Как рассчитать резистор для светодиода

Формула и пример расчета ограничительного резистора для светодиода

как рассчитать резистор для светодиода

Светодиоды для индикации и освещения используются с целью снизить затраты на электроэнергию.

Чтобы создать схему подключения к любому источнику питания, требуется расчет ограничивающего резистора для светодиодов.

Мощность и сопротивления рассчитываются при помощи несложных формул с учетом цвета лампочек и вида схемы.

Особенности подключения светодиода

Светодиод – это полупроводник, кристалл кремня, который способен проводить напряжение и ток лишь в одном направлении. У лед-лампы (как и у диода) 2 вывода – анод («+») и катод («-»), при подключении важно соблюдать полярность – ток должен проходить от анода к катоду.  На аноде должно быть положительное напряжение, на катоде – отрицательное.

Основное отличие от других источников света – невозможность прямого подключения к источнику питания. Это обусловлено другой особенностью – потреблением всего объема мощности, которая передается. Поэтому требуется последовательное подключение к схеме токоограничивающего устройства (резистора), использующего излишки напряжения и электротока.

Светодиод подключается к источнику питания и резистору:

  • последовательно;
  • параллельно;
  • комбинированно.

Для подключения к бытовой электросети существуют специально разработанные схемы и формулы для расчетов.

Важно! Идеальный для лед-ламп источник питания – драйвер, изготовленный промышленным способом. Если он стоит дороже, чем лампа, покупать нецелесообразно. Гораздо выгоднее подобрать другой источник питания в комбинации с ограничивающим элементом.

Разработку схемы и расчеты затрудняет еще одно обстоятельство. Ни один производитель не может указать точные параметры для каждого диода, поэтому определяет средний показатель напряжения при оптимальном уровне электротока для выпущенной партии. Это значит, в процессе разработки схемы и при расчетах по формулам лучше всего при помощи мультиметра определить точные значения.

Существует целый ряд правил, которые обязательно соблюдаются при сборке схемы:

  • цепочка собирается из ламп одного производителя с одинаковыми параметрами;
  • если диодов много, для них требуется радиатор;
  • на входе напряжение не должно превышать 35 В;
  • для пайки необходимо использовать пинцет и качественный маломощный паяльник с максимальной температурой до 260ос;
  • ножки нельзя гнуть под большим углом (у основания они не должны менять положение);
  • требуется плата из оргстекла или другого диэлектрика (предварительно высверливаются отверстия, соответствующие диаметру ламп);
  • в цепочку желательно включать предохранители.

Важно! На параметры электротока влияет температура окружающей среды, поэтому при расчетах оптимальный показатель нужно определять на 2-3 вольта ниже. Яркость при этом практически не теряется, срок эксплуатации продлевается.

Параллельное и последовательное включение светодиодов

Лед-лампочки подключаются к электросети 220 В или источнику питания с постоянным напряжением (током), значение которого может быть разным (не обязательно на 12 вольт, может быть 3, 4,5 или 5 В).

Последовательное подключение – это цепочка, в которой катоды диодов спаиваются с анодами. Электроток по всем проходит одинаковый, напряжение – сумма падения вольтажа на лампочках. Количество диодов ограничивается падением напряжения. Например, если аккумулятор на 12 В, к нему можно последовательно подключить только 4 диода с падением напряжения 3 В.

При последовательном подключении цепочка перестает функционировать, если вышла из строя одна лед-лампочка. При желании создать цепочку из большого количества сравнительно мощных источников света, требуется мощный блок питания.

При параллельном подключении ситуация меняется – напряжение на лампочках одинаковое, меняется ток. Это значит, что требуется отдельное сопротивление для каждого светодиода. Если резистор один, каждый диод получает различный ток. Если он ниже оптимального, лампочка тусклая, если больше – диод выгорает. Еще хуже, если одна лампа вышла из строя. Остальные получают больше тока и сгорают.

В чистом виде последовательное и параллельное подключение практически не используется, если лампочек больше 2-х или 3-х. Оптимальный вариант – смешанная схема, в которой диоды делятся на группы, соединенные последовательно, группы соединяются параллельно.

