Что такое ротор и статор

Ротор и статор насоса — что это такое? | Аркроникс

Героторными называют насосы, в которых перекачка среды происходит внутри замкнутого пространства, создаваемого между корпусом оборудования и основным его рабочим элементом – винтом или валом. Процесс этот обеспечивается наличием в конструкции насоса статора и ротора – героторной пары, в которой форма и размеры каждого элемента идеально подобраны друг к другу.

Основные сферы применения роторных насосов
Насосы с мокрым ротором
Насосы с сухим ротором
Конструкция
Материалы для производства статора и ротора

Вращающийся ротор при захождении в статор позволяет создать цепь замкнутых герметичных «ячеек», внутри которых находится перекачиваемая среды. В процессе оборота ротора вокруг своей оси внутри статора ни объем, ни форма этих ячеек не меняется, а движение среды происходит вдоль оси рабочей камеры по спирали.

В насосном агрегате винтового типа ротор и статор работают в неразделимой связке: именно они определяют весь рабочий процесс оборудования. И если ротор в этой паре выполняет функцию вращающейся части, статор остается неподвижным. Сам по себе статор представляет собой специальную двухзаходную деталь, которая состоит из металлического кожуха и заключенного внутри эластомера.

Если же говорить о роторе, то его базовой деталью является вращающийся вал. На валу располагается соединенное с приводом рабочее колесо, а также уплотнители, защитные втулки, муфты и пр. Рабочее колесо на одном из концов ротора специальным образом фиксируется при помощи обтекателя или гайки в целях предупреждения возможного смещения механизма.

Основные сферы применения роторных насосов

Роторные насосы предназначены для перекачки различных сред со средними или высокими показателями вязкости. Особая конструкция ротора позволяет также осуществлять транспортировку сред, содержащих включения твердых взвешенных части. Оборудование находит применение в разных сферах промышленности:

  • нефтегазовой;
  • пищевой;
  • фармацевтической;
  • целлюлозно-бумажной;
  • лакокрасочной и не только.

Активно применяется оборудование в судостроении, во всевозможных производственных цехах. Винтовые роторные насосы нередко используются и в сферах строительства, жилищно-коммунального хозяйства.

Насосы с мокрым ротором

В насосном оборудовании с «мокрым» ротором транспортируемая среда перемещается непосредственно в полостях, образованных ротором и статором, постоянно контактирует с этими конструктивными элементами.

В конструкции подобных агрегатов ротор и статор специально защищают дополнительными «рубашками», изготовленными из прочных марок нержавеющей стали.

При этом сама жидкость, перемещаемая насосом, обеспечивает ротору и внутренней поверхности статора достаточный уровень охлаждения, смазывает поверхности конструктивных элементов, препятствует их быстрому износу.

Насосы с «мокрым» ротором имеют определенные преимущества:

  • характеризуются повышенной степенью надежности;
  • имеют длительный срок эксплуатации;
  • функционируют практически бесшумно.

Однако за счет использования в конструкции большого числа перегородок между статором и ротором общий показатель производительности подобных агрегатов снижается. В среднем он составляет около 50% (КПД). Это, в свою очередь, влечет за собой увеличение затрат на электроэнергию, снижению ресурса привода оборудования.

Насосы с сухим ротором

В насосах с «сухим» ротором отсутствует прямой контакт этой части конструкции с перекачиваемыми жидкостями. Между двигателем оборудования и транспортируемой средой присутствуют специальные торцевые (сальниковые) уплотнители, гарантирующие полную или частичную герметичность ротору.

Насосы с «сухим» ротором характеризуются:

  • экономичным расходом электроэнергии;
  • высокие показатели КПД (в среднем – до 70-80%);
  • хороший напор подачи рабочей среды;
  • надежность и долговечность даже в работе с химически агрессивными средами.

Важно! Подобные роторные насосы отличаются значительным шумом в работе. По этой причине техника редко используется непосредственно в цехах промышленных и производственных предприятий. Их рекомендуют устанавливать в отдельных помещениях с хорошей звукоизоляцией.

Конструкция

В конструкции ротора основным элементом выступает вал. Именно на нем размещены рабочие колеса и защитные втулки. Мелкие элементы крепятся на валу при помощи шпонок, остальные – с использованием фитингов.

Важно, чтобы крепления были максимально плотными во избежание проворачивания отдельных деталей. В обязательном порядке в процессе сборки выполняется балансировка всех элементов ротора, а впоследствии – собранного ротора в целом.

Это позволяет гарантировать отсутствие вибраций в процессе запуска и функционирования насосного оборудования.

В большинстве случаев в насосах устанавливаются неразборные роторы, в которых рабочее колесо насаживается на вал с натягом. Разборные конструкции используются только в том случае, когда частота вращения ротора превышает 3 тыс. оборотов в минуту.

Материалы для производства статора и ротора

Большинство производителей для изготовления ротора насосного оборудования используют:

  • конструкционную легированную сталь марок 40Х (или 40ХН);
  • углеродистую сталь марок 35 или 45 (отличается высокой степенью прочности);
  • нержавеющую сталь марки 3Х13 (при использовании агрегатов в перекачке агрессивных сред, приводящих к коррозии металла).

