Как рассчитать сопротивление для светодиода

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.

Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет.

Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения.

Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристика Длина волны, нМ Напряжение, В
Инфракрасные от 760 до 1,9
Красные 610 — 760 от 1,6 до 2,03
Оранжевые 590 — 610 от 2,03 до 2,1
Желтые 570 — 590 от 2,1 до 2,2
Зеленые 500 — 570 от 2,2 до 3,5
Синие 450 — 500 от 2,5 до 3,7
Фиолетовые 400 — 450 2,8 до 4
Ультрафиолетовые до 400 от 3,1 до 4,4
Белые широкий спектр от 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.

Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.

Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.

Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.

Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Источник: https://raschet.info/raschet-tokoogranichivajushhego-rezistora-dlja-svetodioda/

Как самому рассчитать резистор для светодиода

Светоизлучающий диод подставляет собой полупроводниковое устройство, создающее оптическое излучение при прохождении через него электрического тока. Внешне он напоминает крошечную лампу.

Подключение таких лампочек к электрической сети должно осуществляться опосредованно – при помощи резистора либо специального драйвера.

Подключение светодиодных ламп посредством резисторов

Резистор – это пассивный элемент электрической цепи, который обладает некоторым сопротивлением, необходимый для ограничения силы тока и напряжения, проходящего через светодиод. Он снижает параметры сети до номинальных характеристик диодного элементас целью того, чтобы последний не перегорел и исправно работал в штатном режиме в течение всего срока службы.

Светодиодные источники искусственного освещения, подключаемые к электрической сети при помощи токоограничивающих резисторов, могут быть соединены друг с другом двумя принципиально различными способами:

  • последовательно;
  • параллельно.

При последовательном включении светодиодных лампочек в сеть через каждый из них проходит ток одной и той же силы. С целью реализации такой схемы достаточно установить только односопротивленческое устройство перед самым первым из осветительных приборов.

В случае подключения параллельно соединенных диодных светильниковпосредством одного резисторного сопротивления всю токовую нагрузку возьмет на себя прибор, имеющий наименьшее номинальное напряжение.

Светодиоды

Ввиду повышенной нагрузки такой светодиодный источник освещения быстро выйдет из строя. Затем повышенная токовая нагрузка ляжет на тот осветительный прибор, напряжение которого теперь стало считаться наименьшим, и ситуация повторится. Таким образом, в скором времени все источники искусственного освещения утратят свою работоспособность.

Важно! При параллельном включении в сеть светоизлучающих диодных лампочек для каждой из них необходимо устанавливать своесопротивление.

Далее мы поговорим о том, как рассчитать резистор для светодиода, а также рассмотрим различные примеры вычислений и коммутаций.

Расчет сопротивления для одиночного светоизлучающего диода

Расчет сопротивления резисторов для светодиодов осуществляется в соответствии со следующей формулой:

R = (U1-U2)/I,

где U1 – напряжение источника питания, U2 –номинальное напряжение светодиодного элемента, I – номинальный токсветодиода.

В свою очередь, мощность такого резисторного устройства определяется по формуле:

P = (U1-U2)*I.

Пример расчета. Необходимо подобрать резисторное сопротивление для светодиодного осветительного устройствасо следующими техническими характеристиками: I = 20 миллиампер, U2 = 2 вольта, при этом источник электрической энергии выдает напряжение U1 = 12 вольт.

Подставив исходные данные в вышеуказанные формулы, получаем:

R = (12В -2В)/0,02A = 10В/0,02A = 500Ом;

P = (12В — 2В)*0,02A = 10В * 0,02A= 0,2Вт.

Ближайшее большее номинальное сопротивление резисторного устройства для данного случая составляет 560Ом. Таким образом, для стабильной работы в электрической сети с напряжением 12В светодиода с номинальными током и напряжением 20мА и 2В соответственно требуется его установка совместно с резисторным элементом, имеющим сопротивление R=560Ом и минимальную мощность P=0,2Вт.

Расчет резисторного устройства для последовательного соединения светодиодов

При последовательном включении светодиодных источников освещения в электрическую цепь следует учитывать напряженческую характеристику каждого из них. То есть вышеприведенные формулы для сопротивления и мощности резисторного устройства принимают следующий вид:

R = (U1-ΣU2)/I,

P = (U1-ΣU2)*I,

где ΣU2 – суммарное напряжение всех последовательно соединенных светодиодных элементов рассчитываемой цепи.

Пример расчета. Необходимо подобрать сопротивление для трех последовательно включенных в сеть светодиодов со следующими техническими характеристиками: I = 20 миллиампер, U2 = 2 вольта, при этом источник электрической энергии выдает напряжение U1 = 12 вольт.

В таком случае при подстановке исходных данных в соответствующие формулы, имеем:

R = (12В -3 * 2В)/0,02А = (12В – 6В)/0,02А = 6В/0,02A = 300Ом;

P = (12В — 3 * 2В)*0,02А = (12В – 6В) * 0,02А = 6В* 0,02A = 0,12Вт.

Выбираем стандартный резисторный элемент, имеющий номинальную сопротивленческую характеристику R=330Ом и минимальную мощность P=0,12Вт.

Расчет резистора для параллельного соединения светодиодов

Учитывая вышеизложенную информацию о необходимости подключения каждого из параллельно соединенных диодных светильников посредством своего отдельного сопротивленческого устройства, несложно сделать вывод о том, что в данном случае расчет будет производиться аналогично вычислениям, приведенным для одиночного светодиодного элемента, но осуществить его потребуется в отношении каждого светильника по отдельности.

Калькулятор для расчета резисторов

Самым простым и быстрым способом определения параметров резисторных устройств для светодиодных источников искусственного освещения является использование онлайн калькулятора, которых на просторах сети Интернет имеется великое множество.

Некоторые подобные онлайн калькуляторы учитывают различные схемы соединения элементов рассчитываемых цепей, а также отображают не только результаты вычислений, но и принципиальные схемы рассчитываемых подключений.

Таким образом, вам не придется долго ломать голову над тем, как подобрать резистор для светодиода. Немного теории и здравого смысла – и вы уже точно знаете, какие элементы и в какой последовательности необходимо подключать для качественной и надежной работы системы освещения посредством диодных лампочек.

