 2-3) можно подключить даже к обычной батарейке на 1,5, 3 или 5 В.

Как правильно подключать светодиоды

Подключение светодиода возможно только к постоянному электротоку. У каждого источника света этого типа есть инструкция по подключению. Если она затерялась, по производителю можно найти данные в сети интернет и узнать, как правильно подключить конкретные лампочки.

Последовательность сборки:

  • определение технических характеристик;
  • составление схемы;
  • вычисление вольтажа всей цепочки;
  • подбор блока питания (драйвера);
  • расчет резистора (если питание от напряжения);
  • определение полярности диодов;
  • пайка схемы;
  • подключение блока (драйвера);
  • подключение к электросети.

Если схема работает, нужно измерить электроток и потребление энергии. При слишком большом значении тока требуется коррекция.

Чтобы не подключать систему охлаждения, лучше покупать лампочки с мощностью 1-3 В на подложке.

Параллельное подключение

Если подключить LED-лампочки параллельно, напряжение на всех равное, общая сила тока – сумма токов лед-ламп. Их характеристики отличаются даже если они принадлежат к одной партии.

Если подключить к схеме одно сопротивление, на каждый чип будет подаваться ток с различным номиналом, один будет светиться слишком ярко, другой на 60-70% от номинального значения. Это значит, что при параллельном подключении каждому диоду требуется отдельное сопротивление.

Подобные схемы используются редко из-за двух недостатков: большого количества элементов и роста нагрузки при выгорании одной лампочки.

Как включить светодиод в сеть переменного тока

Многих интересует, как подключить светодиод сети 220 В. Подобное возможно, если ток источника света до 20 мА, напряжение не падает более, чем на 2-3 вольта. Если применить формулу расчета драйвера, получается, что сопротивление должно быть 30 кОм.

Резистор будет греться при снижении вольтажа, поэтому важно знать его мощность.

Для расчетов используется формула: Р=I2R=U2/R, где:

  • U – разность между напряжением сети и падением напряжения на источнике света.

В результате вычислений получается 2 Вт.

В схему включения светодиода обязательно включение дополнительного диода, защищающего от пробоев в ситуациях, когда на выходах светильника возникнет амплитудное напряжение. Недостаток подобной схемы – большие потери энергии из-за выделения тепла.

Более эффективно другое соединение, в которое кроме диода включается конденсатор. Он обеспечивает падение напряжение до требуемого уровня.

Обе схемы упрощенные. Чаще всего они не нужны, так как в большинство светодиодов встроен драйвер, преобразующий 220 В в постоянный вольтаж в пределах 5-24 В.

Без драйвера к электросети возможно подключить светодиодные ленты 220 В, состоящие из 60-и элементов, укомплектованных выпрямителем. То же самое относится к большим СОВ-диодам, в которых 60 лед-кристаллов соединены последовательно. Китайцы начали выпускать модули, укомплектованные стабилизатором (устанавливается на подложку).

Основные выводы

Подключение светодиода возможно через резистор к сети или к блоку питания (драйверу) с постоянным током. Первый вариант подходит для лент и больших диодов. Для подключения к драйверу лучше использовать смешанную схему, если диодов больше 10-и.

Источник: https://svetilnik.info/bez-rubriki/kak-pravilno-podklyuchit-svetodiod.html

Схема подключения светодиода

Использование светодиодов для освещения и индикации — это надежное и экономичное решение. Светодиоды имеют очень высокий КПД, надежны,экономичны, безопасны, долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера.

Что такое светодиод и как он работает

Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод (плюс) и катод (минус). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).

ЭТО ИНТЕРЕСНО:  Как сделать дальний и ближний свет вместе

Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное, а на катод — отрицательное напряжение.

Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.

Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.

Какие бывают светодиоды

Во-первых, светодиоды можно разделить по цветам: красный, желтый, зеленый, голубой, фиолетовый, белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.

Во-вторых, светодиоды можно разделить по номинальному току потребления. Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.

В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора.

