Трехфазный асинхронный двигатель
Дмитрий Левкин
Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.
Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.
Принцип работы. Вращающееся магнитное поле
Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.
Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.
Вращающееся магнитное поле асинхронного электродвигателя
Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.
,
- где n1 – частота вращения магнитного поля статора, об/мин,
- f1 – частота переменного тока, Гц,
- p – число пар полюсов
Концепция вращающегося магнитного поля
Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени
Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.
Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°)
Вращающееся магнитное поле
Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.
Влияние вращающегося магнитного поля на замкнутый проводник с током
Короткозамкнутый ротор асинхронного двигателя
По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.
Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)
Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.
На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.
Изменение тока в стержнях будет изменяться со временем.
Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.
Скольжение асинхронного двигателя. Скорость вращения ротора
Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.
Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2
Источник: https://engineering-solutions.ru/motorcontrol/induction3ph/
Каталог продукции: Ассинхронные электродвигатели, описание, характеристики. Расшифровка монтажного исполнения двигателей
Асинхронные электродвигатели с короткозамкнутым ротором переменного тока предназначены для преобразования энергии переменного электрического тока в механическую энергию вращения.
Благодаря простоте конструкции, высокому КПД и экономичности в производстве данное оборудование широко используется во всех сферах жизнедеятельности человека. Существует мнение, что более 80% потребляемой электроэнергии в мире, используется электродвигателями.
Из недостатков следует отметить небольшой момент во время пуска и большие пусковые токи. Данные недостатки в настоящий момент компенсируются использованием устройств плавного пуска и преобразователями частоты.
Принцип действия и конструкция асинхронных электродвигателей
Основными элементами конструктивными элементами электродвигателей являются статор и ротор. Статор это неподвижная часть двигателя с уложенными медными обмотками по углом 120 градусов. Ротор – металлический сердечник закрепленный на оси вала.
Все остальные части двигателя корпус, вентилятор, подшипник и т.д.
являются дополнительными конструктивными элементами, придающим электродвигателю необходимые технические характеристики по жесткости, защите от механических и атмосферных воздействий, присоединение к электрической цепи и т.д.
При прохождении через обмотки статора переменного электрического тока, благодаря явлению электромагнитной индукции, внутри статора создается вращающееся магнитное поле.
В роторе под воздействием магнитного поля также наводится электрический ток, создающий в свою очередь магнитное поле, которое начинает взаимодействовать с магнитным полем статора, (вращаться вместе с ним) и соответственно приводя в движение сам ротор.
Так как частота вращения ротора меньше частоты вращения магнитного поля статора (ротор с учетом приложенной к нему нагрузки «скользит»), то данный вид двигателей называется асинхронным.
Управление и защита асинхронных электродвигателей
С помощью магнитных пускателей — при подаче напряжение силовые контакты контакторов замыкаются, и двигатель начинает работать. Для снижения пусковые токов двигатель зачастую управляют с помощью пускателей «звезда треугольник»
Также для снижения пусковых токов и обеспечения плавного пуска и останова двигателей используют софтстартеры.
Если же необходимо управлять частотой вращения двигателя или автоматизировать процесс его работы, то для этой цели используют преобразователи частоты.
Для предотвращения выхода из строя электродвигателей из за перегрузки или заклинивания в питающую цепь обычно устанавливают автоматы защиты двигателей или тепловые реле. Для защиты от скачков напряжения и обрыва или перекоса фаз устанавливают трехфазные реле защиты электродвигателей. Особенно хорошо себя зарекомендовало универсальное устройство защиты двигателей УБЗ 301 производства Новатек Электро.
Наша компания производит типовые щиты управления двигателями РУСМ и Я5000
Основные технические характеристики и условиям эксплуатации асинхронных электродвигателей
- Мощность – величина, характеризующая работу, которую может совершить электродвигатель в единицу времени.
- Количество полюсов
Источник: https://elektro-portal.com/category/assinhronnye-elektrodvigateli/series
Высоковольтные асинхронные двигатели, схема, устройство, преимущества
Преобразование электрической энергии переменного тока в механическую энергию происходит с использованием асинхронного двигателя, который делят на два вида: с фазным или короткозамкнутым ротором.