Статоры для насосного оборудования могут быть жесткими или каучуковыми. Основная задача производителя этих элементов состоит в придании статору стойкости к износу, как детали, подвергаемой постоянному механическому воздействию. Все дело в том, что внутренняя поверхность статора со временем истирается. Это становится причиной потери герметичности зазоров между ним и ротором и, соответственно, приводит к сбою в перекачке жидкостей.

В зависимости от среды, с которой будет контактировать каучуковый статор, могут использоваться каучуки следующих типов:

  • бутадиен-нитрильный (обычный NBR или гидрированный HNBR);
  • этилен-пропиленовый EPDM;
  • синтетический фторированный FKM.

Жесткие статоры могут быть тефлоновыми или металлическими. Их применяют в промышленном оборудовании, эксплуатируемом в особых производственных условиях. К примеру, для транспортировки концентрированных агрессивных щелочей или кислот, разогретых до высоких температур масел, нагретого мазута или пека, жидкостей, в которых в больших количествах присутствуют хлорид-ионы.

#ФОРМА#

Источник: https://www.arkronix.ru/blog/rotor_i_stator_nasosa_chto_eto_takoe/

Ротор статор якорь – Ротор и статор электродвигателя: определение, виды, назначение


Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным.

Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений.

Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля.

И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться.

Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Материалы по теме:

Источник: https://esr-energy.ru/raznoe/rotor-stator-yakor-rotor-i-stator-elektrodvigatelya-opredelenie-vidy-naznachenie.html

Системы измерения воздушного зазора ротор-статор

Системы измерения воздушного зазора ротор-статор (далее — система) предназначены для измерения воздушного зазора между статором, на котором закреплен датчик, и ротором в генераторах переменного тока.

ЭТО ИНТЕРЕСНО:  Что такое отклонение напряжения

Описание

Принцип действия системы основан на преобразовании сигнала переменного напряжения, поступающего с датчика воздушного зазора, в напряжение постоянного тока, пропорциональное расстоянию между статором и ротором генератора.

Датчик воздушного зазора AGS-240 (далее AGS-240) представляет собой развернутый плоский конденсатор и состоит из двух обкладок, экранированных со стороны задней поверхности датчика. На одну обкладку (передающую) при помощи кабеля подается сигнал возбуждения с генератора в виде синусоидального напряжения.

В результате чего возникает электрическое поле, которое изменяется при изменении расстояния между основанием, на котором закреплен датчик (статор), и объектом, до которого измеряется расстояние (полюс ротора). Модулированный сигнал на выходе приемной обкладки пропорционален расстоянию между статором и ротором генератора.

Блок преобразователя сигналов SPA-01 предназначен для формирования синусоидального переменного напряжения, подаваемого на датчик, и приема сигнала с приемной обкладки датчика для дальнейшего его преобразования в сигнал постоянного тока.

Постоянный ток на выходе преобразователя меняется от 4,0 мА при минимальном зазоре

6 мм до 20 мА при максимальном зазоре 30 мм. Далее сигнал постоянного тока поступает на промышленный компьютер, а затем передается через сервер на автоматизированное рабочее место оператора для контроля за техническим состоянием гидрогенератора в режиме реального времени.

Конструктивно система состоит из бесконтактного емкостного датчика воздушного зазора AGS-240, соединенного двухжильным экранированным кабелем с блоком преобразователя сигналов SPA-01 (далее SPA-01). AGS-240 представляет собой конструкцию неразборного типа. Электронные элементы SPA-01 размещены в металлическом корпусе промышленного типа, который располагается в непосредственной близости от объекта контроля.

Общий вид датчика воздушного зазора AGS-240 представлен на рисунке 1. Общий вид блока преобразователя сигналов SPA-01 с указанием места пломбировки голографической наклейкой от несанкционированного доступа и обозначение места нанесения знака поверки представлены на рисунке 2.

Программное обеспечение

отсутствует.

Таблица 1 — Метрологические характеристики

Наименование характеристики Значение
Диапазон измерений воздушного зазора, мм от 6 до 30
Пределы допускаемой основной относительной погрешности измерения зазора, % ±5,0
Номинальное значение коэффициента преобразования по току, мА/мм 0,667
Пределы допускаемого относительного отклонения действительного значения коэффициента преобразования от номинального значения, % ±5,0
Нелинейность амплитудной характеристики в диапазоне измерений зазора, % не более ±5,0
Пределы допускаемой дополнительной относительной погрешности измерений зазора при воздействии на датчик и блок преобразователя сигналов максимальных значений повышенной и пониженной рабочей температуры среды при максимальной повышенной относительной влажности воздуха, % ±5
Диапазон измерений постоянного тока на выходе системы, мА от 4 до 20
Частота выходного сигнала генератора, кГц от 195 до 205

Таблица 2 — Основные технические характеристики

Наименование характеристики Значение
Параметры электрического питания:напряжение питания постоянного тока, В 04+2,43,6
Потребляемая мощность, В-А, не более 2,0
Г абаритные размеры датчика воздушного зазора AGS-240, мм, не более: высота ширина длина 340240
Габаритные размеры блока преобразователя сигналов SPA-01, мм, не более: высота ширина длина 3275145
Масса датчика воздушного зазора AGS-240 без кабеля, кг, не более 0,065
Масса блока преобразователя сигналов SPA-01, кг, не более 0,240
Условия эксплуатации:температура окружающей среды, °С: для датчика воздушного зазора AGS-240 для блока преобразователя сигналов SPA-01 относительная влажность при температуре 35,0 °С.% от -15 до +125 от 0 до +55 до 98
Средний срок службы, лет Средняя наработка на отказ, ч 1025000

Знак утверждения типа

наносится на лицевой панели блока преобразователя сигналов SPA-01 методом металлопластики и на титульные листы руководства по эксплуатации и паспорта типографским способом.