Источник: https://elektrik.media/osveschenie/raschet-rezistora-dlya-svetodioda.html

Расчёт резистора для светодиода: формулы подбора сопротивления, онлайн-калькулятор

Работа светодиода основана на излучении квантов света, возникающих при протекании по нему тока. В зависимости от этого меняется и яркость свечения элемента. При малом токе он светит тускло, а при большом — вспыхивает и сгорает. Для ограничения протекающего через него тока проще всего использовать сопротивление. Выполнить правильный расчёт резистора несложно, но при этом следует помнить, что он только ограничивает, но не стабилизирует ток.

Светодиод — это прибор, обладающий способностью излучать свет. На печатных платах и схемах он обозначается латинскими буквами LED (Light Emitting Diode), что в переводе обозначает «светоизлучающий диод». Физически он представляет собой кристалл, помещённый в корпус. Классически им считается цилиндр, одна сторона которого имеет выпуклую округлую форму, являющуюся линзой-полусферой, а другая — плоское основание, и на ней располагаются выводы.

С развитием твердотельных технологий и уменьшения технологического процесса промышленность стала производить SMD-диоды, предназначенные для установки поверхностным монтажом. Несмотря на это, физический принцип работы светодиода не изменился и одинаков как для любого вида, так и для цвета устройства.

Процесс изготовления прибора излучения можно описать следующим образом. На первом этапе выращивают кристалл. Происходит это путём помещения искусственно изготовленного сапфира в заполненную газообразной смесью камеру.

В состав этого газа входят легирующие добавки и полупроводник. При нагреве камеры происходит осаждение образующегося вещества на пластину, при этом толщина такого слоя не превышает нескольких микрон.

После окончания процесса осаждения методом напыления формируются контактные площадки и вся эта конструкция помещается в корпус.

Из-за особенностей производства одинаковых по параметрам и характеристикам светодиодов не бывает. Поэтому хотя производители и стараются отсортировывать близкие по значениям устройства, нередко в одной партии попадаются изделия, отличающиеся по цветовой температуре и рабочему току.

Устройство радиоэлемента

Светодиод или LED-диод представляет собой полупроводниковый радиоэлемент, в основе работы которого лежат свойства электронно-дырочного перехода. При прохождении через него тока в прямом направлении на границе соприкосновения двух материалов возникают процессы рекомбинации, сопровождающиеся излучением в видимом спектре.

Очень долго промышленность не могла изготовить синий светодиод, из-за чего нельзя было получить и излучатель белого свечения. Лишь только в 1990 году исследователи японской корпорации Nichia Chemical Industries изобрели технологию получения кристалла, излучающего свет в синем спектре. Это автоматически позволило путём смешения зелёного, красного и синего цвета получить белый.

В основе процесса излучение лежит освобождение энергии при рекомбинации зарядов в зоне электронно-дырочного перехода. Образовывается он путём контакта двух полупроводниковых материалов с разной проводимостью. В результате инжекции, перехода неосновных носителей заряда, образуется запирающий слой.

На стороне материала с n-проводимостью возникает барьер из дырок, а на стороне с p-проводимостью — из электронов. Наступает равновесие. При подаче напряжения в прямом смещении происходит массовое перемещение зарядов в запрещённую зону с обеих сторон. В результате они сталкиваются и выделяется энергия в виде излучения света.

Этот свет может быть как видимым человеческому глазу, так и нет. Зависит это от состава полупроводника, количества примесей, ширины запрещённой зоны. Поэтому видимый спектр достигается путём изготовления многослойных полупроводниковых структур.

Характеристики светодиодов

Цвет свечения зависит от типа полупроводника и степени его легирования, что определяет ширину запрещённой зоны p-n перехода. Срок службы светодиодов в первую очередь зависит от температурных режимов его работы. Чем выше нагрев прибора, тем быстрее наступает его старение.

А температура, в свою очередь, связана с проходящей через светодиод силой тока. Чем меньшей мощности источник света, тем дольше его срок службы. Старение выражается в виде уменьшения яркости прибора света. Поэтому так важно правильно подобрать сопротивление для светодиода.

К основным характеристикам LED-диодов относят:

  1. Потребление тока. Однокристальные светодиоды потребляют ток, равный 0,02 А. При этом прямо пропорционально с количеством кристаллов растёт и его значение. Так, диод с четырьмя кристаллами потребляет ток 0,08 А. Именно из-за этого параметра диода и ставится ограничительный резистор, чтобы он не сгорел при высокой силе тока.
  2. Величину падения напряжения. Эта характеристика указывает, какое количество энергии выделяется на светодиоде, то есть на сколько вольт уменьшится величина напряжения при параллельном его включении в цепь. Например, если падение составляет 3 вольта, а величина разности потенциалов на входе равна 9 вольтам, то при включении параллельно к источнику питания светодиода напряжение на выходе будет равно 6 вольтам.
  3. Светоотдачу. Эта характеристика показывает количество света, излучаемое устройством при потреблении мощности равной одному ватту.
  4. Цветовую температуру. Она зависит от управляющего тока, эффективности теплоотвода и температуры окружающей среды. Интенсивный поток света, связанный с потребляемой электрической мощностью, также увеличивает температуру. При этом следует отметить, что перепады температуры значительно снижают ресурс светодиода.
  5. Типоразмер. Его значение зависит от размера излучателя. Соответственно, чем больше размер светодиода, тем больше его яркость и мощность.

Способы подключения

Для беспроблемной работы светодиода очень важно значение рабочего тока.

Неверное подключение источников излучения или существенный разброс их параметров при совместной работе приведёт к превышению протекающего через них тока и дальнейшему перегоранию приборов.

Связано это с увеличением температуры, из-за которой кристалл светодиода просто деформируется, а p-n переход пробьётся. Поэтому так важно ограничить подающуюся на источник света величину тока, то есть ограничить питающее напряжение.

ЭТО ИНТЕРЕСНО:  Как повесить люстру на натяжной потолок

Проще всего это выполнить, используя сопротивление, включённое последовательно в цепь излучателя. В этом качестве применяется обыкновенный резистор, но он должен иметь определённую величину. Его большое значение не сможет обеспечить нужную разность потенциалов для возникновения процесса рекомбинации, а меньшее — спалит. При этом нужно не только знать, как рассчитать сопротивление для светодиода, но и понимать, как правильно его поставить, особенно если схема насыщена радиоэлементами.