Асинхронный высоковольтный двигатель выполнен в прочном чугунном корпусе и состоит из двух частей – неподвижного статора и подвижного ротора. Конструктивно статор и ротор представляют собой сердечник и обмотку – включается в сеть обмотка статора, поэтому она называется первичной, обмотка ротора – вторична.
Подключение в сеть 380Вт образует в обмотке статора вращающееся магнитное поле, которое «пронизывает», соединяет обмотку статора и ротора и индуцирует электродвижущую силу. Фактически, вращение магнитного поля статора вступает во взаимодействие с индуцируемым током в обмотке ротора. Совокупность взаимодействия электромагнитных сил статора и ротора создает электромагнитный момент. Крутящий вал электродвигателя с определенной частотой называется асинхронной.
Охлаждение: двигатели мощностью не более 15 кВт обдуваются снаружи. Для охлаждения устанавливается центробежный вентилятор, который прикрывается защитным кожухом. Объем охлаждения увеличивается за счет поверхности из продольных ребер.
Модели с двигателями мощности выше 15 кВт помимо обдува внешней поверхности имеют внутреннюю вентиляцию – отверстия в подшипниковых щитах, через которые проходящий воздух обдувает внутреннюю полость мотора, обмотку и сердечник. Такое охлаждение значительно эффективнее. При необходимости возможно исполнение асинхронного двигателя с системой водяного охлаждения, когда требуется большое значение выходной мощности.
Преимущества высоковольтных асинхронных двигателей
В сравнении с газотурбинными двигателями аналогичной мощности асинхронный двигатель – это принципиально новое оборудование, легкое в обслуживании, оптимизированное под конкретную задачу.
В разы снижены потери мощности, тепла, возможность подключения сверхмощного оборудования напрямую в сеть без использования трансформатора и затрат, связанных с его обслуживанием – такие достоинства делают двигатели асинхронного типа востребованными для тяжелой и легкой промышленности.
Фактически это универсальный, мощный и сверхнадежный двигатель, работающий от сети переменного тока значением больше 1000 В. Среди достоинств отмечают высокую удельную мощность (выше 250 кВт), малый уровень шума, минимум эксплуатационных расходов и длительный срок эксплуатации.
На сегодняшний день это самые компактные двигатели на мировом рынке относительно своей мощности, с дополнительным покрытием корпуса из чугуна, антикоррозийной защитой.
Сферы применения асинхронного 3-хфазного двигателя
Подбор асинхронного двигателя осуществляется в зависимости от предполагаемых эксплуатационных нагрузок. Модификации – стандартное исполнение, морское и взрывозащищенный корпус. Для чего используются устройства – привести в движение транспортировочные механизмы – перекачка нефти, воды, различных жидкостей, для компрессорного оборудования, для механизмов с нагрузочной, так называемой, «вентиляторной» характеристикой.
Источник: https://deltaprivod.ru/information/vysokovoltnye-asinhronnye-dvigateli/
Асинхронный двигатель — принцип работы и устройство
8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.
Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.
Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.
Асинхронный двигатель — это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.
Устройство
На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.
Основными частями асинхронного двигателя являются статор (10) и ротор (9).
Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.
Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.
Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.
Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.
С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.
Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.
Принцип работы
При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.
Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС.
Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.
Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.
Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента.
В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе.
Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.
Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.
Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.
Рекомендуем к прочтению — однофазный асинхронный двигатель.
1 1 1 1 1 1 1 1 1 1 4.72 (442 Голоса)
Источник: https://electroandi.ru/elektricheskie-mashiny/asdvig/asinkhronnyj-dvigatel-printsip-raboty-i-ustrojstvo.html
Асинхронные и синхронные двигатели
Чтобы производственные механизмы работали с максимальной эффективностью, необходимо правильно подобрать электрический двигатель, который будет применяться в качестве привода. В этой статье мы рассмотрим, чем отличаются асинхронные и синхронные двигатели с точки зрения конструктивных особенностей, функциональности и экономичности.