Интересно! Схемы соединения и формулы для расчетов не меняются в зависимости от мощности ламп. Если они по 1-5 ватт, в цепочку дополнительно подключается стабилизатор напряжения (для защиты от колебаний электросети).

Формулы расчета резистора для светодиода

Рассчитать резистор на светодиод – это вычислить напряжение и мощность.

Напряжение зависит от цвета лампочек:

  • 2 В (на практике 1,8-2,4 В) – желтые и красные;
  • 3 В (на практике 3-3,5 В) – синие, зеленые, белые.

По закону Ома (U = R*I) формула для расчета сопротивления ограничителя при последовательном подключении: R = U/I, где:

  • U –вольтаж источника питания;
  • I – ток одной лампочки.

Внимание! Чаще всего полученное значение не соответствует показателям резисторов, предлагаемых торговой сетью, выбирать следует деталь с ближайшим большим номиналом.

Цель расчета рассеиваемой мощности – определение объема выделяемого сопротивлением тепла и оптимальной нагрузки (вольтажа).

  Виды, характеристики и особенности светодиодных лент

Формула расчета мощности: P = U*I.

Эти формулы дают возможность определить, какой резистор нужен для конкретного светодиода (или схемы).

При параллельном подключении показатели ограничительных резисторов рассчитываются отдельно для каждой лампочки.

Примеры расчета резистора для светодиода

Как рассчитать показатели для имеющихся светодиодов, чтобы осуществить подбор ограничителя (или нескольких)?

Пример: имеется блок питания 12 В и небольшая партия лампочек на 0,02А.

Расчет сопротивления ограничителя (для одного диода): R = U/I = 12/0,02=600 Ом.

Расчет оптимальной нагрузки на гасящий резистор: P = U*I = 12*0,02 = 0,24 В.

Это значит, что у продавца нужно попросить резистор на 600 Ом с мощность 0,5 В (чтобы был запас).

С повышением мощности увеличиваются размеры детали.

При параллельном подключении 3-х диодов с U=2 В и I=0,03А сила электротока будет равна сумме тока всех лампочек, то есть I=0,09А.

Пример: имеются 3 цепочки по 3 диода на 0,03 А и источник питания 12 В, нужно подключить цепочки параллельно.

Необходимо рассчитать не только параметры 4-х резисторов (на каждой цепочке и общий для схемы), но и параметры лампочек.

Сопротивление светодиода – это соотношение вольтажа к току: Rд = U/I = 2/0,03 = 66,7 (берется 70) Ом.

В последовательной цепочке сопротивление ограничителя: R1=R2=R3= U/I=12/0,03=400 Ом.

Мощность: P= U*I=12*0,03=0,36 В.

К сопротивлению резисторов плюсуется сопротивление лампочек, чтобы получить сопротивление одной цепочки: 400000 = 610 Ом.

Сопротивление общего ограничителя схемы: 1/R = 1/R1+1/R2+1/R3 = 3/R1 или R= R1/3=610/3=23,33 Ом.

Входной ток: 3*0,03=0,09 В.

Мощность входного ограничителя: P = U*I=12*0,09=1,08 В.

Нужно купить детали на 400 Ом и 0,5 В, одну – на 24 Ом и 1,5 В.

Основные выводы

Приведенные выше формулы на практике необходимо корректировать. Даже в одной партии у светодиодов различные показатели. Чтобы получить точные результаты, в формулы желательно вставлять цифры, полученные при тестировании лед-лампочек.

Необходимо так же учесть температуру среды. Это значит, что для использования в помещениях расчеты проводятся не так, как для использования вне помещений. Если в схему включаются предохранители, учитывается так же их сопротивление. Ведь у любого электроприбора оно есть.

ПредыдущаяСледующая

Источник: https://svetilnik.info/svetodiody/formula-i-primer-rascheta-rezistora.html

Расчет резистора для светодиода, калькулятор

как рассчитать резистор для светодиода

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление  в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал.

Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W.

При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла.  Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми.  Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.

Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло.  Чем равномернее они горят, тем меньше разброс.

Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB  диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от  10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа  и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Источник: http://led-obzor.ru/raschet-rezistora-dlya-svetodioda-kalkulyator

Расчет резистора для светодиода: ограничительного, по току и напряжению

как рассчитать резистор для светодиода

Современные светодиодные источники света хорошо приспособлены к длительной эксплуатации в сложных условиях. Однако для защиты по току применяют ограничительное электрическое сопротивление. Точный расчет резистора для светодиода поможет подбирать функциональные компоненты схемы без ошибок.

Применение токоограничивающего резистора для светодиода

Резистор применяют для ограничения силы тока

Для декоративного украшения, обеспечения хорошей видимости в затемненном коридоре и решения других практических задач используют светодиоды. Они намного экономичнее по сравнению с классическими лампами накаливания. Высокая прочность предотвращает заражение окружающей среды вредными химическими соединениями, что не исключено после повреждения колбы газоразрядного источника света.

С учетом односторонней проводимости полупроводникового перехода понятна необходимость подключения светодиода к аккумуляторной батарее, другому источнику питания постоянного тока.  Напряжение стандартной бытовой сети выпрямляют, снижают до номинального уровня. Резистором ограничивают силу тока.

Особенности работы и расчеты

Использование резистора при проверке светодиода

Несмотря на существенные преимущества, внимательные пользователи рекомендуют обращать внимание на существенные недостатки светодиодных приборов:

  • полупроводниковые технологии определяют нелинейные вольт-амперные характеристики (ВАХ);
  • повышение напряжения выше определенного порога сопровождается деградацией p-n перехода;
  • на определенном уровне (при прямом или обратном включении) резкое увеличение силы тока повреждает изделие.

Особое значение имеет собственное небольшое сопротивление в рабочем режиме. Относительно небольшое изменение основных параметров источника питания способно повредить полупроводниковый переход. По этой причине в цепь добавляют токоограничительный резистор.

Дополнительный пассивный элемент увеличивает потребление энергии. По этой причине рекомендуется применять такие решения в комбинации со светодиодами небольшой мощности, либо для создания устройств с небольшими рабочими циклами.

Математический расчет

Таблица зависимости напряжения светодиода от его цвета

В простейшей цепи к источнику постоянного тока (I) с определенным напряжением (Uи) на выходных клеммах подключают последовательно токоограничивающий резистор (R) и светодиод. Рассчитать электрическое сопротивление можно с применением известной формулы закона Ома (I = U/R).

Также пригодится второй постулат Кирхгофа. В данном примере он определяет следующее равенство: Uи = Ur + Uc, где Ur (Uc) – напряжение на резисторе (светодиоде) соответственно. Простым преобразованием этих выражений можно получить базовые зависимости:

  • Uи = I*R + I*Rc;
  • R = (Uи – Uc)/ I.

Здесь Rc обозначает дифференциальное сопротивление полупроводникового прибора, которое изменяется по нелинейному закону в зависимости от напряжения и тока. На обратной части вольт-амперной характеристики можно выделить область запирания. Существенное увеличение Rc на этом участке предотвращает движение электронов (Iобр = 0). Однако при последующем увеличении напряжения на определенном уровне (Uобр-м) возникает пробой p-n перехода.

Расчет сопротивления резистора для светодиода при 5 В

Так как драйвер обеспечивает питание постоянным током, особо внимательно нужно изучить соответствующее «прямое» включение. Особенности ВАХ:

  • на первом участке до Uн плавно уменьшается сопротивление и соответствующим образом увеличивается ток;
  • от Uн до Uм – рабочая зона (излучение в световом диапазоне);
  • далее – резкое уменьшение сопротивление провоцирует экспоненциальный рост силы тока с последующим выходом изделия из строя.

Расчет светодиодов выполняют на основе значения рабочего напряжения Uc. Этот параметр производители указывают в сопроводительной документации. Для вычисления электрического сопротивления подходящего токоограничивающего резистора применяют формулу: R = (Uи – Uc)/ I.

Графический расчет

Вольтамперная характеристика светодиодов

Если взять ВАХ, можно применить графическую методику. Исходную графическую и цифровую информацию берут из паспорта, либо на официальном сайте производителя. Алгоритм действий (пример):

  • по исходным данным номинальный ток светодиода (In) составляет 25 мА;
  • от соответствующей точки (1) на вертикальной оси ординат проводят пунктир до пересечения с кривой ВАХ (2);
  • отмечают напряжение источника питания (Uи = 5,5 V) на оси абсцисс (3);
  • проводят линию через точки (2) и (3);
  • пересечение с осью ординат покажет значение максимально допустимого тока (Im = 60 мА).