В электрической цепи может использоваться как один светодиод, так и несколько. При этом существует три схемы их включения:

  • одиночная;
  • последовательная;
  • параллельная.

Одиночный элемент

Когда в электрической цепи используется только один светодиод, то последовательно с ним ставится одни резистор. В результате такого подключения общее напряжение, приложенное к этому контуру, будет равно сумме падений разности потенциалов на каждом элементе цепи. Если обозначить эти потери на резисторе как Ur, а на светодиоде Us, то общее напряжение источника ЭДС будет равно: Uo = Ur + Us.

Перефразируя закон Ома для участка сети I = U / R, получается формула: U = I * R. Подставив полученное выражение в формулу для нахождения общего напряжения, получим:

Uo = IrRr + IsRs, где

  • Ir — ток, протекающий через резистор, А.
  • Rr — расчётное сопротивление резистора, Ом.
  • Is — ток, проходящий через светодиод, А.
  • Rs — внутренний импеданс светодиода, Ом.

Значение Rs изменяется в зависимости от условий работы источника излучения и его величина зависит от силы тока и разности потенциалов. Эту зависимость можно увидеть изучая вольт-амперную характеристику диода. На начальном этапе происходит плавное увеличение тока, а Rs имеет высокое значение. После импеданс резко падает и ток стремительно возрастает даже при незначительном росте напряжения.

Если соединить формулы, получится следующее выражение:

Rr = (Uo — Us) / Io, Ом

При этом учитывается, что сила тока, протекающего в последовательном контуре участка цепи, одинакова в любой его точке, то есть Io = Ir = Is. Это выражение подходит и для последовательного соединения светодиодов, ведь при нём для всей цепи используется также лишь один резистор.

Таким образом, для нахождения нужного сопротивления остаётся узнать величину Us. Значение падения напряжения на светодиоде является справочной величиной и для каждого радиоэлемента она своя. Для получения данных понадобится воспользоваться даташитом на устройство. Даташит — это набор информационных листов, которые содержат исчерпывающие сведения о параметрах, режимах эксплуатации, а также схемы включения радиоэлемента. Выпускает его производитель изделия.

Параллельная цепь

При параллельном соединение радиоэлементы контактируют между собой в двух точках — узлах. Для такого типа цепи справедливы два правила: сила тока, входящая в узел, равна сумме сил токов, исходящих из узла, и разность потенциалов во всех точках узлов одинакова. Исходя из этих определений, можно сделать заключение, что в случае параллельного соединения светодиодов искомый резистор, располагающийся в начале узла, находится по формуле: Rr = Uo / Is1+In, Ом, где:

  • Uo — приложенная к узлам разность потенциалов.
  • Is1 — сила тока, протекающая через первый светодиод.
  • In — ток, проходящий через n-й светодиод.

Но такая схема с общим сопротивлением, располагающимся перед параллельным соединением светодиодов, — не используется. Связанно это с тем, что в случае перегорания одного излучателя, согласно закону, сила тока, входящая в узел, останется неизменной. А это значит, она распределится между оставшимися рабочими элементами и при этом через них пойдёт больший ток. В результате возникнет цепная реакция и все полупроводниковые излучатели в конечном счёте сгорят.

Поэтому правильно будет использовать собственный резистор для каждой параллельной ветки со своим светодиодом и выполнить расчёт резистора для светодиода отдельно для каждого плеча. Такой подход ещё выгоден тем, что в схеме можно использовать радиоэлементы с разными характеристиками.

Расчёт сопротивления каждого плеча происходит аналогично одиночному включению: Rn = (Uo — Us) / In, Ом, где:

  • Rn — искомое сопротивление n -ой ветки.
  • Uo — Us — разность падений напряжений.
  • In — сила тока через n-й светодиод.

Пример расчёта

Пускай на электрическую схему поступает питание от источника постоянного напряжения, равного 32 вольтам. В этой схеме стоят два параллельно включённых друг другу светодиода марки: Cree C503B-RAS и Cree XM—L T6. Для расчёта требуемого импеданса понадобится узнать из даташита типовое значение падения напряжения на этих светодиодах. Так, для первого оно составляет 2.1 В при токе 0,2, а второго — 2,9 В при той же величине силы тока.

Подставив данные значения в формулу для последовательной цепи, получится следующий результат:

  • R1 =(U0-Us1)/ I=(32−2,1)/0,2 = 21,5 Ом.
  • R2 = (U0-Us2)/ I=(32−2,9)/0,2 = 17,5 Ом.

Из стандартного ряда подбирают ближайшие значения. Ими будут: R1 = 22 Ома и R2 = 18 Ом. При желании можно рассчитать и мощность, рассеиваемую на резисторах по формуле: P = I*I*U. Для найденных резисторов она составит P= 0,001 Вт.

Браузерные онлайн-калькуляторы

При большом количестве светодиодов в схеме рассчитывать для каждого сопротивление — процесс довольно утомительный, тем более что при этом можно допустить ошибку. Поэтому проще всего для расчётов использовать онлайн-калькуляторы.

Представляют они собой программу, написанную для работы в браузере. В интернете можно встретить много таких калькуляторов для светодиодов, но принцип работы у них одинаков. Понадобится ввести справочные данные в предложенных формах, выбрать схему подключения и нажать кнопку «Результат» или «Расчёт». После чего останется только дождаться ответа.

Пересчитав вручную, его можно проверить, но особого смысла в этом не будет, так как при вычислении программы используют аналогичные формулы.