Светодиод(ы) можно подключить к компьютеру разными способами.

Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.

Подключение светодиодов к блоку питания

Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт (В) и +12 В.

Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт.

Рассмотрим схему подключения одного светодиода.

При питании от 5 В последовательно со светодиодом необходимо включить ограничительный резистор номиналом от 100 до 200 Ом.
При питании от 12 В последовательно со светодиодом требуется включить ограничительный резистор номиналом от 400 до 900 Ом.

Рассмотрим схему подключения двух светодиодов.

При питании двух светодиодов от 5 вольт, в схему надо включить резистор до 100 Ом. Некоторые светодиоды в такой схеме будут светиться слишком тускло (даже без резистора).
При питании двух светодиодов от 12 В, в схему надо включить резистор от 250 до 600 Ом.

Рассмотрим схему подключения трех и четырех светодиодов.

При питании трех светодиодов от 12 В, следует использовать резистор номиналом от 100 до 250 Ом.
Некоторые светодиоды в такой схеме включения будут светиться слишком тускло (даже без резистора).

Универсальный принцип расчета ограничительного резистора описан в статье «Методика расчета питания светодиода».

Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки (два пучка).

Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема.

При паралельном включении светодиодов следует использовать только одинаковые светодиоды, с минимальным разбросом характеристик. Сопротивление ограничительного резистора должно быть рассчитано и подобрано с высокой степенью точности. В случае выхода из строя одного из светодиодов — остальные могут выгореть по очереди друг за другом в считанные минуты.

Рекомендую никогда не использовать эту схему включения светодиодов. Но если все же условия требуют параллельного включения то советую использовать следующий вариант.

Такая схема параллельного включения светодиодов практически избавлена от опасности последовательного выгорания светодиодов. В данном случае вместо ограничиельного резистора включено несколько обычных выпрямительных диодов разных марок (НЕ светодиодов).

Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их падению напряжения в открытом состоянии.

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры.

Подключение светодиодов к LPT порту

При питании светодиода от LPT порта необходимо последовательно со светодиодом можно включить резистор номиналом до 100 Ом. В большинстве случаев, при питании светодиода от LPT порта резистор бывает не нужен. LPT порт предварительно должен быть переведен в режим EPP. Подробное описание способа подключения светодиодов к LPT порту содержится в статье «LPT порт и 12 светодиодов».

Универсальный принцип расчета ограничительного резистора описан в статье «Универсальная методика рассчета питания светодиодов».

Источник: https://mavius.mavjuz.com/projects/led/

Правильное подключение светодиодов

Светодиод — это обычный диод, в кристалл которого добавлены вещества, излучающие свет при прохождении через них электрического тока. При подаче положительного напряжения на анод и отрицательного на катод происходит свечение. Наиболее частая причина выхода из строя – превышение номинала питающего напряжения.

Схема подключения светодиода

В классической схеме рекомендуют производить подключение через токоограничительный резистор. Действительно, правильно подобрав резисторное или индуктивное сопротивление, можно подключить диод, рассчитанный на напряжение питания 3В, даже к сети переменного тока.

Главное требование к параметрам питания – ограничение тока цепи.

Поскольку сила тока – параметр, отображающий плотность потока электронов по проводнику, при превышении этого параметра диод просто взорвется из-за мгновенного и значительного выделения тепла на полупроводниковом кристалле.

Включение светодиода через блок питания без резистора

У меня уже несколько лет работает модернизированная под LED настольная лампа. В качестве источника света используется шесть ярких светодиодов, а в качестве источника питания – старое зарядное устройство от мобильного телефона Nokia. Вот моя схема включения светодиода:

Номинальное напряжение диодов – 3,5В, ток – 140мА, мощность — 1Вт.

При выборе внешнего источника питания необходимо ограничение по току. Подключение этих светодиодов к современным зарядным устройствам с напряжением питания 5В 1-2А потребует ограничивающий резистор.

Что бы адаптировать эту схему к зарядному устройству, рассчитанному на 5В, используйте резистор на 10-20Ом мощностью 0,3А.