Таблица 3 — Комплектность средства измерений

Наименование Обозначение Количество
Датчик воздушного зазора AGS-240 1 шт.
Блок преобразователя сигналов

Источник: https://all-pribors.ru/opisanie/66603-17-76201

Проблему электродвигателей решит пластичная смазка

Пластичные смазки для вашего двигателя преимущества и разновидности

Двигатель – это устройство, способное преобразовать любую энергию в механическую. Существуют различные виды двигателей: химические, ядерные, гравитационные, пневматические, гидравлические и др.

По другой классификации выделяются:

  • Двигатели внешнего сгорания
  • Двигатели внутреннего сгорания
  • Воздушно-реактивные двигатели
  • Ракетные двигатели
  • Электрические двигатели и др.

Бурное развитие машиностроения в XX веке предопределило возникновение острой необходимости в мощных, но экономичных двигателях.

В машиностроении наибольшее распространение получил электрический тип двигателей. Его коэффициент полезного действия более 90 % и это несравнимо с показателем КПД двигателя внутреннего сгорания, не превышающим 40 %.

Существуют электродвигатели постоянного и переменного тока. Благодаря простоте изготовления, легкости использования и долговечности наибольшую популярность приобрели двигатели переменного тока. Двигатель такого типа имеет две основные детали – статор и ротор.

Нормальная работа двигателя осуществляется при свободном вращении ротора относительно статора. С помощью короткозамкнутых обмоток, а также обмоток, выведенных на коллектор и замыкающихся через регулируемые резисторы, ротор образует магнитное поле. Токи, возникающие в статоре, возбуждают магнитное поле ротора и создают вращающий момент.

Таким образом происходит преобразование электрической энергии, подаваемой на обмотку возбуждения, в механическую (кинетическую) энергию вращения.

Большинство электродвигателей являются быстроходными, поэтому одной из проблем таких механизмов является подбор смазки для опорных подшипников.

Не каждый смазочный материал способен сохранять свои рабочие характеристики в эксплуатационных условиях электродвигателя. Смазка для опорных подшипниках должна обладать достаточно высоким скоростным коэффициентом.

Надежную защиту опорных подшипников в тяжелых условиях эксплуатации обеспечивает смазка EFELE SG-311.

Эта высокоэффективная смазка создана на основе сложноэфирного синтетического масла с добавлением противозадирных и противоизносных присадок и загустителя на основе литиевого мыла. Она подходит для обслуживания узлов, подвергающихся средним и высоким нагрузкам. Работает в диапазоне  от -60 °С +120 °С

Преимущества смазки EFELE SG-311 заключается в том, что данный продукт:

  • Не содержит свинца и никеля
  • Обладает способностью выдерживать большие нагрузки
  • Идеально подходит для долговременной смазки
  • Сохраняет пластичность и работает при низких температурах
  • Работает при высоких скоростях
  • Совместим с пластмассами и резинами

Источник: https://mirsmazok.ru/plastichnye-smazki/problemu_elektrodvigateley_reshit_smazka_molykote/

Что такое ротор и статор в электродвигателе

Вы здесь: Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую).

Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга.

В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Статор генератора: рождающий ток

Каждое современное транспортное средство оснащается электрическим генератором, который вырабатывает ток для работы бортовой электросистемы и всех ее приборов. Одна из основных частей генератора — неподвижный статор. О том, что такое статор генератора, как он устроен и работает — читайте в этой статье.

Назначение статора генератора

В современных автомобилях и других транспортных средствах применяются синхронные трехфазные генераторы переменного тока с самовозбуждением. Типичный генератор состоит из неподвижного статора, закрепленного в корпусе, ротора с обмоткой возбуждения, щеточного узла (подводящего ток к обмотке возбуждения) и выпрямительного блока. Все детали собраны в относительно компактную конструкцию, которая монтируется на двигателе и имеет ременной привод от коленчатого вала.

Статор — неподвижная часть автомобильного генератора, несущая на себе рабочую обмотку. В процессе работы генератора именно в обмотках статора возникает электрический ток, который преобразуется (выпрямляется) и подается в бортовую сеть.

Статор генератора имеет несколько функций:

• Несет на себе рабочую обмотку, в которой генерируется электрический ток; • Выполняет функцию корпусной детали для размещения рабочей обмотки; • Играет роль магнитопровода для повышения индуктивности рабочей обмотки и правильного распределения силовых линий магнитного поля;

• Выступает в роли теплоотвода — отводит чрезмерное тепло от нагревающихся обмоток.

Все статоры имеют принципиально одинаковую конструкцию и не отличаются разнообразием типов.

