Параллельное соединение диодов что дает

Используем параллельное соединение нескольких MAX40200 в качестве идеального диода

параллельное соединение диодов что дает

14 января 2019

В данной статье рассматривается возможность использования нескольких интегральных схем (ИС) MAX40200 производства Maxim Integrated в параллельном подключении, а также их комбинированные параметры. Совместное применение нескольких ИС MAX40200 в роли идеального диода должно суммарно обеспечивать такие же характеристики, как и у одного более крупного устройства.

Общие рекомендации

MAX40200 – это идеальный диодный токовый переключатель с настолько малым падением напряжения прямого смещения на полупроводниковом переходе, что оно почти на порядок меньше, чем у диодов Шоттки. В MAX40200 реализована защита самой ИС и подключенных к выходу цепей от превышения температуры.

В отключенном состоянии (на выводе EN установлен низкий уровень) ИС блокирует прямое и обратное напряжения до 6 В, что делает ее пригодной для большинства низковольтных портативных электронных устройств. При обратном смещении диодного перехода MAX40200 ток утечки меньше, чем у многих сопоставимых диодов Шоттки.

MAX40200 работает с напряжением питания 1,55,5 В.

Идеальный интегральный диод MAX40200 имеет целый ряд преимуществ, среди которых:

  • незначительный ток в дежурном режиме – 7 мкА;
  • малая рассеиваемая мощность – всего 125 мкА при токе 1 А;
  • небольшое падение напряжения (примерно 18 мВ) для прямого тока – до 100 мА;
  • время переключения между прямым и обратным напряжением смещения – менее 100 мкс;
  • компактный корпус типа WLP с четырьмя выводами;
  • отпирающий/запирающий сигнал и тепловая защита.

Одной из важных особенностей ИС MAX40200, применяемой в качестве идеальных диодов, является использование MOSFET вместо обычной биполярной полупроводникой технологии, что позволяет, по сути, обеспечить для нагрузки гальваническую развязку по току. В данной статье исследуются характеристики нескольких параллельно соединенных ИС MAX40200.

Комплект из нескольких идеальных диодов должен обеспечивать те же характеристики, что и один более мощный диод. Для этого необходимо подобрать некоторое количество MAX40200. Например, можно использовать две параллельно соединенных ИС для системы на 2 А и, соответственно, четыре параллельных ИС для системы на 4 А.

Экспериментальные результаты

На рисунке 1 показаны четыре параллельно подключенных MAX40200, которые обеспечивают ток до 4 А. Если все ИС размещены близко друг к другу, то они имеют почти одинаковую температуру. И, следовательно, при одинаковой температуре должны иметь сходные характеристики.

На рисунке 2 показана зависимость падения прямого напряжения на ИС от протекающего постоянного тока.

На рисунке 3 сравниваются графики зависимости напряжения от тока для одной и четырех ИС MAX40200, подтверждающие, что характеристики для одного устройства MAX40200 и для четырех MAX40200 очень похожи.

Рис. 1. Типичная схема параллельного подключения диодов для увеличения нагрузочной способности цепи по току

Рис. 2. Зависимость прямого падения напряжения на MAX40200 от величины протекающего через них прямого тока

Рис. 3. Сравнение характеристик одного и четырех MAX40200

На рисунке 4 представлена схема с открытием и закрытием диодов для протекающего тока. На рисунках 5 и 6 представлены наблюдаемые результаты.

Рис. 4. Схема включения/выключения диодов

Рис. 5. Переходные процессы при открытом диоде (IFWD = 4 A)

Рис. 6. Переходные процессы при открытом/закрытом диоде (IFWD = 4 A)

Обратите внимание, что VIN на рисунке 5 представляет важный переходный процесс. Это связано с тем, что переходная характеристика меняющейся нагрузки источника питания используется при токе 04 А. Этот переходный процесс также виден на VLOAD.