Если у вас другой источник питания, убедитесь, что в нем есть схема стабилизации тока.

Схема зарядного устройства от мобильного телефона Блок питания большинства низковольтных бытовых приборов

Мигающий

Особенность конструкции мигающего светодиода – каждый контакт является одновременно катодом и анодом. Внутри него находятся два светоизлучающих кристалла с разной полярностью. Если такой источник света подключить через понижающий трансформатор к сети переменного тока он будет мигать с частотой 25 раз в секунду.

Для другой частоты мигания используются специальные драйверы. Сейчас такие диоды уже не применяются.

Разноцветный

Разноцветный светодиод – два или больше диода, объединенных в один корпус. У таких моделей один общий анод и несколько катодов.

Изменяя через специальный драйвер питания яркость каждой матрицы можно добиться любого света свечения.

При использовании таких элементов в самодельных схемах не стоит забывать, что у разноцветных кристаллов разное напряжение питания. Этот момент необходимо учитывать и при соединении большого количества разноцветных LED источников.

Другой вариант – диод со встроенным драйвером. Такие модели могут быль двухцветные с поочерёдным включением каждого цвета. Частота мигания задаётся встроенным драйвером.

Более продвинутый вариант – RGB диод, изменяющий цвет по заранее заложенной в чип программе. Тут варианты свечения ограниченны лишь фантазией производителя.

Источник: https://svetodiodinfo.ru/voprosy-o-svetodiodax/kak-pravilno-podklyuchit.html

Светодиоды 12 вольт: схема, мощные, без резистора, сколько можно подключить

Среди большинства осветительных элементов особую популярность завоевали светодиоды 12 Вольт (LED). Маленькие лампочки потребляют минимум электроэнергии. При этом дают широкий спектр цветов освещения и служат до 40 000 часов.

Особенности подключения LED лампочек

Сфера применения светодиодов достаточно широка — от производства ТВ техники до подсветок в жилых, коммерческих помещениях. Однако способы подключения маленьких ламп известны не каждому мастеру. Все выделяют три метода монтажа LED:

  • последовательный;
  • параллельный;
  • комбинированный.

Кроме того, светодиодную лампу можно подключить и к сети 220 Вольт. Подсоединение в любом случае выполняют только к источникам постоянного тока.

Принципы подключения

Вольт-амперная характеристика светодиода

Для установки LED ламп существует несколько важных принципов, которых следует придерживаться:

  • Важно соблюдать полярность при подсоединении светодиода. Иначе он быстрее выйдет из строя или не будет светиться вообще.
  • Расположение анода и катода указано на цоколе лампочки в виде насечек, зеленых точек.
  • Запрещено в одну линию и на один резистор последовательно монтировать лампы разного цвета. Это влияет на их производительность и в принципе свечение.
  • Информацию о полярностях можно найти в технической документации к LED.

На каждые 12 В можно подключать не более 6 светодиодов.

Виды источников питания

Бестрансформаторный блок питания

Каждый светодиод 12В должен подключаться только к источнику питания с таким же напряжением. Причем ИП обязан иметь стабилизированный выходной ток. Проще всего и желательно подсоединять LED к таким источникам питания на 12 В:

  • Бестрансформаторные БП (блоки питания). Имеют токозадающий резистор на выходе и гасящий конденсатор. Но в подобных БП отсутствует стабилизирующая защита. Это сильно влияет на продолжительность работы лампочек при скачках напряжения.
  • Автомобильный аккумулятор. Если подсоединять LED к аккумулятору, нужно подобрать резистор по мощности и сопротивлению.
  • Нестабилизированные БП. Их главные компоненты — конденсатор, выпрямитель и понижающий трансформатор. Подобные блоки питания актуальны для объектов со стабильным напряжением.
  • Импульсные источники питания. В качестве примера можно взять блок питания компьютера. Если пользователю не будет мешать шум кулеров, можно использовать и его

Стоимость нового ИП на 12 Вольт зависит от варианта исполнения (наличие корпуса или его отсутствие) и от мощности, исчисляемой в Ваттах.