Источник: https://220v.guru/vse-ob-elektroenergii/svetodiodnoe-osveschenie/kalkulyator-rascheta-soprotivleniya-rezistora-dlya-svetodioda.html

Расчет резистора для светодиода. Онлайн калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

где:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

 Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Умный ПДУ для светодиодной ленты

Контроллер для RGBW/RGB/Dual White. Управление по радиоканалу, WIFI

Светодиодный драйвер на PT4115

Для светодиодов 3 Вт 700mA / 1 Вт 350mA

Инфракрасный включатель для светодиодной ленты

Напряжение: 12/24В, ток: 5А, расстояние срабатыва

Драйвер для светодиодной ленты

220В/12В, мощность: 18 Вт / 36 Вт / 72 Вт / 100 Вт

Светодиодный драйвер

Мощность: 3 Вт, 4 Вт, 5 Вт, 7 Вт, Напряжение: 312В, выходной ток

Контроллер светодиодной ленты

Bluetooth — WiFi контроллер для 5050, WS2811, WS2812B сведодиодной ленты

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор  поможет вам найти нужный номинал резистора  для светодиода, подключенного по следующей схеме:

примечание: разделителем  десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (UUF)/ IF 

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание:   Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются  в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то  выберите ближайшее  бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то   возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

Источник: http://www.joyta.ru/7705-raschet-rezistora-dlya-svetodioda-onlajn-kalkulyator/

Расчет светодиодов

Расчет светодиодов — LED-диод, это неотъемлимый элемент современной электроники, который используется практически во всех радиоэлектронных устройствах. Принцип его работы следующий: при подачи на него определенного значения постоянного тока, прибор начинает светится.

Существуют светодиоды различных цветов свечения, которое обусловливается применяемым материалом для его изготовления.

Специфика включения светодиодного прибора

Вольт-Амперная характеристика у светодиода аналогична той, которую имеет стандартный диод полупроводникового типа. Вместе с тем, когда в цепи светодиода возрастает напряжение прямой направленности, идущий через него ток стремительно увеличивается. Взять для примера фирменный светодиод зеленого свечения, то если подавать на него прямое напряжение в диапазоне от 1.8v до 2v, ток может увеличиться в пять раз, то есть составит 10мА.

Следовательно, включение светодиода по схеме прямой направленности напряжения, даже при незначительном увеличении напряжения, постоянный ток может повысится до критической величины. А при возрастании тока до пикового значении, чревато выходом из строя светодиода.

Поэтому, что бы предохранить данный полупроводниковый прибор от возможного пробоя, подавать на него напряжение необходимо от стабилизированного источника тока, то есть — драйвера.

При использовании драйвера с постоянным стабилизированным током обеспечиваются лучшие характеристики излучения светодиода, и, кроме того, увеличивается срок его работы. Однако такие источники тока дорогие и используются только для ответственных случаев.

В случае, если цепь со стабилизированным напряжением в схеме отсутствует, тогда для защиты светодиода применяется постоянный резистор в качестве ограничивающего ток сопротивления. Такой гасящий резистор включается последовательно в цепь светодиода. Чтобы точно определить номинальное значение такого резистора, нужно воспользоваться ниже приведенной формулой:

Источник: https://usilitelstabo.ru/raschet-svetodiodov.html

Расчет резистора для светодиода ⋆ diodov.net

Расчет резистора для светодиода выполняется довольно просто, быстро и не содержит ничего «военного», только закон Ома. Хотя во всемирной сети существует множество онлайн-калькуляторов, помогающие определить различные параметры, но, по моему личному мнению, лучше один раз разобраться самому и понять физику процесса, чем слепо пользоваться подобными калькуляторами.

Самый частый пример – это подключение светодиода к источнику питания с напряжением 5 В, например к USB порту компьютера. Второй пример – подключение к аккумуляторной батарее автомобиля, номинальное значение напряжения которой 12 В.

Если к такому источнику питания напрямую подсоединить полупроводниковый прибор, то последний попросту выйдет из строя под действием протекающего тока, превышающего допустимое значение, ‑ произойдет тепловой пробой полупроводникового кристалла.

Поэтому нужно ограничивать величину тока.

С целью лучшей наглядности возьмем два типа светодиодов с наиболее распространенными характеристиками:

напряжение:

UVD1 = 2,2 В;

UVD2 = 3,5 В;

ток:

IVD1 = 0,01 А;

IVD2 = 0,02 А.

Расчет резистора для светодиода

Определим сопротивление R1,5 для VD1 при Uип = 5 В.

Для расчета величины сопротивления, согласно закону Ома нужно знать ток и напряжение:

R=U/I.

Величина тока, протекающего в цепи и в том числе через VD нам известна из заданного условия IVD1 = 0,01 А, поэтому следует определить падение напряжения на R1,5. Оно равно разности подведенного Uип = 5 В и падения напряжения на светодиоде UVD1 = 2,2 В:

Теперь находим R1,5

Из стандартного ряда сопротивлений выбираем ближайшее в сторону увеличения, поэтому принимаем R1,5 = 300 Ом.

Таким же образом выполним расчет R для VD2:

Произведем аналогичные вычисления при значении Uип = 12 В.

Принимаем R1,12 = 1000 Ом = 1 кОм.

Принимаем R2,12 = 430 Ом.

Для удобства выпишем полученные значения сопротивлений всех резисторов:

Следует заметить, что сопротивление, выбранное из стандартного ряда, превышает расчетное, поэтому ток в цепи будет насколько снижен. Однако этим снижением можно пренебречь в виде его малого значения.

Расчет мощности рассеивания

Определить сопротивление – это только полдела. Еще резистор характеризуется важным параметром, который называется мощность рассеивания P – это мощность, которую он способен выдержать длительное время, при этом, не перегреваясь выше определенной температуры. Она зависит ток в квадрате, так как последний протекая в цепи, вызывает нагрев ее элементов.

P = I2R.

Визуально резистор более высокой Р отличается большими размерами.

Выполним расчет P для всех 4-х резисторов:

Из стандартного ряда мощностей выбираем ближайшие номиналы в сторону увеличения: первые три сопротивления можно взять с мощностью рассеивания 0,125 Вт, а четвертый – с 0,250 Вт.

Запишем общий расчет резистора для светодиода. Следует определить всего три параметра:

1) падение напряжения

2) сопротивление

3) мощность рассеивания.

Как видно, понять и запомнить данный алгоритм достаточно просто. Теперь, в случае применения специальных калькулятор, вы будете понимать, что и как они считают. Кстати, алгоритмы многих подобных калькуляторов не учитывают стандартный ряд номинальных значений, поэтому будьте внимательны, а лучше считайте все сами – это очень полезно делать для приобретения ценного опыта.

Источник: https://diodov.net/raschet-rezistora-dlya-svetodioda/

Как рассчитать резистор для светодиода?