Конструкция статора генератора

Конструктивно статор состоит из трех основных частей:

• Кольцевой сердечник; • Рабочая обмотка (обмотки);

• Изоляция обмоток.

Сердечник собирается из железных кольцевых пластин с пазами с внутренней стороны. Из пластин формируется пакет, жесткость и монолитность конструкции придается сваркой или клепкой. В сердечнике выполняются пазы для укладки обмоток, а каждый выступ — это ярмо (сердечник) для витков обмотки.

Сердечник собирается из пластин толщиной 0,8-1 мм, изготовленных из специальных марок железа или ферросплавов с определенной магнитной проницаемостью.

На внешней стороне статора могут присутствовать ребра для улучшения отвода тепла, а также выполняться различные пазы или углубления для стыковки с корпусом генератора.

В трехфазных генераторах используется три обмотки — по одной на фазу. Каждая обмотка изготавливается из медного изолированного провода большого сечения (диаметром от 0,9 до 2 мм и более), которая в определенном порядке укладывается в пазах сердечника. Обмотки имеют выводы, с которых снимается переменный ток, обычно число выводов составляет три или четыре, но бывают статоры с шестью выводами (каждая из трех обмоток имеет свои выводы для выполнения соединений того или иного типа).

В пазах сердечника располагается изоляционный материал, защищающий изоляцию провода от повреждения. Также в некоторых типах статоров в пазы могут вкладываться изоляционные клинья, которые дополнительно выполняют роль фиксатора витков обмоток. Статор в сборе дополнительно может подвергаться пропитке эпоксидными смолами или лаками, что обеспечивает целостность конструкции (предотвращает сдвиг витков) и улучшает ее электроизоляционные свойства.

Статор жестко монтируется в корпусе генератора, причем сегодня чаще всего используется конструкция, в которой сердечник статора выполняет роль корпусной детали.

Реализуется это просто: статор зажимается между двумя крышками корпуса генератора, которые стягиваются шпильками — такой «сэндвич» позволяет создавать компактные конструкции с эффективным охлаждением и простотой обслуживания.

Популярностью пользуется и конструкция, при которой статор объединен с передней крышкой генератора, а задняя крышка выполнена съемной и обеспечивает доступ к ротору, статору и другим деталям.

Типы и характеристики статоров

Статоры генераторов отличаются числом и формой пазов, схемой укладки обмоток в пазах, схемой подключения обмоток и электрическими характеристиками.

По числу пазов под витки обмоток статоры бывают двух типов:

• С 18 пазами;
• С 36 пазами.

Сегодня наиболее часто используется конструкция с 36 пазами, так как она обеспечивает лучшие электрические характеристики. Генераторы со статорами с 18 пазами сегодня можно встретить на некоторых отечественных автомобилях ранних выпусков.

По форме пазов статоры бывают трех типов:

• С открытыми пазами — пазы прямоугольного сечения, в них требуется дополнительная фиксация витков обмоток; • С полузакрытыми (клиновидными) пазами — пазы суживаются кверху, поэтому витки обмоток фиксируются вставкой изоляционных клиньев или кембриков (трубок из ПВХ);

• С полузакрытыми пазами для обмоток с одновитковыми катушками — пазы имеют сложное сечение под укладку одного или двух витков провода большого диаметра или провода в виде широкой ленты.

ЭТО ИНТЕРЕСНО:  Dc ac что это

По схеме укладки обмоток статоры бывают трех типов:

• С петлевой (петлевой распределенной) схемой — провод каждой обмотки укладывается в пазы сердечника петлями (обычно один виток укладывается с шагом в два паза, в эти пазы укладываются витки второй и третьей обмоток — так обмотки приобретают сдвиг, необходимый для генерации трехфазного переменного тока); • С волновой сосредоточенной схемой — провод каждой обмотки укладываются в пазы волнами, обходя их то с одной, то с другой стороны, причем в каждом пазу лежит по два витка одной обмотки, направленных в одну сторону;

• С волновой распределенной схемой — провод также укладывается волнами, однако витки одной обмотки в пазах направлены в разные стороны.

При любом типе укладки каждая обмотка имеет шесть витков, распределенных по сердечнику.

Независимо от способа укладки провода, существует две схемы соединения обмоток:

• «Звезда» — в этом случае обмотки соединены параллельно (концы всех трех обмоток соединены в одной (нулевой) точке, а их начальные выводы свободны);
• «Треугольник» — в этом случае обмотки соединены последовательно (начало одной обмотки с концом другой).

При соединении обмоток «звездой» наблюдается более высокий ток, данная схема применяется на генераторах мощностью не более 1000 Вт, которые эффективно работаю на малых оборотах. При соединении обмоток «треугольником» ток снижается (в 1,7 раз относительно «звезды»), однако генераторы с такой схемой подключения лучше работают на высоких мощностях, а для их обмоток можно использовать проводник меньшего сечения.

Часто вместо «треугольника» используется схема «двойная звезда», в этом случае статор должен иметь уже не три, а шесть обмоток — по три обмотки соединяются «звездой», и две «звезды» подключаются к нагрузке параллельно.