Асинхронные и синхронные двигатели: устройство
Электрические двигатели представляют собой агрегаты для преобразования электроэнергии в энергию механическую. Основу конструкции двигателя (как синхронного, так и асинхронного типа) составляют следующие элементы:
- неподвижный (статор);
- вращающийся (ротор).
Статоры электродвигателей обеих категорий имеют схожий принцип устройства. В специальные пазы (осевые прорези) уложены токонесущие проводки из меди или алюминия. Функцией статора является создание вращающегося магнитного поля. Ротор (с обмоткой возбуждения) закреплен на валу двигателя и вращается под воздействием возникающей электродвижущей силы.
В чем ключевое отличие синхронного двигателя от асинхронного
Главное отличие синхронного от асинхронного двигателя заключается в устройстве ротора.
Роторы синхронных двигателей представляют собой постоянные или электрические магниты. Постоянное магнитное поле, создаваемое ими, взаимодействует с вращающимся магнитным полем статора.
В случае с асинхронным двигателем (который также называют индукционным) в пазы ротора вставляются короткозамкнутые металлические пластины. Кроме короткозамкнутой разновидности, применяются также фазные роторы, снабженные контактными кольцами, которые после разбега замыкаются накоротко.
В результате соотношение частоты оборотов двигателя, находящегося под нагрузкой, с частотой вращения, которая присуща магнитному полю статора, для разных типов двигателя следующее:
- равное для агрегатов синхронного типа;
- неравное для асинхронных двигателей (наблюдается постоянное отставание от скорости вращения магнитного поля статора, равное величине скольжения).
На основе понимания того, чем отличается асинхронный двигатель от синхронного, можно сформулировать главные преимущества и недостатки этих двигателей.
Сравнение разных типов двигателей
Двигатели синхронной разновидности сложнее в использовании, поскольку они:
- в отличие от асинхронных моделей нуждаются в дополнительном источнике постоянного тока;
- подвержены более быстрому износу деталей (по причине использования контактных колец со щетками);
- требуют применения вспомогательных механизмов для запуска (индукционный двигатель имеет собственный пусковой момент).
Для асинхронных моделей характерны:
- простота конструкции;
- надежность в эксплуатации.
При этом синхронные двигатели обладают более широкими возможностями с точки зрения коэффициента мощности, а также менее чувствительны к перепадам напряжения, но стоимость таких агрегатов выше, что делает их использование менее выгодным.
Источник: https://szemo.ru/press-tsentr/article/asinkhronnye-i-sinkhronnye-dvigateli/
Асинхронный двигатель. Принцип работы. Виды асинхронного двигателя
Одним из самых распространённых электродвигателей, который используется в большинстве устройств электропривода, является асинхронный двигатель. Этот двигатель называют асинхронным (не-синхронный) по той причине, что его ротор вращается с меньшей скоростью, чем у синхронного двигателя, относительно скорости вращения вектора магнитного поля.
Необходимо объяснить, что такое синхронная скорость.
Синхронная скорость – это такая скорость, с которой вращается магнитное поле в роторной машине, если быть точным, то это угловая скорость вращения вектора магнитного поля. Скорость вращения поля зависит от частоты протекающего тока и количества полюсов машины.
Асинхронный двигатель всегда работает на скорости меньшей, чем скорость синхронного вращения, потому как магнитное поле, которое образовано обмотками статора, будет генерировать встречный магнитный поток в роторе.
Взаимодействие этого сгенерированного встречного магнитного потока с магнитным потоком статора сделает так, что ротор начнёт вращаться.
Так как магнитный поток в роторе будет отставать, то ротор никогда не сможет самостоятельно достигнуть синхронной скорости, то есть такой же с какой вращается вектор магнитного поля статора.
Существует два основных типа асинхронного двигателя, которые определяются по типу подводимого питания. Это:
- однофазный асинхронный двигатель;
- трёхфазный асинхронный двигатель.
Следует заметить, что однофазный асинхронный двигатель не способен самостоятельно начинать движение (вращение). Для того, чтобы он начал вращаться, необходимо создать некоторое смещение из положения равновесия.
Это достигается различными способами, с помощью дополнительных обмоток, конденсаторов, переключений в момент пуска.