На рисунке 7 представлена схема для измерения переходных характеристик на нагрузке. Здесь могут возникать условия для появления кратковременной повышенной нагрузки, когда проводящее устройство должно быть способным обеспечить необходимый ток с незначительными колебаниями VFWD. Это связано с тем, что VLOAD (V) обычно является источником питания для последующих цепей. На рисунке 8 показаны переходные процессы при изменяющейся нагрузке.

Рис. 7. Схема для контроля переходных процессов на нагрузке

Рис. 8. Переходные процессы на нагрузке (IFWD = 200 мА3,8 A)

В показанной на рисунке 9 схеме используется стандартный диод Шоттки CMCH5-20 (20 В, 5 А) вместе с четырьмя ИС MAX4200. Переходный процесс создан на участке VIN2, чтобы имитировать вариант схемы диодного «ИЛИ» для выбора пути тока.

Рис. 9. Диодная схема «ИЛИ» на основе стандартного диода и четырех устройств MAX40200

Когда VIN2 (3,3 В) меньше чем VIN1 (3,6 В), выбранным источником напряжения будет VIN1 и диод D1 оказывается обратносмещенным. Когда VIN2 будет более 3,6 В, D1 переходит в проводящее состояние, а U1U4 выключаются. На рисунках 10а и 10б отображены переходные характеристики схемы, представленной на рисунке 9.

Рис. 10. Переходные характеристики диодного соединения «ИЛИ»

Особенности трассировки печатной платы

На рисунке 11 показан типичный пример размещения дорожек на печатной плате для четырех параллельно соединенных ИС MAX40200. Как видно, цепи VDD и OUT на плате имеют медные площадки большого размера для уменьшения сопротивления и плотности тока. Обе цепи – VDD и OUT – размещены на верхней стороне платы без использования межслойных перемычек.

Поскольку физический механизм, обеспечивающий разделение тока нагрузки, является тепловым, параллельно соединенные идеальные диоды должны располагаться как можно ближе друг к другу. Учитывая вероятность повышенных токов или отсутствия параллельно подключенных компонентов, следует использовать печатную плату с наиболее толстым слоем меди. Это помогает лучше рассеивать выделяющееся тепло и уменьшает падение напряжения при высоких токах.

Обратите внимание, что корпус WLP оптимален для параллельного соединения нескольких устройств – этому способствуют его небольшие размеры и хорошая теплопроводность.

Рис. 11. Пример компоновки печатной платы

Как показано на рисунке 12, отдельные компоненты размещены с зазором в 12 мм, что гарантирует термическую равноценность всех ИС MAX40200. Параллельно соединенные ИС следует защитить от повышенного теплового воздействия внешних источников тепла. В противном случае все работающие при высокой температуре устройства будут иметь повышенное RON.

Неравномерное распределение температуры на плате под установленными ИС приводит к неравному разделению тока.

Не рекомендуется использовать переходные отверстия на основных проводящих участках платы (VDD или OUT), так как они добавляют паразитную индуктивность и увеличивают эффективное RON в основной цепи, таким образом повышая прямое падение напряжения (VFWD).

Рис. 12. Расстояние между размещенными рядом MAX40200

На рисунке 13 показана разница температур окружающей среды и платы с параллельно соединенными MAX40200. Обратите внимание что разность температур прямо пропорциональна прямому току нагрузки, проходящему через эти устройства. Данный результат был получен на плате, изображенной на рисунке 12.

Рис. 13. Температура печатной платы, изменяющаяся в зависимости от температуры окружающей среды

Почему так хорошо работают блоки из нескольких параллельных диодов

Сопротивление открытого канала MOSFET имеет резко положительный температурный коэффициент, который гарантирует, что более горячий MOSFET имеет большее сопротивление, чем более холодный, что приводит к протеканию через него немного повышенного тока.

Поэтому для двух таких MOSFET устанавливается тепловой баланс, соответствующий токовому балансу. Такой тепловой баланс гарантируется правильной компоновкой печатной платы. Вообще, плотное размещение компонентов является обоснованным.

Но если на плате есть другое устройство, которое рассеивает много тепла, то вызванный им тепловой градиент изменяет баланс распределения тока для параллельно соединенных идеальных диодов.