» Uncategorized » Как рассчитать резистор для светодиода?

Светодиодное освещение прочно вошло в нашу жизнь. Основные достоинства – низкое энергопотребление, высокая яркость, минимальные размеры. Светодиод представляет собой полупроводниковый элемент с электронно-дырочной проводимостью.

ЭТО ИНТЕРЕСНО:  Как найти мощность лампы

При пропускании через него электрического тока в прямом направлении он создает оптическое излучение в узком диапазоне. Собственное низкое сопротивление и чувствительность к величине силы тока, является основной причиной того что при включении данного элемента в электрическую цепь необходимо использовать токоограничивающий резистор.

Как рассчитать и правильно подобрать данную деталь для конкретных условий применения рассмотрим более подробно.

Расчет токоограничивающего резистора для светодиода

В интернете можно встретить множество калькуляторов с помощью которого можно рассчитать необходимое сопротивление резистора для эффективной и длительной работы любого светодиода. Но не всегда компьютер может быть под рукой, а токоограничивающий резистор необходимо установить именно в данный момент. Вот для этого и нужно знание элементарных правил.

Светодиоды, как и все элементы могут быть включены в цепь параллельно или последовательно. Первый вариант не является надежным в принципе.

Суть в следующем: при таком виде включения, напряжение на светодиодах будет одинаковым, но так как практически невозможно подобрать полупроводниковые приборы с идеальными идентичными характеристиками, сила тока на светодиодах может оказаться разной по величине.

Один будет светить вполнакала, а второй может работать при удвоенной нагрузке и быстро выйдет из строя. Данное неудобство исключено при последовательном включении светодиодов (или его одиночной установке).

Подбор резистора для светодиода необходимо начинать с выяснения характеристик самого светодиода, а именно значение падения напряжения на светодиоде (U св) и номинальный ток (I св) при нормальной работе. Эти данные можно найти в соответствующей сопроводительной документации или в специальных каталогах. Также необходимо будет знать напряжение источника питания (U).

Расчет сопротивления (R) токоограничивающего резистора для конкретного светодиода производится по формуле: R = (U– Uсв)/ Iсв, что собственно следует из закона Ома.

Рассмотрим наглядно какой резистор нужен для светодиода КИПД06А-1К при напряжении источника питания 220 В. Из соответствующих справочников выясняем, что номинальный ток (I св) для данного источника света составляет 25 мА, а падение напряжения (U св) при этом равно 5,5 В.

Используя вышеприведенную формулу можем рассчитать сопротивление резистора (R) для обеспечения нормальной работы данного светодиода.

R = 220-5,5/0,025 = 8580 Ом = 8,58 кОм.

Далее, после получения необходимой величины сопротивления в омах, переходим к непосредственно к подбору резистора для светодиода соответствующей марки. Возвращаясь к параллельному соединению светодиодов нужно уточнить, что оно возможно, если в дополнение к каждому источнику света будет идти собственный токоограничивающий резистор.

Подбор токоограничивающего резистора для светодиода

После того как необходимое сопротивление резистора было вычислено, необходимо определиться с выбором соответствующей детали. Здесь могут возникнуть некоторые сложности. Дело в том, что не всегда можно подобрать резистор для светодиода, полностью соответствующий по вычисленным параметрам.

Проблема решается двумя способами:

Первый способ

Необходимо подобрать резистор для светодиода, сопротивление которого будет выше необходимого. При этом не стоит сильно завышать этот параметр. Дело в том, что при увеличении сопротивления, будет теряться световая мощность источника, т.е. он будет менее ярким, но при этом прослужит значительно дольше. Оптимальным является превышение необходимого значение в пределах 20-30%.

Второй способ

Второй способ основан на законе Ома, согласно которому при последовательном соединении резисторов их собственное сопротивление суммируется.

Таким образом, при невозможности подбора для светодиода токоограничивающего резистора сопротивлением 8,58 кОм (как в нашем случае), можно взять несколько деталей с необходимыми параметрами.

Это в принципе является оптимальным вариантом, вследствие более точного результата. Естественно ограничением будет являться сама возможность установки нескольких резисторов в электрической цепи.

Также при подборе резистора необходимо обращать внимание на его мощность. Это обусловлено тем, что при работе выделяется тепло и при недостаточной мощности данная деталь может просто перегореть. Это в свою очередь приведет к разрыву цепи и отключению светодиодных источников света.

Источник: https://vse-elektrichestvo.ru/uncategorized/kak-rasschitat-rezistor-dlya-svetodioda.html

Калькулятор расчета сопротивления для светодиода. Расчет резистора для светодиода при различных соединениях

Расчет резисторов для светодиодов — это весьма важная операция, которую необходимо проводить, прежде чем вы к источнику питания. От этого будет зависеть работоспособность как самого диода, так и всей схемы. Резистор необходимо включать в цепь со светодиодом последовательно.

Предназначен этот элемент для ограничения протекающего тока через диод.

Если резистор имеет номинальное сопротивление ниже требуемого, то светодиод выйдет из строя (перегорит), а если значение этого показателя будет выше необходимого, то свет от полупроводникового элемента будет слишком тусклым.

Расчет резисторов для светодиодов следует производить по следующей формуле R = (US — UL)/I, где:

  • US — напряжение источника питания;
  • UL — напряжение питания диода (обычно 2 и 4 вольта);
  • I — ток диода.

Обязательно следует убедиться, что выбранная величина электрического тока будет меньше максимального значения тока полупроводникового элемента. Прежде чем приступать к расчету, необходимо перевести эту величину в амперы. Обычно она в указана в миллиамперах.

Таким образом, в результате вычислений будет получено значение в Омах. Если полученная величина не будет совпадать со стандартным резистором, то следует выбрать больший ближайший номинал.

Либо можно соединить последовательно несколько меньших по номинальному сопротивлению элементов таким образом, чтобы суммарное сопротивление соответствовало расчетному.

Например, вот таким образом проводится расчет резисторов для светодиодов. Допустим, что у нас есть источник питания с выходным напряжением, равным 12 вольтам, и один светодиод (UL = 4 V). Требуемый ток равен 20 мА. Переводим его в амперы и получаем 0,02 А. Теперь можно приступить к расчету R = (12 — 4)/0,02 = 400 Ом.