В отличие от однофазного асинхронного двигателя, трёхфазный двигатель способен начинать самостоятельное движение (вращение) без внесения каких-либо изменений в конструкцию или условия пуска.
От двигателей постоянного тока (DC) асинхронные двигатели переменного тока (AC) конструктивно отличаются тем, что питание подаётся на статор, в отличие от двигателя постоянного тока, в котором через щёточный механизм подаётся питание на якорь (ротор).
Принцип работы асинхронного двигателя
Подавая напряжение только на обмотку статора, асинхронный двигатель начинает работать. Интересно знать, как это работает, почему так происходит? Это очень просто, если понять, как происходит процесс индукции, когда в роторе индуцируется магнитное поле. Например, в машинах постоянного тока, приходится отдельно создавать магнитное поле в якоре (роторе) не через индукцию, а посредством щёток.
Когда мы подаём напряжение на обмотки статора, в них начинает протекать электрический ток, который создаёт магнитное поле вокруг обмоток. Далее, от многих обмоток, которые расположены на магнитопроводе статора формируется общее магнитное поле статора.
Это магнитное поле характеризуется магнитным потоком, величина которого изменяется во времени, кроме этого направление магнитного потока меняется в пространстве, а точнее оно вращается.
В итоге получается, что вектор магнитного потока статора вращается как раскрученная праща с камнем.
В полном соответствии с законом электромагнитной индукции Фарадея, в роторе, который имеет короткозамкнутую обмотку (короткозамкнутый ротор).
В этой роторной обмотке будет протекать наведённый электрический ток, так как цепь замкнута, и она находится в режиме короткого замыкания. Этот ток точно также как и питающий ток в статоре будет создавать магнитное поле.
Ротор двигателя становится магнитом внутри статора, который имеет магнитное вращающееся поле. Оба магнитных поля от статора и ротора начнут взаимодействовать, подчиняясь законам физики.
Так как статор неподвижен и его магнитное поле вращается в пространстве, а в роторе индуцируется ток, что фактически делает из него постоянный магнит, подвижный ротор начинает вращаться потому, как магнитное поле статора начинает его толкать, увлекая за собой.
Ротор как бы сцепляется с магнитным полем статора. Можно сказать, что ротор стремится вращаться синхронно с магнитным полем статора, но для него это недостижимо, так как в момент синхронизации магнитные поля компенсируют друг друга, что приводит к асинхронной работе.
Другими словами при работе асинхронного двигателя ротор скользит в магнитном поле статора.
Скольжение может быть как с запаздыванием, так и с опережением. Если происходит запаздывание, то имеем двигательный режим работы, когда электрическая энергия преобразуется в механическую энергию, если скольжение происходит с опережением ротора, то имеем генераторный режим работы, когда механическая энергия преобразуется в электрическую.
Создаваемый крутящий момент на роторе зависит от частоты переменного тока питания статора, а также от величины напряжения питания. Изменяя частоту тока и величину напряжения можно влиять на крутящий момент ротора и тем самым управлять работой асинхронного двигателя. Это справедливо как для однофазных, так и трёхфазных асинхронных двигателей.
Виды асинхронного двигателя
Однофазный асинхронный двигатель подразделяется на следующие виды:
- С раздельными обмотками (Split-phase motor);
- С пусковым конденсатором (Capacitor start motor);
- С пусковым конденсатором и рабочим конденсатором (Capacitor start capacitor run induction motor);
- Со смещённым полюсом (Shaded-pole motor).
Трёхфазный асинхронный двигатель делится на следующие виды:
- С короткозамкнутым ротором в виде беличьей клетки (Squirrel cage induction motor);
- С контактными кольцами, фазным ротором (Slip ring induction motor);
Как было упомянуто выше, однофазный асинхронный двигатель не может самостоятельно начинать движение (вращение). Что следует понимать под самостоятельностью? Это когда машина начинает работать автоматически без какого-либо влияния из внешней среды.
Когда мы включаем бытовой электроприбор, например вентилятор, то он начинает работать сразу же, от нажатия клавиши. Необходимо отметить, что в быту используется однофазный асинхронный двигатель, например двигатель в вентиляторе.