Разница между обычным корпусом и WPL – корпусом на базе подложки кристалла

Описанное выше исследование было проведено для корпуса WLP (Wafer Level Package) и является оптимальным для параллельного использования нескольких корпусов, поскольку очень малый размер, электрические характеристики этого типа интегральной упаковки и хорошая теплопроводность позволяют обеспечить достаточную термическую связь, чтобы сделать такой подход более удобным с практической точки зрения.

Из-за более высокого теплового сопротивления в корпусе типа SOT23 (обусловленного сопротивлением внутреннего соединения проводов) распределение тока и прямое падение напряжения (VFWD) –несколько хуже, чем в случае с корпусом WPL. Значительное влияние, даже при плотно размещенных корпусах типа SOT, оказывают и любые дополнительные перепады температур. Для идеальных диодов в таком корпусе рекомендуется понизить размеры до 75% от указанных в спецификации.

Заключение

Интегральный диод MAX40200 одинаково хорошо показал себя при параллельном соединении как двух, так и четырех ИС. И статические, и переходные характеристики показывают, что распределение тока является близким к поведению идеального диода, а переходные характеристики не ухудшаются. Несколько MAX40200 могут быть применены в тех случаях, когда требуется повышенный ток или пониженное падение напряжения.

Оригинал статьи

•••

Источник: https://www.compel.ru/lib/97208

Совместная работа нескольких источников питания на одну нагрузку

параллельное соединение диодов что дает

У многих начинающих заниматься электроникой часто возникают проблемы нехватки мощности (тока) источников питания или недостаточной величины напряжения. Для того чтобы обойти эту проблему часто соединяют несколько источников параллельно или последовательно. Что при этом происходит и как это сделать правильно рассмотрим ниже.

Параллельное и последовательное соединение элементов давно известно и применяется в практической схемотехнике, для получения заданных номиналов элементов. На примере соединения резисторов это выглядит так:

Рисунок 1

Но резистор или конденсатор имеет только один основной параметр — номинал и вариант соединения просто изменяет их результирующую (суммарную) величину.

На практике часто используется параллельное (иногда электрохимических) и последовательное соединение источников питания.

Последовательное соединение используется для увеличения результирующего напряжения, а параллельное — для увеличения суммарного потребляемого тока.

Последовательное соединение электрохимических источников питания

При последовательном соединении параметры (E и Ri) просто суммируются,

Рисунок 2

Самое главное, Вы должны знать:

Как я уже говорил, каждый источник питания (любого типа) имеет свои характеристики которые можно свести к статическим и полностью определяющим его характеристики — Ri, U(E); Эти характеристики химических источников тока могут меняться от экземпляра к экземпляру или со временем случайным образом (они зависят от множества параметров на каждом этапе технологического процесса их производства);

Не бывает двух абсолютно одинаковых источников питания, как вообще любых электронных компонентов. (хотя для того чтобы как-то ограничить разброс применяется группировка компонентов, по ряду номиналов и ряду точности).

Поэтому при последовательном соединении продолжительность работы химических источников тока определяется худшим в цепочке. Когда он потеряет емкость, его внутреннее сопротивление возрастет и ограничит потребляемый нагрузкой ток.

При параллельном соединении все много сложнее.

Отсюда вытекают большинство возникающих проблем.

Параллельное соединении электрохимических источников питания

При параллельном соединении электрохимических элементов (источников) питания, если не принимать мер возникают проблемы.

Дело в том что эти элементы обладают сразу несколькими параметрами определяющими их характеристики.

Это:

Напряжение (ЭДС) — E, и внутреннее сопротивление — Ri.

Сразу стоит уточнить, что эти параметры сугубо индивидуальны и поэтому достаточно редко даже в одной партии они повторяются.

Рисунок 3

Посмотрим рисунок 3, при параллельном соединении двух разных источников питания (электрохимический элемент), имеющих равное внутренне сопротивление (Например 0,25 ом, суммарное 0,5 ) и разное выходное напряжение (U1=2,2 В, U2=2,1 В, ΔU=0,1 В) между ними появляется ток перетекания Iпер равный 0,2 А.