Способы подключения светодиодов к ИП на 12 вольт

Подключение светодиода через стабилизатор напряжения

Чтобы подключить светодиод к 12 вольтам, если его напряжение всего 3В, придется компенсировать излишки в размере 9 Вольт через резистор или стабилитрон (что неэффективно), либо подключать лед лампы последовательно по три штуки сразу.

Красные и желтые LED можно подсоединять сразу по пять штук, поскольку падение из напряжения ниже 2,2 Вольт.

Перед тем как рассчитать резистор, нужно выяснить рабочее напряжение каждой лампочки. Его измеряют самостоятельно или выясняют информацию из технической документации.

Светодиоды на 12 В подключают только через стабилизатор. Если речь идет о подсоединении ленты ламп в ИП, важно знать, что у них есть ограничительный резистор, рассчитанный на каждую групп из нескольких LED.

Алгоритм действий

Соединение светодиодов необходимо производить с учетом полярности

Чтобы подключить светодиод к 12В постоянного тока, нужно усвоить основной алгоритм действий:

  • Определяют тип блока питания, выясняют его напряжение на выходе и вообще работоспособность.
  • Выявляют номинальный ток LED, потребляемую мощность и напряжение.
  • Определяют возможность подключения светодиодов к БП по имеющимся параметрам.
  • Соединяют и спаивают лампочки с соблюдением полярности. Резистор ставят на любой части цепочки.

Контакты после завершения работ тщательно изолируют.

Сколько светодиодов можно подключить к 12 Вольт

Чтобы выяснить, сколько светодиодов можно подключить к 12 В, необходимо поделить Uпит на Uпад. Либо разрешено исходить из среднего значения 2 Вольта на каждую лампочку. Таким образом на каждые 12 В разрешено монтировать не больше 6 LED. Если учесть, что какая-то часть напряжения (примерно 2 В) обязательно должна уходить к гасящему резистору, количество диодов уменьшится на один.

Напряжение светодиода не всегда равно 2 В. К тому же при подключении и соединении ЛЕД стоит учитывать оттенок свечения лампочки и его яркость. Для определения точного количества ламп на один БП двенадцать Вольт можно воспользоваться специальной программой.

Распространенные ошибки

Светодиоды постепенно будут выходить из строя, поскольку рабочий ток у каждого разный

Часто мастера допускают ошибки при монтаже LED. Самые актуальные из них:

  • Подключение лампочек напрямую без резистора. В этом случае диоды просто перегорают.
  • Выполнение параллельного подключения при помощи одного резистора. Такая ошибка грозит постепенным выходом из строя всех лампочек. Ведь рабочий ток у каждой свой.
  • Неправильно подобранный резистор. В этом случае через лампочки проходит слишком большой ток, что опять же приводит к их сгоранию. Если же сопротивление будет большим, элементы будут светиться недостаточно ярко.
  • Выполнение последовательного подключения с разными токами потребления. Здесь возможны два варианта — лампы будут светиться с разной интенсивностью яркости, или перегорят те, которые рассчитаны на меньший ток.
  • Подсоединение лед ламп к сети с переменным током 220 без использования диода либо иных защитных компонентов. На лампочку поступает напряжение 315 В, что моментально приводит к её сгоранию.

Если учитывать эти ошибки и выполнять подсоединение светодиодов правильно, декоративная подсветка, которую мастер решил встроить дома, будет работать долго и исправно.

Источник: https://strojdvor.ru/elektrosnabzhenie/kak-podklyuchit-svetodiod-k-12v-postoyannogo-toka/

Как правильно подключать светодиоды

Светодиоды дают яркий свет, почти не нагреваются и при этом очень экономичны. Поэтому вполне логична их современная популярность. Их используют в подсветке приборов, в качестве индикаторов и, с относительно недавнего времени, в качестве источников света. В этой статье мы рассмотрим как правильно подключить светодиод, как подключить несколько светодиодов и как рассчитывать токоограничительный резистор для светодиода.