Что касается характеристик, то для статоров наибольшее значение имеет номинальное напряжение, мощность и номинальный ток в обмотках. По номинальному напряжению статоры (и генераторы) делятся на две группы:

• С напряжением в обмотках 14 В — для транспортных средств с напряжением бортовой сети 12 В;
• С напряжением в обмотках 28 В — для техники с напряжением бортовой сети 24 В.

Генератор вырабатывает более высокое напряжение, так как в выпрямителе и стабилизаторе неизбежно происходит падение напряжения, а на входе в бортовую электросеть наблюдается уже нормальное напряжение в 12 или 24 В.

Большинство генераторов для автомобилей, тракторов, автобусов и прочей техники имеет номинальный ток от 20 до 60 А, для легковых автомобилей достаточно 30-35 А, для грузовиков — 50-60 А, для тяжелой техники выпускаются генераторы с током до 150 и более А. При этом мощность генераторов колеблется от 400 до 2500 Вт.

Принцип работы статора генератора

Работа статора и всего генератора основана на явлении электромагнитной индукции — возникновении тока в проводнике, который движется в магнитном поле или покоится в переменном магнитном поле. В автомобильных генераторах используется второй принцип — проводник, в котором возникает ток, покоится, а магнитное поле постоянно изменяется (вращается).

При запуске двигателя ротор генератора начинает вращаться, одновременно на его возбуждающую обмотку подается напряжение от аккумуляторной батареи. Ротор имеет многополюсный стальной сердечник, который при подаче тока на обмотку становится электромагнитом, соответственно, вращающийся ротор создает переменное магнитное поле.

Силовые линии этого поля пересекают статор, расположенный вокруг ротора.

Сердечник статора определенным образом распределяет магнитное поле, его силовые линии пересекают витки рабочих обмоток — в них за счет электромагнитной индукции генерируется ток, который снимается с выводов обмотки, поступает на выпрямитель, стабилизатор и в бортовую сеть.

При увеличении оборотов двигателя часть тока от рабочей обмотки статора подается на обмотку возбуждения ротора — так генератор переходит в режим самовозбуждения и уже не нуждается в стороннем источнике тока.

В процессе работы статор генератора испытывает нагрев и электрические нагрузки, также он подвергается негативным воздействиям окружающей среды. Это с течением времени может привести к ухудшению изоляции между обмотками и электрическому пробою. В данном случае статор нуждается в ремонте или полной замене. При регулярном техническом обслуживании и своевременной замене статора генератор будет служить надежно, стабильно обеспечивая автомобиль электрической энергией.

Еще в этом разделе

Источник: http://www.autoopt.ru/articles/products/22729780/

Как правильно определить неисправность статора ротора перфоратора Макита и подобрать щетки

Любые электроинструменты со временем начинают отказывать. Неисправности делятся на механические и электрические. Из электрических неисправностей чаще всего встречаются неисправности, связанные с отказом работы щеток. На втором месте: выход из строя подшипников якоря.

Менее распространены неисправности, связанные с выходом из строя статора или ротора.
А как правильно определить неисправность статора, ротора перфоратора Макита 2450 и 2070, заменить щетки? И здесь нам поможет принципиальная электрическая схема перфоратора Макита 2450, 2470.

Как отремонтировать или заменить щетки перфоратора Makita 2450 и 2470

На то, что требуется замена щеток перфоратора, указывает повышенное искрение в районе коллектора ротора, запах гари, нагрев щеткодержателей.

У нового или отремонтированного перфоратора искра под щетками стоит равномерно, постоянной длины и нет отрыва искры по кругу.
На износ подшипников, повреждение изоляции ротора или статора однозначно указывает искра по всему кругу коллектора.

Появление такого рода искры указывает на прогорание коллекторных пластин, выход из строя ротора или статора.

Как снять электрощетки перфоратора Макита

Как правило, щетки рекомендуется менять после 70120 работы электроинструмента.

Чтобы заменить угольные щетки поз.65, к ним надо добраться.
С перфоратора надо снять заднюю крышку, она крепится тремя самонарезающими болтами.

Снимаем крышку

Отсоединить подводящие провода. При помощи отвертки снять защелки на щетках и освободить их.

Помните! При длительной эксплуатации инструмента не допускается уменьшение длины рабочей части щеток от номинальной на 1/3 (около 8 мм).
При износе одной щетки замене подлежат обе.

Щетки настоящие и поддельные

Кстати, подделка тоже может хорошо работать, если сделана из правильного материала и строго по чертежам.

Как самостоятельно сделать щетки?

Дешевле всего электрощетки подобрать из других моделей электроинструмента подточив до нужного размера обычным напильником. Это экономно но они прослужат меньше оригинальных.  Можно как вариант подогнать угольный стержень батарейки или других элементов.

Различные батарейки

Надо взять батарейку и вытащить из нее центральный угольный электрод. Электрод надо обточить при помощи надфилей до нужных размеров старой электрощетки.(это ознакомительная информация и не является существенной для применения)

Стоит заметить что качество графита напрямую влияет на срок эксплуатации и искрение 

Самодельные щетки из углеродистоо стержня

Убедившись, что щетки изношены, подберите аналоги.