Этот ток будет существовать даже при выключенной нагрузке, пока напряжение на источниках не сравняется. Когда лучший электрохимический элемент разряжается на худший — это потеря их суммарной емкости.

Поэтому параллельное соединение отдельных элементов электрохимических источников тока не рекомендуется. Возможно параллельное соединение (резервирование) последовательных батарей элементов с применением специальных устройств защиты (см. рис. 6) от токов перетекания или коммутаторов.

Фотоэлектрические элементы — элементы солнечных батарей

Немного иная ситуация получается при параллельном соединении элементов солнечных батарей, которая определяется свойствами самого солнечного элемента. Это генерация тока под действиями квантов света попадающих на плоский p-n переход достаточно большой площади. Солнечный элемент имеет вольт-амперную характеристику подобную полупроводниковому диоду с соответствующими отклонениями присущими p-n переходам большой площади.

Поэтому для солнечного элемента токи перетекания отсутствуют. Но наличие в параллельно соединенных элементах ΔU, приводит к тому что при малом отборе тока элемент с меньшим напряжением просто отключается. А при высоком отборе мощности ток нагрузки каждого элемента разный и определяется током нагрузки на каждом элементе при данном напряжении нагрузки U. см. рис. 5.

Рисунок 4

Посмотрим на примере вольт амперной характеристики элемента солнечной батареи, что происходит при их параллельном соединении, как показано на Рис. 1б. Примерный график вольт амперной характеристики приводится ниже.

Рисунок 5

На рис. 5 видим, что при равном напряжении Uн элемент SC3 генерирует ток I1 меньший тока генерируемого элементом SC4 равного I2. В результате суммарный ток нагрузки равен:

Iнагр = (I1+I2)

То есть при данном Uн отдаваемая соединенными параллельно элементами мощность равна:

Pн = Uн (I1+I2)

Этот требует, чтобы не перегружать лучшие элементы, группировать при параллельном соединении элементы с близкими токами (характеристиками в рабочих точках).

А еще лучше формировать последовательно соединенные группы элементов на номинальное напряжение с последующим их соединением в параллельные группы заданной мощности.

Совместная работа батарей химических элементов

Часто рекомендуют при параллельном подключении батареи электрохимических источников использовать включенные последовательно с каждой батареей диоды, которые предотвратят токи перетекания. Но условия равенства их выходного напряжения (максимальной близости) сохраняется. Это особенно важно именно для электрохимических источников питания, которые имеют ограничения по разрядному току. В случае его превышения сокращается ресурс. Схема включения показана на рис. 6.

Рисунок 6

Здесь необходимо учитывать, что выходное напряжение такой батареи меньше на 0,3 -:- 0,8В (падение напряжения на p-n переходе диода при его прямом смещении) чем у батареи без защитных диодов. Как видно из величины потери напряжения использовать эту схему для параллельного соединения отдельных элементов не экономично. Велики потери мощности.

Диоды так же позволяют использовать горячую замену батареи, поскольку при подключении свеже заряженной батареи диод разряженной просто будет заперт.

Блоки питания

Свои особенности при параллельном соединении имеют и блоки питания работающие на общую нагрузку.

Все типы блоков (сетевые 50 Гц и импульсные — в том числе повышающие и понижающие преобразователи постоянного тока в постоянный) содержат в своем составе преобразователь напряжения (трансформатор или электронный импульсный преобразователь с трансформатором) и выпрямляющее устройство на выходе — диодные выпрямители. На рис.7 показано такое соединение.

ЭТО ИНТЕРЕСНО:  Как включить индукционную плиту

Рисунок 7

В данной схеме, как при параллельном соединении солнечных элементов, не существует статических токов перетекания, они пресекаются диодными выпрямителями которые, как известно, имеют очень большое обратное сопротивление.