Расчет сопротивления резистора для обеспечения диоду тока величиной 100 мА при напряжении источника питания – 5 вольт

Далее по классической формуле не сложно рассчитать, какой резистор нужен для светодиода в этом случае: R = Uи /Im = 5,5/ 0,06 ≈ 91,7. В серийном ряду надо выбрать ближайший номинал с небольшим запасом – 100 Ом. Это решение несколько уменьшит КПД. Но в щадящем режиме функциональные компоненты будут меньше греться. Соответствующим образом снизятся нагрузки на полупроводниковый переход. Следует рассчитывать на увеличение длительности срока службы источника света.

Для корректного выбора резистора надо знать мощность (P). Стандартные значения (Вт): 0,125; 0,25; 0,5; 1; 2; 5. Вычисления можно сделать по любым известным параметрам с применением формул: P = Im2 * R = Ur2 / R. Если взять исходные данные рассматриваемого примера: P = 0,06 * 0,06 * 100 = 0, 36 Вт. С учетом типового модельного ряда выбирать надо резистор сопротивлением 100 Ом с мощностью рассеивания 0,5 Вт.

ЭТО ИНТЕРЕСНО:  Как подключить фотореле для уличного освещения

Допуски по точности электрического сопротивления резисторов составляют от 0,001 до 30% от номинала. В маркировке по международным стандартам соответствующие классы обозначают латинскими буквами (D – 0,5%; G – 2%; J – 5%).

Подключение светодиода через резистор

Схема подключения светодиода

С учетом представленных данных можно сделать несколько важных промежуточных выводов:

  • резистивные защитные схемы применяют при маленькой мощности;
  • они не выполняют функции стабилизации;
  • пассивный элемент не способен гасить импульсные броски напряжения.

Приемлемые показатели эффективности можно получить при создании:

  • датчиков;
  • индикаторов;
  • сигнализаторов.

Для маленькой локальной подсветки аквариума такое решение подойдет. Однако вряд ли будет приемлемым длительное потребление большого количества энергии. Отсутствие стабилизации проявляется заметным изменением яркости при увеличении/уменьшении напряжения.

Специалисты рекомендуют при суммарном потреблении больше 1,5-2 Вт использовать источники питания с надежной стабилизацией по току. Эти устройства (диммеры) применяют для подключения групп осветительных приборов и полупроводниковых приборов высокой мощности.

Расчет резистора для светодиода

Программа расчета сопротивления резистора для светодиода

Сделать необходимые вычисления можно в режиме онлайн с помощью специализированного калькулятора. Полноценное использование таких программ предлагается бесплатно.

Однако не всегда имеется доступ к сети Интернет. После изучения достаточно простой методики любой человек сможет оперативно подобрать резистор для светодиода без поиска соответствующего программного обеспечения.

Источник: https://strojdvor.ru/elektrosnabzhenie/kak-podobrat-tokoogranichivayushhij-rezistor-dlya-svetodioda/

Расчёт резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный — 1,82В;
  • зеленый и желтый — 22,4В;
  • белые и синие — 33,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем — 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит — Uсвет = 5В — 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит — Uсвет = 5В — 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Источник: http://radiostorage.net/3811-raschyot-rezistora-dlya-svetodioda-formuly-i-kalkulyator.html

Конвертер величин

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряженияЦветМатериал полупроводникаДлина волныПадение напряжения
Инфракрасный Арсенид галлия (GaAs) 850-940 нм
Красный Арсенид-фосфид галлия (GaAsP) 620-700 нм 1.6—2.0 В
Оранжевый Арсенид-фосфид галлия (GaAsP) 590-610 нм 2.0—2.1 В
Желтый Арсенид-фосфид галлия (GaAsP) 580-590 нм 2.1—2.2 В
Зеленый Фосфид алюминия-галлия (AlGaP) 500-570 нм 1.9—3.5 В
Синий Нитрид индия-галлия (InGaN) 440-505 нм 2.48—3.6 В
Белый Диоды с люминофором или трехцветные RGB Широкий спектр 2.8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов.

Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения.

Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает.

Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя.

Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:

Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Тогда общее потребление будет равно

КПД схемы включения светодиода с ограничительным резистором:

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора.

Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания.

Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду.

Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств.

Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи.

Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются.

В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них.

При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении.

Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Общая мощность PLED, рассеиваемая всеми светодиодами:

Мощность, потребляемая всеми резисторами:

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

ЭТО ИНТЕРЕСНО:  Как сделать подсветку для аквариума

Рассчитаем общую мощность, потребляемую всеми резисторами:

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Рассчитаем ток, который должен обеспечить источник питания:

И наконец, рассчитаем КПД нашего массива:

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Источник: https://www.translatorscafe.com/unit-converter/ru-RU/calculator/led-resistor/

Расчет резистора для светодиода ⋆ diodov.net

Расчет резистора для светодиода выполняется довольно просто, быстро и не содержит ничего «военного», только закон Ома. Хотя во всемирной сети существует множество онлайн-калькуляторов, помогающие определить различные параметры, но, по моему личному мнению, лучше один раз разобраться самому и понять физику процесса, чем слепо пользоваться подобными калькуляторами.

Самый частый пример – это подключение светодиода к источнику питания с напряжением 5 В, например к USB порту компьютера. Второй пример – подключение к аккумуляторной батарее автомобиля, номинальное значение напряжения которой 12 В.

Если к такому источнику питания напрямую подсоединить полупроводниковый прибор, то последний попросту выйдет из строя под действием протекающего тока, превышающего допустимое значение, ‑ произойдет тепловой пробой полупроводникового кристалла.

Поэтому нужно ограничивать величину тока.

С целью лучшей наглядности возьмем два типа светодиодов с наиболее распространенными характеристиками:

напряжение:

UVD1 = 2,2 В;

UVD2 = 3,5 В;

ток:

IVD1 = 0,01 А;

IVD2 = 0,02 А.

Расчет резистора для светодиода

Определим сопротивление R1,5 для VD1 при Uип = 5 В.

Для расчета величины сопротивления, согласно закону Ома нужно знать ток и напряжение:

R=U/I.

Величина тока, протекающего в цепи и в том числе через VD нам известна из заданного условия IVD1 = 0,01 А, поэтому следует определить падение напряжения на R1,5. Оно равно разности подведенного Uип = 5 В и падения напряжения на светодиоде UVD1 = 2,2 В:

Теперь находим R1,5

Из стандартного ряда сопротивлений выбираем ближайшее в сторону увеличения, поэтому принимаем R1,5 = 300 Ом.

Таким же образом выполним расчет R для VD2:

Произведем аналогичные вычисления при значении Uип = 12 В.

Принимаем R1,12 = 1000 Ом = 1 кОм.

Принимаем R2,12 = 430 Ом.

Для удобства выпишем полученные значения сопротивлений всех резисторов:

Следует заметить, что сопротивление, выбранное из стандартного ряда, превышает расчетное, поэтому ток в цепи будет насколько снижен. Однако этим снижением можно пренебречь в виде его малого значения.

Расчет мощности рассеивания

Определить сопротивление – это только полдела. Еще резистор характеризуется важным параметром, который называется мощность рассеивания P – это мощность, которую он способен выдержать длительное время, при этом, не перегреваясь выше определенной температуры. Она зависит ток в квадрате, так как последний протекая в цепи, вызывает нагрев ее элементов.

P = I2R.

Визуально резистор более высокой Р отличается большими размерами.

Выполним расчет P для всех 4-х резисторов:

Из стандартного ряда мощностей выбираем ближайшие номиналы в сторону увеличения: первые три сопротивления можно взять с мощностью рассеивания 0,125 Вт, а четвертый – с 0,250 Вт.

Запишем общий расчет резистора для светодиода. Следует определить всего три параметра:

1) падение напряжения

2) сопротивление

3) мощность рассеивания.

Как видно, понять и запомнить данный алгоритм достаточно просто. Теперь, в случае применения специальных калькулятор, вы будете понимать, что и как они считают. Кстати, алгоритмы многих подобных калькуляторов не учитывают стандартный ряд номинальных значений, поэтому будьте внимательны, а лучше считайте все сами – это очень полезно делать для приобретения ценного опыта.