Теперь рассмотрим, каким образом необходимо проводить расчет при последовательном соединении нескольких полупроводниковых элементов. Это особенно актуально при работе со сокращает расход электроэнергии и позволяет одновременно подключать большое количество элементов. Однако следует учесть, что все последовательно соединенные светодиоды должны быть одного типа, а блок питания — достаточно мощным.

Вот таким образом следует производить расчет резисторов для светодиодов при последовательном соединении. Предположим, что у нас в цепи 3 элемента (напряжение каждого составляет 4 вольта) и 15-вольтовый блок питания. Определяем напряжение UL. Для этого необходимо сложить показатели каждого из диодов 4 + 4 + 4 = 12 вольт.

Паспортное значение тока светодиода составляет 0,02 А, производим расчет R = (15-12)/0,02 = 150 Ом.

Очень важно помнить, что параллельное соединение светодиодов, мягко говоря, плохая идея. Все дело в том, что эти элементы имеют разброс параметров, каждый из них требует различное напряжение. Это приводит к тому, что расчет светодиода — это бесполезное занятие. При таком соединении каждый элемент будет светить со своей яркостью. Ситуацию может спасти только ограничительный резистор для каждого диода отдельно.

В заключение добавим, что по такому принципу рассчитываются все светодиодные сборки, в том числе и лампы на светодиодах. Если вы захотите самостоятельно собрать такую конструкцию, то данные расчеты для вас будут актуальными.

Так как для светоизлучающего диода (СИД, LED, светодиода) весьма желательно питание стабильным током, то не стоит его подключать непосредственно к источнику напряжения. Нужно обязательно стабилизировать или хотя бы ограничить ток протекающий через светодиод. Сложные импульсные стабилизаторы тока, с высоким КПД оставим напоследок, для начала пойдем по самому простому пути: используем единственный токоограничивающий резистор и сделаем расчет сопротивления резистора для светодиода.

На рабочем участке вольт-амперной характеристики светодиода, при небольшом изменении напряжения ток может меняться в несколько раз, то есть светодиод ведет себя как стабилизатор напряжения. Будем пренебрегать небольшим изменением падения напряжения на светодиоде и считать его постоянным.

Калькулятор расчета сопротивления резистора для светодиода

Сразу приведу калькулятор для тех кто не хочет углубляться в теорию.Для расчета сопротивления резистора для светодиода нам потребуются следующие данные:

Введите все данные и получите сопротивление резистора в Омах.(Если нужно ввести дробные величины, то нужно использовать десятичную точку, а не запятую.)

Для питания светодиодов обычно приспосабливают источники питания на 5В или 12В. В принципе это может быть любой источник питания, главное чтобы его выходное напряжение было больше чем напряжение которое должно быть на светодиоде минимум на 10-15%, чем больше разница между напряжением БП и светодиода, тем будет лучше стабильность тока, но будет хуже КПД схемы.

Максимальный ток блока питания тоже должен быть равен или больше чем ток необходимый для светодиода. Если ток окажется меньше то светодиод не будет гореть в полную силу.Падение тока на светодиоде — справочная величина, чем короче длинная волны испускаемого света тем выше напряжение падения.

Так для светодиодов красного и зеленого свечения, величина падения 1,5 — 2,5В, для синих, ультрафиолетовых и белых 3 — 3,5В.

Ток светодиода также справочный параметр, но вместо него может указываться мощность светодиода в Ваттах. И чтобы получить ток нужно будет поделить мощность на напряжение. Например светодиод на мощность 1Вт и напряжение 3,3В должен потреблять 0,3А или 300мА тока.

Когда все данные получены расчет резистора для светодиода не составит труда: сначала определяем падение напряжение на резисторе, для этого из напряжения питания вычитаем падение на светодиоде. А теперь по закону Ома делим это напряжение на ток, в результате и имеем сопротивление.
Если напряжения указаны в Вольтах, а токи в Амперах, то сопротивление получиться в Омах. Если использовать миллиАмперы, то сопротивление будет в килоОмах.

Пример расчета сопротивления резистора для светодиода

Для примера возьмем уже рассматриваемый нами светодиод и подключим его к источнику питания 5В: (5В-3,3В)/0,3А=5,67Ом. Так как самый близкий из выпускаемых номиналов резисторов 5,6 Ом, то используем его.
Теперь, когда известно сопротивление резистора для светодиода, рассчитаем его мощность, для этого проще всего возвести в квадрат протекающий через резистор ток и умножить на сопротивление.

Пример расчета мощности резистора для светодиода

Продолжаем пример: 0,3А*0,3А*5,6 Ом=0,5 Вт.
В принципе, резистор на такую мощность можно купить, также можно поставить резистор на большую мощность, но часто мощности получаются большими тогда нам поможет групповое соединение резисторов, но это тема для другой статьи.

Включение нескольких светодиодов

Часто в разных лампах или системах подсветки, требуется использовать несколько одинаковых светодиодов, так вот можно сильно сэкономить на резисторах включив последовательно несколько светодиодов и один резистор.

Конечно стоимость резистора невелика, но вот то что места один резистор потребует меньше будет большим плюсом.

Для такой схемы включения сопротивление резистора рассчитывается аналогично, только вместо падения напряжения на одном светодиоде нужно подставить сумму падений напряжений на всех последовательно включенных светодиодах.

Например используя источник питания на 12В можно включить последовательно три светодиода по 3,3В ещё 2В нужно будет погасить на резисторе. Если используются светодиоды на 1Вт, то мы получим сопротивление 2В/0,3А=6,67 Ом. Самый близкий номинал 6,8 Ом.

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать . По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно . Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов :

Вспомним закон Ома:

R — сопротивление —измеряется в Омах

U — напряжение-измеряется в вольтах (В)

I — ток-измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод — 2 В и 20 мА

20 мА=0,02 А.

R=10/0.02=500 Ом

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

P=10*0.02 A=0.2 Вт

Необходимый резистор — R=500 Ом и Р=0,2 Вт

Расчет резистора для светодиода при последовательном соединение светодиодов

Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

R=6/0.02=300 Ом.

Р=6*0,02=0,12Вт

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру.