Обязательное условие при таком включении блоков питания это: равенство напряжений и наличие соединения общих точек обоих источников питания показанных на рис. 7 пунктирной линией красного цвета. Это условие определяется, как понятно из сказанного выше, а равномерной нагрузкой каждого источника питания.

Но она, как любая система, имеет свои особенности.

Это импульсные токи перетекания при зарядке фильтрующего конденсатора с меньшим напряжением (например U2) от БП1, где напряжение больше. После выравнивания напряжения ток перетекания уменьшается до нуля.

Но

В реальности напряжение на выходе БП1 и БП2 разное. И поэтому рассматриваем работу такой связки учитывая дополнительные параметры показанные на рис 8.

Рисунок 8

Известно, что каждый блок питания имеет свое внутреннее сопротивление Ri, а за счет системы стабилизации его величина существенно снижается. Практически Ri определяет КПД блока питания и желательно чтобы соотношение Rн/Ri было максимальным. Поскольку ток нагрузки блока питания определяется суммой Ri и Rн, а как мы уже знаем Ri -> min, то можно считать, что он целиком определяется Rн.

В связке двух параллельно включенных блоков питания нагружается только тот БП который имеет более высокое выходное напряжение. То есть Iн = I1.

Это будет продолжаться до тех пор пока выходное напряжение (за счет падения напряжения на Ri) не начнет падать (система стабилизации не сможет его поддерживать, когда ток нагрузки достигнет максимального, в этом случае начнет расти внутреннее сопротивление нагруженного блока питания Ri.). Второй БП будет до этого будет работать в режиме холостого хода.

Такой режим работы нельзя считать нормальным.

Кроме выравнивания выходного напряжения — известно другое решение проблемы, это включение последовательно с выходом каждого БП небольшого выравнивающего резистора, который как бы увеличивает его внутреннее сопротивление, в результате чего выходное напряжение падает и включается в работу блок питания имеющий меньшее напряжение. Причем их величина одинакова для обоих.

Величина этого сопротивления от 1% до 10% от Rн и зависит от разницы выходных напряжений и мощности нагрузки.

Недостаток данного решения потери мощности в выравнивающих резисторах.

Но, для равномерной загрузки, требование максимального сближения U1 и U2 остается.

Последовательное или параллельное подключение светодиодов?

параллельное соединение диодов что дает

В светильниках и фонариках применяется две схемы – последовательное и параллельное соединение светодиодов. У этих схем есть масса вариаций и комбинированных вариантов, каждый из них имеет свои преимущества и недостатки.

Чтобы понять какая схема соединений лучше – нужно узнать, что такое вольт-амперная характеристика и какая она у LED.

На фото LED матрица для подключения к сети 220В

Основные теоретические вопросы

Вольт-амперная характеристика (сокр. ВАХ) – это график отображающий зависимость величины тока протекающего через любой прибор от напряжения, приложенного к нему. Простая и очень ёмкая характеристика для анализа нелинейных компонентов. С её помощью можно выбрать режимы работы, и определить характеристики источника питания для прибора.

Взгляните на пример линейной и нелинейной ВАХ.

График под номером 1 на рисунке отображает линейную зависимость тока от напряжения, такую имеют все приборы резистивного характера, например:

  • Лампа накаливания;
  • обогреватель;
  • резистор (сопротивление);

График номер 2 – это ВАХ характерная для p-n переходов диодов, транзисторов и диодов.

Подробнее о работе диодов

Какое выбрать подключение светодиодов: последовательно или параллельно? Это сильно зависит от условий работы и источника питания, а также системы стабилизации напряжения и тока. Для правильного выбора нужно рассмотреть оба варианта.

Изначально шла речь о вольт-амперной характеристике не просто так, рассмотрим подробно её форму для Led приборов.

Обратите внимание, что в области напряжений ниже чем 2,5В, ток через светодиод протекает крайне малый или вообще не протекает. Преодолев уровень в 2,5 вольта через диод начинает протекать ток и он зажигается на участке от 2,5 до 3 вольт. После этого уровня ток начинает стремительно нарастать.