Источник: https://diodov.net/raschet-rezistora-dlya-svetodioda/

Расчет резистора для светодиода. Онлайн калькулятор

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор  поможет вам найти нужный номинал резистора  для светодиода, подключенного по следующей схеме:

примечание: разделителем  десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (UUF)/ IF 

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание:   Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются  в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то  выберите ближайшее  бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то   возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

Источник: http://www.joyta.ru/7705-raschet-rezistora-dlya-svetodioda-onlajn-kalkulyator/

Расчет резистора для светодиодов: примеры, онлайн калькулятор

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор.  Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя.

 Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит.

Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит  — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где  — напряжение питания,

— сумма падений напряжения на светодиодах,

— ток потребления.

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом.

Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении.

Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

http://cxem.net/calc/ledcalc.php

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

http://ru.e-neon.ru/prog/ledz.rar

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Точный расчет резистора для светодиода: какие формулы помогут вычислить сопротивление

В наше время светодиоды используются если не во всех, то в очень многих сферах деятельности. И несмотря на это, многие потребители едва ли понимают принципы работы светодиодов. Как и почему вообще работают светодиоды? И какую роль в этом процессе играют резисторы? Как произвести расчет резистора для светодиода? Постараемся разобраться.

Что такое резистор и сопротивление светодиода?

Резистором называется компонент электрической цепи, который характеризуется пассивностью и в лучшем случае обладает сопротивлением электрическому току. Другими словами, для такого устройства в любое время должен действовать закон Ома.

функция резистора – энергичное сопротивление электротоку. Именно это качество делает резисторы необходимыми при создании систем искусственного освещения, в том числе и с применением светодиодов.

В каких случаях возможно подключение светодиода с помощью резистора?

Подключать светодиод с помощью резистора можно при условии, что эффективность схемы не является первостепенной целью. Самый простой пример – применение светодиода для индикации подсветки выключателя в электроприборе. В таком случае мощность потребления едва достигает 0.

1 Вт, а яркость не ставится во главу угла. А вот при использовании светодиода с энергопотреблением более 1 Вт нужно обязательно убедиться, что блок питания обеспечивает стабилизированное напряжение.

Если же напряжение схемы не стабилизировано, то все скачки и помехи будут негативно сказываться на работе светодиода.

Не менее актуальна схема питания через резистор в лабораторных условиях, когда есть задача тестирования новой модели светодиода.

ЭТО ИНТЕРЕСНО:  Что такое комбинированное освещение

Виды резисторов

Существует несколько классификаций резисторов, каждая из которых отличается признаков, по которому сравниваются разные виды устройств.

В зависимости от материала резистивного элемента выделяют следующие типы резисторов:

  • Металлофольговые;
  • Непроволочные;
  • Проволочные.

По способы защиты резисторы бывают:

  • Неизолированными;
  • Изолированными;
  • Вакуумными;
  • Герметизированными.

Назначение резисторов группирует устройства следующим образом:

  • Резисторы общего предназначения;
  • Высокочастотные;
  • Высокомегаомные;
  • Высоковольтные.

Математический расчет сопротивления резистора

Согласно второму правилу Кирхгофа, можно составить равенство U = Ur + Uled, которое можно интерпретировать таким образом: U = I x R + I x Rled, где Rled – это дифференциальное сопротивление.

Значение Rled меняется вместе с изменением работы полупроводника. В данном случае соотношение переменных величин тока и напряжения определяет величину сопротивления.

Также есть смысл вывести формулу для вычисления сопротивления резистора: R = (U – Uled) / I, Ом. В данной формуле Uled – это паспортная величина для конкретного типа светодиода.

Как рассчитать резистор графическим способом?

При наличии ВАХ светодиода расчет резистора для светодиодов можно осуществить графическим методом, хотя такой способ и не очень распространен. Зная ток нагрузки, можно с помощью графика определить прямое напряжение. Необходимо с оси ординат (I) провести прямую до пересечения с кривой и опустить на ось абсцисс.

Особенности расчета

Каким бы ни было подключение резистора, всегда есть свои тонкости и нюансы. Постараемся разобраться, в чем особенности последовательного, параллельного и смешанного способов соединения.