Какое напряжение нужно для питания светодиода

Строго говоря, светодиод можно питать от любого напряжения, достаточного для пробоя в прямом направлении. То есть, это может быть и 5 и 250 Вольт. Причем оно может быть как постоянным, так и переменным. Другое дело, что при этом нужно ограничивать протекающий через кристалл ток.

Для чего светодиоду нужен резистор

Для примера возьмем обычный красный светодиод в прозрачном корпусе. Такие часто применяются в подсветке игрушек, елочных гирляндах и т.д.

Ток, потребляемый кристаллом равен 20 мА при напряжении в 2 В. При любом значении подаваемого на кристалл диода напряжения, светодиод будет стараться удержать его в пределах нужных ему 2 В и чем больше подаваемое напряжение, тем больший ток будет протекать через кристалл, что приведет к его деградации и выходу светодиода из строя.

ЭТО ИНТЕРЕСНО:  Как рассчитать сопротивление для светодиода

Поэтому для питания мощных светодиодов применяется специальный драйвер, но если мы хотим подключить всего несколько маломощных светодиодов его применение будет просто неоправданным. Здесь нам будет достаточно и токоограничивающего резистора, который мы включим последовательно со светодиодом.

Цепь должна выглядеть вот так:

В данном случае резистор приведен для источника питания 9 В

Обратите внимание, в зависимости от напряжения будет изменяться и номинал резистора. А рассчитывается он по закону Ома.

R=U/IГде:R — искомое сопротивлениеU — напряжение источника питанияI — прямой ток светодиода

То есть, при питании стандартного светодиода с прямым током 20 мА и падением напряжения 2 В от источника питания в 12 В, получаем: 12 В/0,02 А=600 Ом. А для 220 В 220 В/0,02 А=11000 Ом (или 11 кОм). Но так как в стандартном ряду резисторов искомого номинала может и не быть, берем ближайшее значение с округлением в большую сторону.

Но это упрощенный вариант. Совсем же правильно будет считать немного иначе:

Если у нас с вами источник питания на 5 В, а диод дает падение напряжения 2 В, то на сопротивлении падение должно быть 3 В. И в формулу мы подставляем именно это значение. То есть, формула должна выглядеть вот так:

R=(Uпит-Uдиода)/I
Где:R — искомое сопротивлениеUпит — напряжение источника питанияUдиода — напряжение питания диода (падение напряжения на диоде)I — прямой ток светодиода

Как подключить несколько светодиодов к одному источнику питания

Если же нам нужно подключить цепочку из нескольких диодов, то нужно брать источник питания с напряжением больше чем сумма напряжений диодов в цепочке, и подставлять в формулу сумму токов всех диодов. Для питания от 12 В получаем: 12/(0,02+0,0,2)= 300 Ом.

Подключение цепочки светодиодов

Если же напряжение источника питания недостаточное, диоды включают параллельно или параллельными цепочками. Вот так:

Параллельное подключение светодиодов

В данном случае резистор нужно рассчитывать для каждой цепочки.

Иногда можно встретить вариант параллельного подключения нескольких диодов или цепочек к одному токоограничивающему резистору.

Это неправильно!

Дело в том, что даже идеально изготовленные качественные диоды имеют некоторый разброс параметров и при параллельном включении тот из них, который требует наименьшего напряжения, будет рассеивать на себе наибольший ток.

В результате он будет гореть ярче и быстрее всего выйдет из строя. Затем эстафету от него примет тот, что имеет чуть большее падение напряжение и т.д.

Поэтому при параллельном включении светодиодов у каждой ветви должен быть свой токоограничивающий резистор! Для закрепления материала

Вот и все. Ничего сложного.

В статье использованы изображения с сайта — elektrik24.net

Источник: https://vk.com/@radioatelye56-kak-pravilno-podkluchat-svetodiody

Как правильно подключать светодиод

В этой статье мы разберемся с тем, что собой представляет светодиод, почему он не является просто «лампочкой» и научимся его правильно подключать к источнику питания.