Для 5 мм диодов белого свечения рабочий ток – 20мА при 3В, а при 3.5 вольта ток будет равняться 80 мА, что в четверо превышает номинал.

Яркость диода хоть и зависит от протекающего через него тока, но при чрезмерно больших значениях LED светится не намного ярче, чем при номинале. Поэтому не стоит экспериментировать с высоким показателями – ваши диоды просто перегорят.

Значения напряжений могут различаться в зависимости от типов и конструкции LED, на это влияет их количество в одном корпусе, цвет, и даже материал который был выбран в качестве основы чипа.

Как правильно подключать?

При параллельном соединении светодиодов нужно пользоваться ограничительным резистором для каждого из диодов, как изображено на рисунке ниже. Это даёт возможность установить ток для каждого из элементов электрический схемы.

Схема параллельного соединения светодиодов

Ниже схема НЕ правильного подключения резистора в цепь.

Так подключать не правильно

При параллельном подключении светодиодов и любых других потребителей, напряжение на их выводах будет равным. С одной стороны это хорошо, но не для диодов. Каждый светодиод, даже набор взятый из одной партии, имеет небольшой технологический разброс параметров. Напряжение, необходимое для достижения номинального тока, может незначительно отличаться в пределах десятых долей вольта.

Выше вы видели вольт-амперную характеристику прибора и легко сделаете вывод, что незначительное превышение номинального напряжения ведет к лавинообразному росту тока и перегреву. Некоторые предлагают исключить и резистор из этой схемы, такое соединение светодиодов самое неудачное!

Общий ток в цепи равен сумме токов в каждой из ветвей параллельной цепи. Если выбирать, как соединять светодиоды для работы в цепи с повышенным напряжением (6 и более вольт), лучше использовать последовательное соединение.

Последовательное подключение диодов

При такой схеме вы можете использовать диоды в цепях с любым напряжением.

Напряжения между элементами распределятся в нужном количестве, а ток вы зададите резистором. Параллельное включение светодиодов не позволяет добиться такого результата. При последовательном подключении общий ток цепи будет равным току через один из элементов.

Варианты соединений

Чтобы выполнить последовательное соединение светодиодов на 220В, воспользуйтесь схемой ниже.

В данном случае в большей степени ограничивает ток конденсатор С1, он играет роль реактивного сопротивления. Подробнее о расчете конденсатора мы писали в статье. Для получения необходимого значения емкости конденсатора воспользуйтесь онлайн калькулятором:

Так вы можете подключить даже один светодиод.

Если вы хотите собрать схему последовательного соединения светодиодов на 100 вольт постоянного напряжения, в цепь нужно включить порядка 30 светодиодов. Тогда необходимое напряжение будет порядка 90 вольт. Расчёт резистора выполнить по формуле в предыдущих разделах статьи.

Конденсатор нужен для сглаживания пульсаций тока, резистор стоящий параллельно – для разряда конденсатора после отключения прибора, в целях безопасности. Если источник питания достаточно стабилизирован их можно исключить.

Альтернативный тип подключения

Последовательно-параллельное соединение светодиодов – встречается в прожекторах и других мощных светильниках, работающих как от постоянного, так и от переменного напряжения.

Как видите, матрица поделена на ветки, каждая из которых имеет токоограничивающий резистор. Конкретный экземпляр предназначен для замены штатной лампы плафона в салоне автомобиля. Если один диод выйдет из строя – одна цепь перестанет гореть, а остальные цепочки продолжат свечение.

Если вы не можете определиться, как подключить светодиоды последовательно или параллельно, есть альтернативный вариант — гибридное соединение. С первого взгляда непонятно в чем смысл.

Гибридный вариант принял достоинства от последовательного и параллельного соединения светодиодов. Схема будет работать полностью, даже если один из элементов в цепи перегорит, в тоже время остальные элементы не испытают перегрузки. Напряжение на каждом сегменте будет ограничено светодиодом с наименьшим падением.