Последовательное соединение

При последовательной схеме светодиоды расставляются друг за другом, и обычно достаточно одного резистора, если удастся корректно произвести расчет сопротивления. Это можно объяснить тем, что в электроцепи в каждом месте установки электроприбора имеется один и тот же ток, значение которого не изменяется.

Параллельное соединение

Часто бывает необходимость в подключении нескольких диодов к одному и тому же источнику. В теории можно использовать один токоограничивающий резистордля питания нескольких LED, соединенных параллельно.

Стоит отметить, что даже в «китайских» моделях производитель устанавливает отдельный ограничительный резистор. При общем балласте для нескольких LED значительно растет вероятность поломки диодов, излучающих свет.

Смешанное соединение

При выборе смешанного соединения схему следует рассчитывать отдельно для каждой последовательной цепи. Если количество и типы светодиодов одинаковы в каждой из последовательных цепей, расчет можно произвести единожды для любой группы диодов. Важно, чтобы все светодиоды были однотипными, как минимум, в пределах общей цепи.

Примеры расчетов сопротивления и мощности резистора

Рассмотрим пример расчета сопротивления резистора LED SMD 5050, при работе с которой следует учитывать некоторые конструкционные особенности светодиода, который включает три независимых кристалла.

При условии, что LED SMD 5050 одноцветный, напряжение на кристалле будет отличаться максимум на 0.1 В. Таким образом, светодиод может быть запитан от одного резистора, а три анода можно объединить в одну группу, три катода – соответственно, в другую. Для подключения SMD 5050 с параметрами ULED=3,3 В и ILED=0,02 А.

R = (5 – 3.3) / (0.02 х 3) = 28.3 Ом. Ближайший стандартный показатель составляет 30 Ом. К установке принимаем резистор с сопротивлением 30 Ом и мощностью 0.25 Вт.

Для максимального удобства и скорости проведения расчетов можно использовать специальный онлайн калькулятор расчет резистора. Этот инструмент дает возможность произвести расчет резисторов в кратчайшие сроки с минимальными затратами времени и сил.

Источник: https://prosvetodiod.ru/informatsiya-ob-osveshhenii/tochnyj-raschet-rezistora-dlya-svetodioda-kakie-formuly-pomogut-vychislit-soprotivlenie

Правильный расчет резистора для светодиода (онлайн калькулятор)

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX.

А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера.

Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности.

Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток.

Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную.

Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания.

Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Источник: https://ledjournal.info/spravochnik/raschet-rezistora-dlya-svetodioda.html

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода.

Расчет резистора для одного светодиода

Для питания одного светодиода нам понадобится источник питания, например две пальчиковые батарейки по 1,5В каждая. Светодиод возьмем красного цвета, где прямое падение напряжения при рабочем токе 0,02 А (20мА) равно -2 В. Для обычных светодиодов максимально допустимый ток равен 0,02 А. Схема подключения светодиода представлена на рис.1.

Рис.1 – Схема подключения одного светодиода

Почему я использую термин «прямое падение напряжение», а не напряжение питания. А дело в том, что параметра напряжения питания как такового у светодиодов нет.

Вместо этого используется характеристика падения напряжения на светодиоде, что означает величину напряжения на выходе светодиода при прохождении через него номинального тока. Значение напряжения, указанное на упаковке, отражает как раз падение напряжения.

Зная эту величину, можно определить оставшееся на светодиоде напряжение. Именно это значение нам нужно применять в расчетах.

Прямое падение напряжение для различных светодиодов в зависимости от длины волны представлено в таблице 1.

Таблица 1 — Характеристики светодиодов

Цветовая характеристика Длина волны, нМ Напряжение, В
Инфракрасные от 760 до 1,9
Красные 610 — 760 от 1,6 до 2,03
Оранжевые 590 — 610 от 2,03 до 2,1
Желтые 570 — 590 от 2,1 до 2,2
Зеленые 500 — 570 от 2,2 до 3,5
Синие 450 — 500 от 2,5 до 3,7
Фиолетовые 400 — 450 2,8 до 4
Ультрафиолетовые до 400 от 3,1 до 4,4
Белые широкий спектр от 3 до 3,7

Точное значение падения напряжения светодиода, можно узнать на упаковке к данному светодиоду или в справочной литературе.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд)/Iд = (3В-2В)/0,02А = 50 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд — прямое падение напряжения на светодиоде, В;
  • Iд – рабочий ток светодиода, А.