Установка щеток

Перед тем как вставлять щетки на место, необходимо щеткодержатели очистить от нагара. Это делается при помощи ветоши, смоченной в растворителе. Нагар в виде частиц, полученных при интенсивном искрении предпочтительнее удалить мелким надфилем. Очищенные щеткодержатели устанавливаются на место, в них вставляются щетки и сверху зажимаются защелками.

Щетка установлена в щеткодержатель

Как определить целостность статора, не разбирая перфоратор

Чтобы определить целостность статора, надо прозвонить его обмотки, померить сопротивление обмотки и сопротивление изоляции.

Схема прозвонки статора и ротора

Для измерения сопротивления обмотки перфоратора Макита надо подключить один конец тестера к освобожденному щеткодержателю, а второй на один из концов электровилки. Если прибор ничего не показывает, поменяйте второй конец вилки. Если сопротивление равно бесконечности, в статоре обрыв и он требует замены или ремонта. Не забывайте, без принципиальной электрической схемы перфоратора Makita 2450,2470 вам не обойтись.

Простая схема подключения коллекторного двигателя

Если показывается какое то сопротивление, то важно измерить точную его величину. Как правило, сопротивление обмотки статора перфоратора Макита-2450 при температуре +20ºС лежит в пределах 25 Ом.

Более подробно понять почему происходит искрение коллектора якоря и какие щетки лучше? Поможет разобраться видео, в конце видео обзора важные советы по подбору щеток

Как снять статор перфоратора Makita 2450 и 2470 для точной диагностики и ремонта

Чтобы снять статор поз.59, надо снять щетки, выкрутить четыре винта крепления крышки механического блока. Они закручиваются в торце крышки.
Потянув за черный корпус и за зеленый в разные стороны вы освободите корпус со статором. Статор закреплен в зеленом корпусе.

Чтобы его снять, надо вынуть пластмассовую прокладку поз.58 и постучать по торцу корпуса деревянной киянкой или бруском. Статор сам высунется, останется его вытащить, обдуть и проверить окончательно.

А вот и статор

Если у вас есть прибор проверки короткого замыкания, то можно сразу же проверить статор на КЗ. Прибор называется ИК-32.
Порядок проверки обмоток статора
Для точной проверки разъедините две обмотки статора друг от друга по электрической цепи. Проверьте сопротивления каждой обмотки, они должны быть абсолютно одинаковые. При разнице сопротивлений, обмотка с меньшим сопротивлением скорее всего имеет межвитковое замыкание.

Проверка статора перфоратора Makita 2470 и 2450 своими руками
Диагностика якоря, статора прибором КЗ и самоделкой

Как проверить годность ротора перфоратора Макита

Проверку годности ротора в перфораторе Макита начинают с его демонтажа из корпуса.
Но вначале надо провести внешние исследования. Если в роторе искра от щеток на коллекторе охватывает вес коллектор, если в процессе работы перфоратор не развивает обороты и у него упала мощность, это первый признак неисправности ротора.

Как достать ротор из корпуса
Чтобы достать ротор из корпуса, надо разделить черный и зеленый корпуса как и в случае с демонтажем статора.

Вытаскиваем ротор

Отсоединив корпус статора, возьмите корпус редуктора(черного цвета) в правую руку, а ротор в левую и потяните в разные стороны до их полного разъединение. Ротор держится в редукторе за счет трения косозубых шестеренок.

А это ротор

Тщательно осмотрите коллектор ротора. На нем не должно быть следов царапин от щеток. Ламели коллектора должны быть чистые.

Чистый коллектор

Для проверки целостности коллектора надо воспользоваться прибором для обнаружения короткого замыкания. Прозвонку цепей легче всего производить согласно принципиальной электрической схемы перфоратора Makita 2470,2450. Кстати, такой прибор можно смастерить и самому, если умеете общаться с паяльником.

Схема пробника КЗ витков

Если вы убедились в неисправности ротора, то можно установить новый, а можно попытаться восстановить вышедший из строя.

Установка и сборка нового ротора

Замена ротора не требует специальных знаний и может быть выполнена любым пользователем.

Ротор вставляется в механический блок косозубой шестерней до плотного прилегания.

Помните! Очень важно правильно установить подшипник поз.56 и резиновое кольцо 10 поз.77.
В перфораторе Макита 2450 на роторе со стороны коллектора применяется подшипник 607LLB поз.56 или отечественный аналог 80017, а со стороны крыльчатки поз.53 устанавливается подшипник 609LLU поз.51 или аналог 80019.

Правильно установленное резиновое кольцо 19

Установив ротор, закрыв его корпусом, поставьте на место электрощетки и проверьте работоспособность перфоратора.

Все! Вы справились с трудной задачей. Перфоратор работает.

Источник: https://sdelalremont.ru/remont-i-naxozhdenie-neispravnostej-rotora-i-statora-perforatora-makita.html

Статор и ротор — что это такое?

  • 1. Виды преобразователей
  • 2. Асинхронные электродвигатели

Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).

Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.

Виды преобразователей

Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).

Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны.

У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.

Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.

Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.

Асинхронные электродвигатели

Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.