Чтобы собрать светильник правильно, а LED работали долго и не перегревались, нужно определиться как подключать светодиоды — последовательно или параллельно. Вы ознакомились с сильными и слабыми сторонами каждого из вариантов. Благодаря полученным знаниям можно выполнить ремонт LED лампы или прожектора.

Оцените, пожалуйста, статью. Мы старались:) (2 5,00 из 5)

Источник: https://svetodiodinfo.ru/texnicheskie-momenty/posledovatelnoe-soedinenie-svetodiodov.html

Как подключить светодиод параллельно, последовательно: схемы, описания, нюансы

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие Пиранья), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть маркировку светодиода. Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

  1. Конструктивно. Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом. 
  2. С помощью мультиметра. Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод). Если результат не меняется, тогда led вышел из строя (для установления более точного диагноза, читайте как проверить светодиод). 
  3. Визуально. Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод. 

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью определения полярности у светодиода. В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:

Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.

Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:

В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

ЭТО ИНТЕРЕСНО:  Как устроена проводка в квартире

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Источник: http://ledno.ru/svetodiody/podklyuchenie-svetodiodov.html

Последовательное и параллельное соединение светодиодов

При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.

Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?

Параллельное соединение

Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов.

После чего подключить их к источнику напряжения с соблюдением полярности. Но такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания.

В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.

Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.

Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид. Но и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью.

Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников.

Среди  диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.

Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока.

И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв.

Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.

Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем. Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.

Ниже приведен единственно верный вариант параллельного включения светодиодов. Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.

Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.

Пример расчета

Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере. В схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.

Дано:

  • источник напряжения U = +5 В;
  • LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
  • LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.

Требуется рассчитать параметры и выбрать резисторы R1 и R2.

При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле: Округляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом.

Подставив его обратно в формулу, находим реальный ток во второй ветви: С учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным.

Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.

Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле: Резистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.

Последовательное соединение

В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах». Остаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. Все светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.

Два важных момента

В момент первого включения желательно измерить мультиметром ток в цепи и падение напряжения на каждом светодиоде. Если полученные данные будут отличаться от расчётных, то нужно пересчитать сопротивление резистора. Иначе, ток в схеме может оказаться слишком заниженным (с потерей яркости) или завышенным (с перегревом чипа светодиода).

Как в последовательном, так и в параллельном включении светодиодов нельзя делать расчеты, ссылаясь исключительно на способность источника питания обеспечить нужный ток или напряжение. Важны оба этих параметра, произведение которых даёт мощность. Мощность блока питания всегда должна быть больше мощности потребления, чтобы гарантировать стабильную и продолжительную работу всего устройства.

Источник: https://ledjournal.info/shemy/posledovatelnoe-i-parallelnoe-soedinenie.html

Резисторы для светодиодов: калькулятор для правильного расчёта сопротивления

Светодиоды в наши дни нашли применение практически во всех областях деятельности человека. Но, несмотря на это, для большинства обычных потребителей совершенно неясно, благодаря чему и какие законы действуют при работе светодиодов. Если такой человек захочет устроить освещение посредством таких устройств, то множества вопросов и поиска решения проблем не избежать. И главным вопросом будет — «Что это за штука такая – резисторы, и для чего они требуются светодиодам?»

Что такое резистор и его предназначение?

Резистор — это одна из составляющих электрической сети, характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств — способность энергично сопротивляться электрическому току. Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения, в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить.

В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки.

Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор, для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети.

Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня.

Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток, в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение.

Он слишком быстро выйдет из строя, при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит.

Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

  • специальная маркировка, присутствующая на устройствах, обычно показывает не требующееся напряжение питания, а напряжение, выбирающееся светодиодом для своей работы, то есть напряжение падения. Это числовое значение используется для расчёта определения минимально необходимого напряжения либо для подбора резисторов питания;
  • численное значение напряжения на резисторе определяется как разница между напряжением питания светодиода и напряжением агрегата;
  • величина, протекающего через резистор электротока, получается делением остаточного напряжения на приспособлении на величину его сопротивления;
  • для расчёта необходимого сопротивления, остаточное напряжение следует разделить на требующуюся для бесперебойной работы системы величину тока.