  • Лампа накаливания
  • Светодиоды

Лампа накаливания

Начнем с простого — кусок провода. Его вольт-амперная характеристика (ВАХ) описывается формулой I=U/R. Фактически, это закон Ома для участка цепи. Увеличили напряжение в 2 раза — сила тока увеличилась так же в 2 раза, и график функции будет выглядеть как прямая линия, наклоненная под некоторым углом к оси X. Рассеиваемая мощность на таком проводнике будет равна W=I*U=U2/R. Увеличили напругу в 2 раза — рассеиваемая мощность увеличилась в 4-ре. Все предельно ясно.

Теперь посмотрим на ВАХ обычной ламы накаливания:

Рис. 1. ВАХ лампы накаливания.

Можно заметить, что прямую она напоминает только в самом-самом своем начале. Далее сила тока выходит на некоторое значение, которое слабо зависит от изменения силы тока. Почету так? Тут не работает закон Ома? Все просто. Как известно, сопротивление металла увеличивается при увеличении его температуры, а спираль лампы накаливания как-никак нагревательный прибор.

И при увеличении напряжения, сила тока так же увеличивается, увеличивается рассеиваемая на спирали мощность и она сильнее разогревается, ее сопротивление начинает увеличиваться, ток начинает падать устаканивается на каком-то определенном значении.

Можно сказать, что сопротивление лампы накаливания зависит от напряжения, приложенного к ней, поэтому ВАХ лампы накаливания будет иметь вид, не похожий на ВАХ простого проводника (при условии, что мы не будем пропускать через проводник такой ток, что он превратится в печку).

Из графика видно, что при увеличении напряжения в 2 раза, а именно с 2-х вольт до 4-х, ток возрастет с 0,2А до ~0,225А, а рассеиваемая мощность увеличится в W2/W1=(4*0.225)/(2*0.2)=2.25 раз, а не в 4, как с простым куском провода. Поэтому лампа накаливания может с легкостью пережить серьезные перегрузки без повреждений (по крайней мере качественные экземпляры, а не тот шлак, который сейчас продается повсеместно).

Но это справедливо только для плавного изменения напряжения на лампочке, то есть когда все переходные процессы, связанные с изменением температуры спирали намного быстрее скорости изменения напряжения на ней.

Если же это условие не соблюдается, например, в момент включения, когда спираль еще холодная, сила тока через лампу накаливания при данном напряжении может превышать значение из графика в несколько раз. Поэтому лампы накаливания чаще дохнут в момент включения.

Раз уже взялись за лампочки, то давайте разберемся, почему это так.

В идеальном случае нить накаливания однородна на всей своей длине. Но ни чего идеального в мире нет, в том числе и спиралей у лампочек. Всегда найдутся участки, которые чуть-чуть тоньше, чем средняя толщина спирали по всей длине. А если участок тоньше, то его сопротивление больше (следует из формулы сопротивления проводника, R=[ρ∗l]/S).

Разобьем спираль лампы накаливания на небольшие и равные участки, и обозначим их как резисторы. При этом, у нас есть участок, сопротивление которого в 10 раз больше остальных. Вычислим рассеиваемую мощность на каждом резисторе. При этом не забываем, что при последовательном соединении сила тока во всех резисторах одинакова.

Рис. 2. Эквивалентная схема участка нити накала лампочки

Получаем, что на участках с сопротивлением 1R, рассеивается мощность W=1RI², а для участка с сопротивлением 10R W=10RI². Вот и получаем, что мааааленький участок спирали будет иметь локальный перегрев. А если учесть то, что пусковой ток лампочки довольно большой, этот участок будет деградировать быстрее, рассеиваемая мощность будет расти еще больше, и в один прекрасный момент, спираль перегорит. Вот так.

Для того, чтобы продлить срок службы ламп накаливания одни советуют вообще их не выключать, другие снижать действующее напряжение питания лампы путем последовательного включения полупроводникового диода. Так же есть специальные схемы плавного пуска, которые ограничивают пусковой ток и плавно разогревают спираль.