ЭТО ИНТЕРЕСНО:  Как выбрать внутрипольный конвектор

Источник: https://onlineelektrik.ru/eoborudovanie/edvigateli/stator-i-rotor-chto-eto-takoe.html

Трехфазный асинхронный двигатель

Дмитрий Левкин

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

,

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времени Ток протекающий в витках электродвигателя (сдвиг 60°)

Вращающееся магнитное поле

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Источник: https://engineering-solutions.ru/motorcontrol/induction3ph/

Е.Г.Воропаев Электротехника

Понятие асинхронной машины связано с тем, что ротор ее имеет частоту вращения, отличающуюся от частоты вращения магнитного поля статора.

Буква «а» здесь играет как бы роль отрицания или нестрогого следования ротора за синхронно вращающимся магнитным полем статора.

Создателем этой простой по конструкции, но удобной и надежной в работе машины является русский инженер М.О. Доливо-Добровольский. Асинхронный двигатель, впервые разработанный в 1889 году, практически не подвергся серьезным изменениям до наших дней.

В основу конструкции асинхронного двигателя положено создание системы трехфазного переменного тока принадлежащее этому же автору.

Переменный ток, подаваемый в трехфазную обмотку статора двигателя, формирует в нем вращающееся магнитное поле.

Основными конструктивными элементами асинхронного двигателя являются неподвижный статор и подвижный ротор (рис. 5.1.1). Статор и ротор разделены воздушным зазором от 0,1 мм до 1,5 мм. Пакет статора c целью уменьшения потерь на вихревые токи набирают из штампованных листов электротехнической стали. На внутренней полости статора имеются пазы, в которые укладываются провода обмотки. Листы статора перед сборкой в пакет изолируют слоем лака или окалины, полученной при их отжиге.

В пазы статора укладывают обмотку, которая в простейшем случае состоит из трех катушек — фаз, сдвинутых в пространстве на 120 эл. градусов. Ротор асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали. На поверхности ротора имеются продольные пазы для обмотки. Листы сердечника ротора специально не изолируют, т.к. в большинстве случаев достаточно изоляции от окалины.

В зависимости от типа обмотки роторы двигателей обычного исполнения делятся на короткозамкнутые и фазные.

Обмотка короткозамкнутого ротора представляет собой медные стержни, забитые в пазы. С двух сторон эти стержни замыкаются кольцами. Соединения стержней с кольцами осуществляется пайкой или сваркой (рис. 5.1.2).

Чаще всего короткозамкнутую обмотку выполняют расплавленным, алюминием и литьем под давлением. При этом вместе со стержнями и кольцами отливаются и лопатки вентилятора.

Двигатели большой мощности имеют на роторе фазную обмотку. Конструкция ее аналогична обмотке статора. Концы этой обмотки выведены на контактные кольца. С помощью этих колец и токосъемных щеток к обмотке ротора подключают дополнительные сопротивления.

5.2. ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ

На статоре трехфазного двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты друг от друга во времени на 1/3 периода (рис. 5.2.1.).

Используя график изменения трехфазного тока, проставим на нем несколько отметок времени; tl, t2, t3,tn. Наиболее удобными будут отметки, когда один из графиков пересекает ось времени.

Теперь рассмотрим электромагнитное состояние обмоток статора в каждые из принятых, моментов времени.

Рассмотрим вначале точку t1. Ток в фазе А равен нулю, в фазе С он будет положительным — (+) , а в фазе В — отрицательным (·) (рис. 5.2.2, а).

Поскольку каждая фазная обмотка имеет замкнутую форму, то конец фазной обмотки В-У будет иметь противоположный знак, т.е. У — (+), а конец Z обмотки C-Z — (·).

Известно, что вокруг проводника с током всегда образуется магнитное поле. Направление его определяется правилом правоходового винта («буравчика»).

Проведем силовую магнитную линию вокруг проводников С и У и, соответственно, В и Z (см. штриховые линии на рис. 5.2.2 a).

Рассмотрим теперь момент времени t2. В это время тока в фазе В не будет. В проводнике А фазы А-Х он будет иметь знак (+), а в проводнике С фазы C-Z он будет иметь знак (·). Теперь проставим знаки: в проводнике Х — (·), а в проводнике Z — (+).

Проведем силовые линии магнитного поля в момент времени t2 (рис. 5.2.2,б). Заметим при этом, что вектор F  совершил поворот.

Аналогичным образом проведем анализ электромагнитного состояния в фазных обмотках статора в момент времени t3,tn (рис. 5.2.2, б, в, г, д).

Из рисунков 5.2.2 наглядно видно, что магнитное поле в обмотках и его поток Ф совершают круговое вращение.

Частота вращения магнитного поля статора определяется следующей формулой:

где f — частота тока питающей сети, Гц; p — число пар полюсов.

Если принять f=50 Гц, то для различных чисел пар полюсов (р=1, 2, 3, 4,  ) n1=3000, 1500, 1000, 750,  об/мин.

5.3. ПРИНЦИП ДЕЙСТВИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Вращающееся магнитное поле статора пересекает проводники обмотки ротора и наводит в них ЭДС. Так как роторная обмотка замкнута, то в проводниках ее возникают токи. Ток каждого проводника, взаимодействуя с полем статора, создает электромагнитную силу — Fэм. Совокупность сил всех проводников обмотки создает электромагнитный момент М, который приводит ротор во вращение в направлении вращающего поля.