Расчет резистора для светодиода при параллельном соединении

При плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

Расчет резистора для светодиода при последовательно-параллельное соединении

Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным.

Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А.

Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

на тему правильного расчета резисторов для LEDs

Источник: http://dima-boets.ru/elektroizmeritelnye-pribory/calculator-for-calculating-the-resistance-for-the-led-calculation-of-a-resistor-for-an-led-with-various-connections/

Точный расчет резистора для светодиода: какие формулы помогут вычислить сопротивление

В наше время светодиоды используются если не во всех, то в очень многих сферах деятельности. И несмотря на это, многие потребители едва ли понимают принципы работы светодиодов. Как и почему вообще работают светодиоды? И какую роль в этом процессе играют резисторы? Как произвести расчет резистора для светодиода? Постараемся разобраться.

Что такое резистор и сопротивление светодиода?

Резистором называется компонент электрической цепи, который характеризуется пассивностью и в лучшем случае обладает сопротивлением электрическому току. Другими словами, для такого устройства в любое время должен действовать закон Ома.

функция резистора – энергичное сопротивление электротоку. Именно это качество делает резисторы необходимыми при создании систем искусственного освещения, в том числе и с применением светодиодов.

В каких случаях возможно подключение светодиода с помощью резистора?

Подключать светодиод с помощью резистора можно при условии, что эффективность схемы не является первостепенной целью. Самый простой пример – применение светодиода для индикации подсветки выключателя в электроприборе. В таком случае мощность потребления едва достигает 0.

ЭТО ИНТЕРЕСНО:  Ксенон или светодиоды что лучше

1 Вт, а яркость не ставится во главу угла. А вот при использовании светодиода с энергопотреблением более 1 Вт нужно обязательно убедиться, что блок питания обеспечивает стабилизированное напряжение.

Если же напряжение схемы не стабилизировано, то все скачки и помехи будут негативно сказываться на работе светодиода.

Не менее актуальна схема питания через резистор в лабораторных условиях, когда есть задача тестирования новой модели светодиода.

Виды резисторов

Существует несколько классификаций резисторов, каждая из которых отличается признаков, по которому сравниваются разные виды устройств.

В зависимости от материала резистивного элемента выделяют следующие типы резисторов:

  • Металлофольговые;
  • Непроволочные;
  • Проволочные.

По способы защиты резисторы бывают:

  • Неизолированными;
  • Изолированными;
  • Вакуумными;
  • Герметизированными.

Назначение резисторов группирует устройства следующим образом:

  • Резисторы общего предназначения;
  • Высокочастотные;
  • Высокомегаомные;
  • Высоковольтные.

Математический расчет сопротивления резистора

Согласно второму правилу Кирхгофа, можно составить равенство U = Ur + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.

Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.

Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.

Как рассчитать резистор графическим способом?

При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.

Особенности расчета

Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.

Последовательное соединение

При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления. Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.

Параллельное соединение

Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.

Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.

Смешанное соединение

При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов. Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи.

Примеры расчетов сопротивления и мощности резистора

Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.

При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами ULED=3,3 В и ILED=0,02 А.

R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.

Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.

Источник: https://prosvetodiod.ru/informatsiya-ob-osveshhenii/tochnyj-raschet-rezistora-dlya-svetodioda-kakie-formuly-pomogut-vychislit-soprotivlenie

Подключение светодиода через резистор и его расчет

Светодиодное освещение и индикация, за счёт этого полупроводникового прибора считается одной из самых надёжных. При организации освещения светодиодные светильники производят качественный световой поток, при этом являются экологически чистыми источниками света не требующими утилизацию и не потребляющими много электроэнергии. Светодиод работает только от постоянного напряжения и пропускает ток только в одном направлении, как и обыкновенный диод.

Диод излучающий свет является прибором с определённым, чётко регламентированным, протекающим током как максимальным, так и минимальным. Если превысить максимальный допускаемый прямой ток или подводящее к нему напряжение, то он обязательно выйдет из строя, простыми словами «сгорит». Данные о светодиоде можно найти:

  1. В справочнике или технической литературе;
  2. На страницах интернета;
  3. При покупке у продавца-консультанта.

Не зная рабочего напряжения и максимального прямого тока подобрать сопротивление резистора для ограничения тока достаточно проблематично. Разве что имея ли автотрансформатор, или переменный резистор. При этом можно спалить несколько таких полупроводниковых элементов.

Этот способ скорее теоретический, чем практический, и применяется он может только в экстренных ситуациях. Резистор — это пассивный элемент, применяющийся в электрических цепях, он обладает определённым значением сопротивления. Выпускается переменный, с регулировочной ручкой, или постоянный резистор.

Для резистора характерно понятие мощности, которое тоже стоит учитывать при его расчете в электрических цепях.

Итак, каждый светодиод имеет рабочее напряжение и прямой проходящий и засвечивающий его ток. Если U источника питания, допустим, 1,5 вольта, и по паспорту диод должен подключаться именно к такому напряжению, то ограничивающий резистор не требуется.

Или же есть возможность подключить три светодиода с рабочим напряжением 0,5 вольта, последовательно источнику питания. При этом все эти полупроводниковые элементы должны быть одинакового типа и марки.

Однако такая ситуация случается крайне редко, а зачастую величина питания значительно больше, чем рабочее напряжение одного светодиода.

Как произвести расчет сопротивления для светодиодов, которое не только ограничивает ток в цепи, но и создаёт падение напряжения. Токоограничивающий резистор для светодиода рассчитывается на основе всем известного закона Ома I=U/R. Отсюда можно выделить и значение сопротивления R=U/I. Где U — напряжение, I — величина постоянного тока.

Вот простейшая схема подключения одного светодиода.

Сила тока при последовательном соединении будет одинакова, а напряжение питания светодиода должно быть определённой величины, зачастую оно значительно ниже питающего всю цепь. Поэтому резистор должен погасить часть напряжения, чтобы приложенное к светодиоду уже было определённого значения, указанного в его паспорте как рабочее напряжение.

То, есть I (ток) в цепи известна и будет равна I, потребляющему диодом, а U падения на сопротивлении будет равно разности U питания и U светодиода. Зная U на резисторе и I, который через него проходит, согласно тому же закону Ома можно найти его сопротивление. Для этого напряжение падения на резисторе разделить на протекающий по цепи ток.