Поскольку такого сопротивления в стандартном ряду нет, выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 51 Ом.

Чтобы гарантировать долгую работу светодиода и исключить ошибку в расчетах, рекомендую при расчетах использовать не максимально допустимый ток – 20 мА, а немного меньше – 15 мА.

Данное уменьшение тока никак не скажется на яркости свечения светодиода для человеческого глаза. Чтобы мы заметили изменение яркости свечения светодиода например в 2 раза, нужно уменьшить ток в 5 раза (согласно закона Вебера — Фехнера).

В результате мы получим, расчетное сопротивление токоограничивающего резистора: R = 50 Ом и мощность рассеивания Р = 0,02 Вт (20мВт).

Расчет резистора при последовательном соединении светодиодов

В случае расчета резистора при последовательном соединении, все светодиоды должны быть одного типа. Схема подключения светодиодов при последовательном соединении представлена на рис.2.

Рис.2 – Схема подключения светодиодов при последовательном соединении

Например мы хотим подключить к блоку питания 9 В, три зеленых светодиода, каждый по 2,4 В, рабочий ток – 20 мА.

Сопротивление резистора определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3)/Iд = (9В — 2,4В +2,4В +2,4В)/0,02А = 90 Ом.

где:

  • Uн.п – напряжение питания, В;
  • Uд1Uд3 — прямое падение напряжения на светодиодах, В;
  • Iд – рабочий ток светодиода, А.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 91 Ом.

Расчет резисторов при параллельно – последовательном соединении светодиодов

Часто на практике нам нужно подключить к источнику питания большое количество светодиодов, несколько десятков. Если все светодиоды подключить последовательно через один резистор, то в таком случае напряжения на источнике питания нам не хватит. Решением данной проблемы является параллельно-последовательное соединение светодиодов, как это показано на рис.3.

Исходя из напряжения источника питания, определяется максимальное количество светодиодов, которые можно соединить последовательно.

Рис.3 – Схема подключения светодиодов при параллельно — последовательном соединении

Например у нас имеется источник питания 12 В, исходя из напряжения источника питания максимальное количество светодиодов для одной цепи будет равно: 10В/2В = 5 шт, учитывая что на светодиоде (красного цвета) падение напряжения — 2 В.

Почему 10 В, а не 12 В мы взяли, связано это с тем, что на резисторе также будет падение напряжения и мы должны оставить, где то 2 В.

Сопротивление резистора для одной цепи, исходя из рабочего тока светодиодов определяется по формуле:

R = (Uн.п – Uд1 + Uд2 + Uд3+ Uд4+ Uд5)/Iд = (12В — 2В + 2В + 2В + 2В + 2В)/0,02А = 100 Ом.

Выбираем ближайшее сопротивление из номинального ряда Е24 в сторону увеличения — 110 Ом.

Количество таких цепочек из пяти светодиодов параллельно соединенных практически не ограничено!

Расчет резистора при параллельном соединении светодиодов

Данное подключение является не желательным и я его не рекомендую применять на практике. Связано это с тем что, у каждого светодиода присутствует технологическое падение напряжения и даже если все светодиоды из одной упаковке – это не является гарантией, что у них падение напряжение будет одинаково из-за технологии производства.

В результате у одного светодиода, ток будет больше чем у других и если он превысить максимально допустимый ток, он выйдет из строя. Следующий светодиод перегорит быстрее, так как через него уже будет проходить оставшийся ток, распределенный между другими светодиодами и так до тех пор, пока все светодиода не выйдут из строя.

Рис.4 – Схема подключения светодиодов при параллельном соединении

Решить данную проблему можно подключив к каждому светодиоду свой резистор, как это показано на рис.5.

Рис.5 – Схема подключения светодиодов и резисторов при параллельном соединении

Источник: https://raschet.info/raschet-tokoogranichivajushhego-rezistora-dlja-svetodioda/

Понравилась статья? Поделиться с друзьями:
220 вольт