Как же происходит такой самостоятельный запуск, если выше сказано, что такой тип двигателей его не допускает? Для того, чтобы разобраться в этом вопросе надо изучить способы пуска однофазных моторов.
Почему трёхфазный асинхронный двигатель самозапускающийся?
В трёхфазной системе каждая фаза относительно двух других имеет угол равный 120 градусов. Все три фазы, таким образом, расположены равномерно по кругу, круг имеет 360 градусов, а это три раза по 120 градусов (120+120+120=360).
Если рассмотреть три фазы, А, B, C, то можно заметить, что лишь одна из них в начальный момент времени будет иметь максимальное значение моментального значения напряжения. Вторая фаза будет увеличивать значение своего напряжения вслед за первой, а третья фаза будет следовать за второй.
Таким образом, мы имеем порядок чередования фаз A-B-C по мере нарастания их значения и возможен другой порядок в порядке убывания напряжения C-B-A.
Даже если записать чередование иначе, например вместо A-B-C, написать B-C-A, то чередование останется прежним, так как цепочка чередования в любом порядке образует замкнутый круг.
Как же будет вращаться ротор асинхронного трёхфазного двигателя? Так как ротор увлекается магнитным полем статора и скользит в нем, то совершенно очевидно, что ротор будет двигаться в направлении вектора магнитного поля статора.
В какую сторону будет вращаться магнитное поле статора? Так как обмотка статора трёхфазная и все три обмотки расположены равномерно на статоре, то образованное поле будет вращаться в направлении чередования фаз обмоток. Отсюда делаем вывод. Направление вращения ротора зависит от порядка чередования фаз обмоток статора.
Изменив порядок чередования, фаз мы получим вращение двигателя в противоположную сторону. На практике, для изменения вращения двигателя достаточно поменять на местами две любые питающие фазы статора.
Почему однофазный асинхронный двигатель не начинает вращаться самостоятельно?
По той причине, что он питается от одной фазы. Магнитное поле однофазного двигателя является пульсирующим, а не вращающимся. Основная задача запуска заключается в создании из пульсирующего поля вращающегося. Эта проблема решается с помощью создания смещения фазы в другой обмотке статора с помощью конденсаторов, индуктивностей и пространственного расположения обмоток в конструкции двигателя.
Необходимо отметить, что однофазные асинхронные двигатели эффективны в использовании при наличии постоянной механической нагрузки. Если нагрузка меньше и двигатель работает, не достигая своей максимальной нагрузки, то его эффективность значительно снижается. Это является недостатком однофазного асинхронного двигателя и поэтому, в отличии от трёхфазных машин, их применяют там, где механическая нагрузка постоянна.
Дата: 25.01.2016
Valentin Grigoryev (Валентин Григорьев)
Источник: https://electricity-automation.com/page/asinkhronnyy-dvigatel-princip-raboty-vidy-asinkhronnogo-dvigatelya
Электродвигатели: какие они бывают
В прошлых статьях был рассмотрен принцип работы синхронного и асинхронного электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.
В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро? Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».
С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи. Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.
Почему ДПТ не делают мощнее? проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд — 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.
Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения.
Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря.
Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ.
Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.
Универсальный коллекторный двигатель
Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ.
При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся. Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря.
А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится.
Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться.
Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но прекрасно работает как от переменного, так и от постоянного тока.
Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.
Асинхронный электродвигатель
Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана отдельная статья. Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле.
Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.
Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым).
ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев. Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения.
Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле.
Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.
Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да.
Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение.
А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье. Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.
Синхронный электродвигатель
Источник: https://habr.com/ru/company/npf_vektor/blog/371749/
Принцип действия асинхронного двигателя — Asutpp
Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.
Предлагаем рассмотреть принцип действия асинхронного электродвигателя с короткозамкнутым ротором, трехфазного и однофазного типа, а также его конструкцию и схемы подключения.
Строение двигателя
Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.
Преобразование электрической энергии в механическую происходит во вращающейся части мотора — роторе.
У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.
Конструкция асинхронного двигателя
Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.