Светодиоды

Так, с лампочками разобрались. Перейдем к светодиодам. ВАХ диода, в том числе который и свето, имеет следующий вид:

Рис. 3. ВАХ светодиода

Во-первых, характеристика имеет два ярко выраженных участка, прямого и обратного тока. В обратном направлении светодиод плохо пропускает ток, поэтому, если подключить светодиод «не той стороной», то он светиться не будет. Но нас интересует участок прямого тока, который является экспоненциально возрастающим. В этом и кроется причина того, почему светодиод нельзя напрямую подключать к батарейке.

Например, при напряжении 2 вольта ток через диод составляет 20 мА, а при 2,1 вольт уже 40 мА!!! То есть, при небольшом увеличении напряжения, ток увеличивается в 2 раза. А если подключить такой диод к 3-х вольтной батарейке, то ток будет уже за 150 мА, и светодиод «спасибо» не скажет за такое обращение (про подключение светодиода к компьютерным «таблеткам» см. а конце статьи).

Поэтому необходимо ограничивать ток через светодиод с помощью резистора.

Расчет резистора очень простой. Для начала обозначим Ucc — напряжение батарейки (или от чего вы там его питать будете), Ur — напряжение на резисторе, Ud — требуемое напряжение на светодиоде, I — требуемый ток через светодиод, R — искомое сопротивление.

Вывод формулы занимает всего 4 строчки:

И вот небольшая памятка:

Рис. 4. Включение  одного светодиода

А как подключить два светодиода? Многие начинающие радиолюбители соединяют два светодиода параллельно, и используют один токоограничительный резистор:

Рис. 5. Неправильное включение 2-х светодиодов

Но такое включение неверное. И вот почему. Рассмотрим, как течет ток в этой цепи. От источника питания, ток I протекает через резистор R1. Затем, в точке разветвления он распределяется на два разных тока I1 и I2. Пройдя через светодиоды D1, D2, ток снова попадает на точку разветвления и превращается в I.

При параллельном соединении проводников для токов справедливо правило: I=I1+I2, при этом напряжения на светодиодах D1 и D2 будут одинаковыми: U1=U2=U.

Чем это чревато? У светодиодов есть некий разброс параметров, поэтому, если взять два светодиода и измерить их вольт-амперные характеристики, то они будут отличаться, особенно, если светодиоды разного цвета свечения:

Рис. 6. ВАХ 2-х разных светодиодов в одних координатах

На рис. 6 представлены две ВАХ. Пусть напряжение U на светодиодах будет 1,5 вольта. При данном напряжении ток через один светодиод составляет 4,33 мА, а через другой 13,2!! То есть, один из светодиодов будет потреблять довольно большой ток, при этом другому будет доставаться очень мало. Эта ситуация приведет к тому, что светодиоды будут иметь разную яркость свечения. Такая ситуация особенно заметна при параллельном соединении двух светодиодов разных цветов.

А вот правильное подключение:

Рис. 7. Правильное включение 2-х светодиодов

В этом случае ток через оба светодиода будет одинаковым, и оба светодиода будут гореть одинаково. А как рассчитать значение сопротивления R1? Все почти так же, как и для одного светодиода, только напряжение Ud будет равно

и сопротивление  токоограничительного резистора будет равно

Значения U1 и U2 можно определить следующим способом. Выбираем значение силы тока I равное, например, 10 мА. По графику ВАХ смотрим, какому напряжению соответствует заданное значение силы тока для первого и второго светодиода. Это и будут напряжения U1 и U2.

Но это все для случая, когда характеристики диодов отличаются сильно (при заданном I напряжения U1 и U2 отличаются сильно). Если же светодиоды одинаковые, то можно работать с такой формулой:

Udср. — значение напряжения на одном любом светодиоде в цепи для данного значения силы тока. Если у нас последовательно соединено не 2 светодиода а больше, то цифру «2» в формуле заменяем на их количество.