Частота вращения ротора n2 будет всегда меньше синхронной частоты n1, т.е. ротор всегда отстает от поля статора. Поясним это следующим образом. Пусть ротор вращается с частотой n2 равной частоте вращающегося поля статора n1. В этом случае поле не будет пересекать проводники роторной обмотки.

Следовательно, в них не будет наводиться ЭДС и не будет токов, а это значит, что вращающий момент М = 0. Таким образом, ротор асинхронного двигателя принципиально не может вращаться синхронно c полем статора. Разность между частотами поля статора n2 и ротора n1 называется частотой скольжения Dn.

.

Отношение частоты скольжения к частоте поля называется скольжением:

.*)

В общем случае скольжение в асинхронном двигателе может изменяться от нуля до единицы. Однако номинальное скольжение Sн обычно составляет от 0,01 до 0,1 %. Преобразуя выражение *), получим выражение частоты вращения ротора:

Обмотка ротора асинхронного двигателя электрически не связана с обмоткой статора. В этом отношении двигатель подобен трансформатору, в котором обмотка статора является первичной обмоткой, а обмотка ротора — вторичной.

Разница состоит в том, что ЭДС в обмотках трансформатора наводится неизменяющимся во времени магнитным потоком, а ЭДС в обмотках двигателя — потоком постоянным по величине, но вращающимся в пространстве. Эффект в том и в другом случаях будет одинаковым.

В отличие от вторичной обмотки трансформатора, неподвижной, обмотка ротора двигателя вместе с ним вращается.

ЭДС роторной обмотки, в свою очередь, зависит от частоты вращения ротора. В этом нетрудно убедиться, анализируя процессы, протекающие в асинхронном двигателе.

Синхронная частота вращения магнитного поля статора перемещается относительно ротора с частотой скольжения Dn. Она же наводит в обмотке ротора ЭДС E2, частота которой f2 связана со скольжением S:

Учитывая, что f1=рn1/60, f2=рn1S/60.

Приняв величину номинального скольжения порядка 0,01-0,1, можно подсчитать частоту изменения ЭДС в роторной обмотке, которая составляет 0,5-5 Гц (при f1=50 Гц).

5.4. МАГНИТНЫЕ ПОЛЯ И ЭДС АСИНХРОННОГО ДВИГАТЕЛЯ

При подключении обмотки статора к сети возникают токи I1, создающие вращающийся магнитный поток Ф. Большая часть магнитного потока сцепляется с обмотками ротора и статора. Это будет основной поток обмотки статора. Некоторая часть магнитного потока рассеивается в пространстве. Назовем его потоком рассеяния Фрс. Он cцепляется только с витками собственной обмотки.

Основной магнитный поток асинхронного двигателя, вращаясь в пространстве, пересекает обмотку статора со скоростью n1 и обмотку ротора со скоростью n2, наводя в них основные ЭДС:

;   

где W1k1 и W2k2 — произведения чисел витков на обмоточные коэффициенты; Е2s=Е2S.

Потоки рассеяния Фрс1 Фрс2 наводят в обмотках ЭДС рассеяния Ер1 и Ер2, которые, как в трансформаторе, могут быть выражены через соответствующие токи I1 и I2 и индуктивные сопротивления х1 и х2s.

;   

где х1 и х2s — индуктивные сопротивления рассеяния обмоток статора и ротора.

Помимо названных выше ЭДС, в обмотках статора и ротора имеют место активные падения напряжения, которые компенсируются соответствующими ЭДС Er1 и Еr2.

5.5. ОСНОВНЫЕ УРАВНЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Рассуждая аналогично пункту 4.3 составим основные уравнения асинхронного двигателя.

Напряжение U1, приложенное к фазе обмотки статора, уравновешивается основной ЭДС E1, ЭДС рассеяния и падением напряжения на активном сопротивлении обмотки статора.

В роторной обмотке аналогичное уравнение будет иметь вид:

Но т.к. роторная обмотка замкнута, то напряжение U2=0, и если учесть еще, что E2s=SE2 и x2s=Sx2 , то уравнение можно переписать в виде:

Уравнение токов асинхронного двигателя повторяет аналогичное уравнение трансформатора:

,

где

.

5.6. ПРИВЕДЕНИЕ ПАРАМЕТРОВ ОБМОТКИ РОТОРА К ОБМОТКЕ СТАТОРА

Для того чтобы параметры ротора и статора изобразить на одной векторной диаграмме, произведем приведение параметров обмотки ротора к параметрам обмотки статора. При этом обмотку ротора с числом фаз m2, обмоточным коэффициентом k2 и числом витков W2 заменяют обмоткой с m1×k1×W1, соблюдая при этом энергетический баланс в роторе.

Не останавливаясь на методике приведения параметров, которая повторяется из раздела «трансформаторы», перепишем основные уравнения приведенного асинхронного двигателя:

1.          
2.          
3.          

5.7. ВЕКТОРНАЯ ДИАГРАММА АСИНХРОННОГО ДВИГАТЕЛЯ

Используя принципы построения векторной диаграммы для трансформатора, построим ее для асинхронного двигателя.

Источник: https://tsput.ru/res/fizika/1/VOROPAEV_2/vorop5.htm

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]