Второй очень важный закон – Фарадея:
- ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
- Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
- Направление ЭДС противодействует току.
Принцип действия
При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.
Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.
Принцип работы асинхронного двигателя
Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины.
Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора.
Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.
Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа.
В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети.
Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.
Как вращается ротор
Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе. Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС. В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.
Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения.
Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его.
Частота наведенной на него ЭДС такая же, как частота питания.
Гребневые асинхронные двигатели
Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит. Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором. Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.
Подключение
Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.
Как работает асинхронный двигатель
Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.
Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет. Формула
QC = Uс I2 = U2 I2 / sin2
Схема: Подключение асинхронного двигателя
Из которой следует, что электрические машины переменного тока двухфазного или однофазного типа, должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.
Аналогия с муфтой
Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления . Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.
Электромагнитная муфта сцепления
Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки.
Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями.
Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.
Достоинства и недостатки
Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.
Преимущества асинхронных двигателей переменного тока:
- Конструкция простой формы.
- Низкая стоимость производства.
- Надежная и практичная в обращении конструкция.
- Не прихотлив в эксплуатации.
- Простая схема управления
Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.
Недостатки асинхронных двигателей переменного тока:
- Не возможен контроль скорости без потерь мощности.
- Если увеличивается нагрузка – уменьшается момент.
- Относительно небольшой пусковой момент.
Источник: https://asutpp.ru/princip-dejstviya-asinxronnogo-dvigatelya.html
Электрический двигатель
Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения
В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.
Ротор может быть:
- короткозамкнутым;
- фазным (с обмоткой) — используются там, где необходимо уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТКН которые повсеместно используются в крановых установках.
Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте).
По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление.
Поэтому любая «болгарка», если из неё извлечь электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.
Принцип действия трехфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся магнитное поле, которое пронизывает короткозамкнутую обмотку ротора и наводит в ней ток индукции. Отсюда, следуя закону Ампера (на проводник с током, помещенный в магнитное поле, действует ЭДС), ротор приходит во вращение. Частота вращения ротора зависит от частоты питающего напряжения и от числа пар магнитных полюсов.
Разность между частотой вращения магнитного поля статора и частотой вращения ротора характеризуется cкольжением. Двигатель называется асинхронным, так как частота вращения магнитного поля статора не совпадает с частотой вращения ротора.
Синхронный двигатель имеет отличие в конструкции ротора. Ротор выполняется либо постоянным магнитом, либо электромагнитом, либо имеет в себе часть беличьей клетки (для запуска) и постоянные или электромагниты. В синхронном двигателе частота вращения магнитного поля статора и частота вращения ротора совпадают. Для запуска используют вспомогательные асинхронные электродвигатели, либо ротор с короткозамкнутой обмоткой.
Асинхронные двигатели нашли широкое применение во всех отраслях техники.
Особенно это касается простых по конструкции и прочных трехфазных асинхронных двигателей с коротко-замкнутыми роторами, которые надежнее и дешевле всех электрических двигателей и практически не требуют никакого ухода.
Название «асинхронный» обусловлено тем, что в таком двигателе ротор вращается не синхронно с вращающимся полем статора. Там, где нет трехфазной сети, асинхронный двигатель может включаться в сеть однофазного тока.
Статор асинхронного электродвигателя состоит, как и в синхронной машине, из пакета, набранного из лакированных листов электротехнической стали толщиной 0,5 мм, в пазах которого уложена обмотка. Три фазы обмотки статора асинхронного трехфазного двигателя, пространственно смещенные на 120°, соединяются друг с другом звездой или треугольником.
Рис. 1Трёхфазный двухполюсный асинхронный двигатель.
На рис.1. показана принципиальная схема двухполюсной машины — по четыре паза на каждую фазу. При питании обмоток статора от трехфазной сети получается вращающееся поле, так как токи в фазах обмотки, которые смещены в пространстве на 120° друг относительно друга сдвинуты по фазе друг относительно друга на 120°.
Для синхронной частоты вращения nc поля электродвигателя с р парами полюсов справедливо при частоте тока:
При частоте 50 Гц получаем для= 1, 2, 3 (двух-, четырех- и шести-полюсных машин) синхронные частоты вращения поля= 3000, 1500 и 1000 об/мин.