Есть один немаловажный момент: во всех формулах Ucc должно быть больше напряжения на светодиоде, или их группе. В противном случае у нас получится отрицательное значение токоограничительного резистора. Пойдите на радиорынок и в ларьке с радиодеталями попросите вам продать резистор, с сопротивлением минус 100 Ом. Запомните выражение фейса у продавца))

Вот, хорошо я тут все расписал, с формулками и объяснениями, что откуда берется. А где брать эти вольт-амперные характеристики на конкретный светодиод и какой ток будет оптимальным? Вот, нате табличку:

Табл. 1. Оптимальные значения токов и напряжений для разных типов светодиодов

В первой колонке обозначен тип светодиода, во второй оптимальный ток свечения, в третьей — напряжение на светодиоде при данном токе через него (фактически, в таблице указана одна точка ВАХ для каждого типа светодиода, имеющая оптимальное значение яркости свечения). Надо только эти значения подставить в нужную формулу и все! Ладно-ладно, посчитаю это в экселе, чтоб потом не заморачиваться с формулами.

Табл. 2. Значения токоограничительных резисторов

Разберемся, что тут у нас. В первой колонке тип светодиода, во второй напряжение, от которого вы хотите питать конструкцию, привел значения от 3-х до 24-х вольт. В третьей колонке «R(1)» значение токоограничительного резистора для одного светодиода, как на рис. 4. Колонка «R(2)» — сопротивление токоограничительного резистора для 2-х последовательно соединенных диодов (рис.

7), ну а колонка «R(3)» — для 3-х последовательно включенных диодов. В некоторых ячейках таблицы вместо значения сопротивления стоит слово «[нет]». Это значит, что данного напряжения питания недостаточно, чтобы зажечь конструкцию из одного или n светодиодов на полную яркость. Например, сверхяркий 5 мм. светодиод требует ток 75 мА, при этом напряжения на нем будет 3,6 вольт.

Если его напрямую подключить к 3-х вольтовой батарейке, то ни чего страшного не произойдет, просто на полную яркость он гореть не будет.

Как пользоваться таблицей? Есть у нас желтый светодиод 3 мм. Хотим питать его от кроны 9 вольт. Ищем в таблице кусок, относящийся к «3 и 5 мм желтый«, выбираем в колонке «Ucc» значение «9» и смотрим, что у нас написано в колонке «R(1)«. Там у нас 345 Ом.

Из стандартных номиналов ближе всего 330 Ом, вот его и ищем у себя в ящике с хламом. А если хотим собрать гирлянду из 3-х таких светодиодов (по аналогии, как на рис. 7), и питать хотим от аккума 12 вольт, то сопротивление резюка следует взять близким к 285 Ом, из стандартных это 270 Ом.

Стандартные значения резисторов можно посмотреть в этой таблице:

Табл. 3. Стандартные значения резисторов

Ну, вроде все. Теперь мы гуру в схемах со светодиодами))

«Питал я светодиод от 3-х вольтовой таблетки без всяких резисторов, и ни чего не сгорело». На это отвечу так: есть такое понятие, как внутреннее сопротивления источника питания. Для разных источников оно разное. Для автомобильного аккумулятора 12 В оно должно составлять миллиОмы, или даже микроОмы, а вот у компьютерной «таблетки» внутреннее сопротивление может быть как раз несколько десятков Ом. То есть эквивалентная схема любого источника питания следующая:

Рис.8. Эквивалентная схема батарейки

EMF — электро-движущая сила, ее как раз и указывают на корпусе, как напряжение батарейки, R_INT — то самое внутреннее сопротивление. Вот и получается, что подключая светодиод к компьютерной «таблетке» мы сами того не подозревая, последовательно включаем и токоограничительный резистор, который и спасает диод от перегорания.

Вот теперь точно все! Не забывайте про резистор и внутреннее сопротивление источника питания;)

Источник: http://dimoon.ru/spravochnik/kak-pravilno-podklyuchat-svetodiod.html

Понравилась статья? Поделиться с друзьями:
220 вольт