После расчета резистора светодиода, он ещё должен соответствовать мощности, для этого U на нём нужно умножить на известный I всей цепи.

Ток в любом участке цепи будет одинаковым и поэтому максимальная сила тока, проходящая через светодиод, не будет превышать проходящий через ограничивающий резистор.

При этом рекомендуется подбирать резистор с немного большим номиналом, нежели с меньшим, это касается и сопротивления, и его мощности. Зная закон Ома можно также рассчитать сопротивление через R светодиода.

Если нет подходящего резистора с нужным сопротивлением его можно получить подключив несколько таких элементов последовательно или параллельно. При этом для последовательного соединения, всеобщее сопротивление всех резисторов будет равно сумме всех входящих в эту цепь.

А при параллельном рассчитывается по такой вот формуле

Нужно учесть, что всё это рассчитывается исходя из напряжения питания, так как при его увеличении увеличится и сила тока во всей цепи. Так что источник питания, должен выдавать не только качественно выпрямленное, но и стабилизированное напряжение.

Шунтирование светодиода резистором

О таком подключении светодиода и резистора стоит рассуждать при последовательном соединении двух и более излучающих свет элементов. Даже с одинаковой маркировкой и типом характеристики каждого светодиода могут немножко отличаться. Если через него протекает I, то он имеет своё внутреннее R.

При этом в режиме когда вентиль (диод) проводит его, и не проводит, сопротивление внутреннее будет значительно отличаться. То есть при обратном включении вентиля именно в таком режиме сопротивление будет отличаться уже значительно.

Соответственно и обратное напряжение тоже будет очень разниться, что может привести к перегоранию (пробою).

Для предотвращения таких ситуаций рекомендуется шунтировать светодиод маломощным резистором с большим R в несколько сотен Ом. Такое подключение обеспечит выравнивание обратного напряжения на соединенных в одну цепь полупроводниковых приборах выдающих световой поток.

расчета светодиода

Подключение счетчика через трансформаторы тока

Источник: https://amperof.ru/osveshenie/podkluchenie/svetodioda-cherez-rezistor-i-ego-raschet.html

Расчет сопротивления для светодиода

Онлайн программа для расчета резистора при подключении светодиодов

Светодиод – нелинейный полупроводниковый прибор, которому для правильной и надежной работы необходим стабильный ток. Перегрузки по току могут вывести светодиод из строя.

Самый простой вариант схемы питания в таком случае – ограничительный резистор, включенный последовательно. Расчет номинального сопротивления  и мощности резистора для светодиода не очень сложная задача, если правильно понимать физику процесса.

Рассмотрим общие принципы такого расчета, а затем разберем несколько конкретных примеров из практики.

Теория

В общем случае схема выглядит так.

Рисунок 1

Между контактами «+» и «-» прикладывается напряжение. Обозначим его буквой U. Ток через резистор и светодиод будет протекать одинаковый, т.к. соединение последовательное. Согласно закону Ома получаем:

где R – сопротивление резистора;

rLED– сопротивление светодиода (дифференциальное).

Отсюда выражаем формулу, по которой можно произвести расчет сопротивления резистора R при заданном токе I:

Разберемся что такое дифференциальное сопротивление светодиода rLED. Для этого нам потребуется его вольтамперная характеристика (ВАХ).

Рисунок 2

Как видно из графиков ВАХ светодиодов – нелинейна. Говоря простым языком, его сопротивление постоянному току r=U/I есть переменная величина, которая уменьшается с ростом напряжения. Поэтому вводится понятие дифференциального сопротивления rLED=dU/dI, которое характеризует сопротивление диода в отдельно взятой точке кривой ВАХ.

Чтобы произвести расчет резистора для светодиода, определяем по графику прямое напряжение на светодиоде ULED при заданном токе I. Затем подставляем получившееся значение в формулу (2) и получаем

Еще один способ решения задачи – графический.

Допустим необходимо рассчитать сопротивление резистора для обеспечения светодиоду рабочего тока величиной 100 мА при напряжении источника питания – 5 вольт.

Для этого сначала на графике ВАХ светодиода отмечаем точку соответствующую току 100 мА (см. рисунок 3), затем проводим через эту точку и точку соответствующую 5 вольтам на оси абсцисс нагрузочную прямую до пересечения с осью ординат. Определяем значение тока, соответствующее этому пересечению (в нашем случае 250 мА) и по закону Ома производим расчет сопротивления резистора R= U / Iкз= 5 В / 0,25 А =20 Ом. Перед расчетом не забываем осуществлять перевод единиц измерения к надлежащему виду.

Рисунок 3

Следующим шагом будет определение мощности рассеиваемой на резисторе. Формула должна быть знакома всем из школьной физики (как и закон Ома):

P=I2×R.          (4)

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА.

Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи.

Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED.

Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением.

Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр.

Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения.

Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Ремарка

В данных расчетах мы пренебрегли зависимостью прямого напряжения светодиода от его температуры, однако не следует забывать, что такая зависимость существует и характеризуется параметром «температурный коэффициент напряжения» или сокращенно ТКН.

Его значения отличается для разных видов светодиодов, но всегда имеет отрицательное значение. Это значит что при повышении температуры кристалла, прямое напряжение на нем становится меньше. Например, для рассмотренного выше белого светодиода XPE значение ТКН (оно приводится производителем в data sheet) составляет -4 мВ/°С.

Следовательно при увеличении температуры кристалла на 25°С, прямое напряжение на нем уменьшится на 0,1 В.

Рисунок 5

Многие ведущие производители светодиодов имеют на официальных сайтах специальный сервис – «онлайн калькулятор», предназначенный для вычисления параметров светодиодов в различных режимах эксплуатации (в зависимости от температуры, тока и пр.). Этот инструмент значительно облегчает процедуры расчета и экономит время разработчику.

Источник: https://le-diod.ru/podklyuchenie-ustanovka/raschet-soprotivleniya-dlya-svetodioda/

Как рассчитать сопротивление для светодиода?

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Понравилась статья? Поделиться с друзьями:
220 вольт
Что такое коробка уравнивания потенциалов

Закрыть
Для любых предложений по сайту: [email protected]