Ротор асинхронного электродвигателя также состоит из листов электротехнической стали и может быть выполнен в виде короткозамкнутого ротора (с «беличьей клеткой») или ротора с контактными кольцами (фазный ротор).
В короткозамкнутом роторе обмотка состоит из металлических стержней (медь, бронза или алюминий), которые расположены в пазах и соединяются на концах закорачивающими кольцами (рис. 1). Соединение осуществляется методом пайки твердым припоем или сваркой. В случае применения алюминия или алюминиевых сплавов стержни ротора и закорачивающие кольца, включая лопасти вентилятора, расположенные на них, изготавливаются методом литья под давлением.
У ротора электродвигателя с контактными кольцами в пазах находится трехфазная обмотка, похожая на обмотку статора, включенную, например, звездой; начала фаз соединяются с тремя контактными кольцами, закрепленными на валу.
При пуске двигателя и для регулировки частоты вращения можно подключить к фазам обмотки ротора реостаты (через контактные кольца и щетки).
После успешного разбега контактные кольца замыкаются накоротко, так что обмотка ротора двигателя выполняет те же самые функции, что и в случае короткозамкнутого ротора.
Классификация электродвигателей
По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные имагнитоэлектрические. У двигателей первой группы вращающий момент создается вследствиегистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.
Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока(также существуют универсальные двигатели, которые могут питаться обоими видами тока).
Двигатели постоянного тока
Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками
Двигатель постоянного тока — электрический двигатель, питание которого осуществляетсяпостоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узлаподразделяется на:
- Коллекторные двигатели;
- Бесколлекторные двигатели.
Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.
По типу возбуждения коллекторные двигатели можно разделить на:
Двигатели с самовозбуждением делятся на:
- Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
- Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
- Двигатели смешанного возбуждения (обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря).
Бесколлекторные двигатели(вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.
Двигатели переменного тока
Трехфазные асинхронные двигатели
Двигатель переменного тока — электрический двигатель, питание которого осуществляетсяпеременным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели.
Принципиальное различие состоит в том, что в синхронных машинах первая гармоникамагнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).
Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).
Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.
Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.
По количеству фаз двигатели переменного тока подразделяются на:
Универсальный коллекторный электродвигатель
Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном.
Для переменного тока номинальные напряжения 127, 220 В, для постоянного 110, 220 В. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 Гц не позволяют получить частоту вращения выше 3000 об/мин.
Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы).
При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.
Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока. Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети.
Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.
Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.
Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.
Синхронный электродвигатель возвратно-поступательного движения
Принцип его работы заключается в том, что подвижная часть двигателя представляет собой постоянные магниты, закреплённые на штоке. Через неподвижные обмотки пропускается переменный ток и постоянные магниты под действием магнитного поля, создаваемого обмотками, перемещают шток возвратно-поступательным образом.
Источник: https://promenergo-nn.ru/elektricheskij-dvigatel/
Что такое асинхронный двигатель и как он работает
Асинхронный двигатель простой и надежный и от этого очень часто используется на производстве и в бытовой технике, от привода задвижек до вращения барабана в стиральной машине. В этой статье мы простыми словами расскажем о том какие бывают асинхронные электродвигатели, что это такое и как работает данный тип электрических машин.
Виды
Асинхронные двигатели (АД) делятся на две основные группы:
- с короткозамкнутым ротором (КЗ);
- с фазным ротором.
Если опустить нюансы, то отличие заключается в том, что у АД с короткозамкнутым ротором нет щеток и выраженных обмоток, он менее требователен в обслуживании. Тогда как в асинхронных двигателях с фазным ротором есть три обмотки, соединенные с контактными кольцами, ток с которых снимается щетками. В отличие от предыдущего лучше поддаётся регулированию момента на валу и проще реализуется плавный запуск для снижения пусковых токов.
В остальном двигатели классифицируют:
- по количеству питающих фаз — однофазные и двухфазные (используются в быту при питании от сети 220В), и трёхфазные (получили наибольшее распространение на производстве и в мастерских).
- по способу крепления — фланцевое или на лапах.
- по режиму работы — для длительного, кратковременного или повторно-кратковременного режима.
И ряду других факторов, которые влияют выбор конкретного изделия для использования в конкретных условиях.
Об однофазных электродвигателях можно сказать много: некоторые из них запускаются через конденсатор, а некоторым требуется и пусковая и рабочая ёмкость. Есть и варианты с короткозамкнутым витком, которые работают без конденсатора и применяются, например, в вытяжках. Если вам интересно — пишите в комментариях и мы напишем об этом статью.
Скольжение и скорость вращения
Частота вращения магнитного поля статора (n1) больше, чем частота вращения ротора (n2). Разница между ними называется скольжением, а обозначается латинской буквой S и вычисляется по формуле:
Источник: https://samelectrik.ru/chto-takoe-asinxronnyj-dvigatel-i-kak-on-rabotaet.html
Асинхронные электродвигатели
Асинхронный электродвигатель – электрическая машина переменного тока, у которой скорость вращения ротора не равна скорости изменения электромагнитного поля статора. Скорости вращения не синхронизированы, поэтому он и называется асинхронным. Разность скоростей вращения называют скольжением.
Принцип действия и конструкция
Две основные части асинхронного двигателя: неподвижный статор и вращающийся ротор, разделенные воздушным зазором. На обмотки статора подается переменный ток, который формирует изменяющееся магнитное поле статора. Асинхронные двигатели бывают однофазными или трехфазными, в зависимости от количества подключенных фаз.
Строго говоря, поскольку рабочая обмотка всего одна, в однофазном двигателе магнитное поле ротора не вращается, а пульсирует.
То есть изменяет свое значение во времени, не меняя положения в пространстве. Такое магнитное поле может поддерживать вращение уже раскрученного ротора, но не способно стронуть с места неподвижный ротор, то есть создать начальный крутящий момент. Для этой цели в однофазном двигателе применяют пусковую (вспомогательную) обмотку. Ее задача – вместе с рабочей обмоткой разогнать ротор до определенной частоты вращения.
После этого, вспомогательную обмотку отключают.
В трехфазном асинхронном двигателе вращение магнитного поля статора наводит электрический ток в роторе. На замкнутый контур ротора, по закону Ампера действует сила, которая и заставляет ротор вращаться.
Если скорости вращения ротора и магнитного поля статора равны, ЭДС не наводится, поэтому ротор всегда вращается со скольжением, то есть угловой скоростью отличной от скорости изменения магнитного поля статора. Разница, как правило, лежит в пределах 2-8%.
Разновидности асинхронных двигателей по конструкции ротора
- С короткозамкнутым ротором. Из-за внешней схожести, их еще называют «беличье колесо» или «беличья клетка». Представляют собой стержни расположенные вдоль оси вращения ротора, замкнутые на концах кольцами. Конструкция отличается простотой и надежностью ввиду отсутствия щеточного узла.
- Двигатели асинхронные с фазным ротором. Более сложная конструкция. Ротор содержит в себе обмотки, аналогичные статорным. Обмотки подключаются к контактным кольцам, к которым через щетки присоединяется реостат.
Обладает лучшими пусковыми и регулировочными характеристиками по сравнению с короткозамкнутым ротором.
Двигатели асинхронные двухскоростные
Частота вращения магнитного поля статора прямо пропорциональна частоте электрического тока и обратно пропорциональна количеству полюсов статора.
Изменить частоту вращения поля без изменения частоты тока можно только изменив количество полюсов статора. Двухскоростные двигатели имеют специальную конструкцию обмоток статора, позволяющую менять количество полюсов.
Соединяя обмотки параллельно или последовательно можно получить две скорости вращения в соотношении 1 к 2: 3000/1500, 1500/750, 1000/500.
Асинхронные двигатели выпускаются как в обычном исполнении, так и взрывобезопасные. Последние предназначены для работы в условиях, где возможно образование взрывоопасной газовой среды.
Источник: https://elm-motors.ru/blog/asinhronnie-elektrodvigateli.html