Расчёт резисторов при помощи специального калькулятора

Обычно, расчёт сопротивления таких приспособлений, требующихся для какого-либо светодиода, производится посредством специально предназначенного для этих целей калькуляторов. Такие калькуляторы, удобные и высокоэффективные, не нужно откуда-то скачивать и устанавливать – рассчитать резистор вполне можно и в онлайн-режиме.

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

  • напряжение питания светодиода;
  • номинальное напряжение светодиода;
  • номинальный ток.

Далее, требуется выбрать использующуюся схему соединения, а также необходимое число светодиодов.

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные, при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей, не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор, с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

Источник: https://elektro.guru/izmereniya-i-raschet/rezistory-dlya-svetodiodov-pravilnyy-raschet-soprotivleniya.html

Диоды и тиристоры — это очень простоЧасть 3. Защита выпрямителей

Для защиты трехфазных схем чаще всего используется одиночная RC-цепь, подключаемая через дополнительный диодный мост (пример такого решения показан на рис. 1). Номиналы R и C могут быть определены с помощью приведенных ниже выражений для снабберных цепей, размещаемых по входу выпрямителя.

Мощность резистора в такой схеме, как правило, не превышает 2 Вт. Диод D7 используется в некоторых случаях для снижения нагрузки на снаббер, вызванной протеканием гармонических токов, что актуально при фазовом управлении тиристорным мостом.

Резистор R1 нужен для быстрого разряда конденсатора после выключения устройства, его номинал и мощность рассеяния Pv определяются следующим образом:

Рис. 1. АС-снаббер с дополнительным диодным мостом

Максимально допустимое значение тока дополнительных диодов D1–D7 (время проводимости t = RC) должно в два раза превышать предельный ток нагрузки ILM, протекающий через конденсатор С при включении. Для наихудшего случая (запуск при пиковом напряжении) он определяется следующим образом: ILM = (Vv × √2)/R, хотя его реальное значение всегда будет меньше благодаря наличию активного и индуктивного сопротивления цепи.

В большинстве случаев дополнительный выпрямитель строится на основе маломощных диодов или моста с ударным током 150–300 А (в течение 10 мс), радиатор при этом не требуется, поскольку в продолжительном режиме мощность практически не рассеивается.

Выпрямители без гальванической развязки

Во многих практических применениях выпрямители подключаются к питающей сети через автотрансформаторы или дроссели. Кроме обеспечиваемой трансформатором гальванической изоляции, использование этих элементов позволяет ограничить токи короткого замыкания, устранить провалы питающего напряжения, снизить уровень перенапряжений и ограничить скорость их нарастания.

Для решения данных задач индуктивность дросселя L должна быть достаточно большой, обеспечивающей напряжение КЗ не менее 4% от величины Vv:

где Iv — эффективное значение фазного тока.

Если в схеме есть автотрансформатор, то установка дросселей не требуется, однако предельное положение движка должно быть ограничено таким образом, чтобы между сетью и выпрямителем всегда оставалась определенная индуктивность.

АС-снабберы в бестрансформаторных схемах нормируются по тем же правилам, выходная мощность PT рассчитывается на основе значений фазного тока и напряжения Vv и Iv для «воображаемого» трансформатора, таким же образом определяется и значение тока намагничивания ε.

Снабберные цепи для регуляторов тока (схема W1C)

Схема регулятора тока (АС-контроллера) W1C содержит два антипараллельных тиристора. Ячейка W1C всегда работает совместно со снаббером, в простейшем случае это RC-цепь (рис. 2), причем емкость с номиналом более 1 мкФ следует подключать через дополнительный диод. Если каждый тиристор имеет свой предохранитель, расчетные значения номиналов снаббера необходимо разделить на два.

Рис. 2. АС-контроллер: а) с RC-снаббером, б) с индивидуальным снаббером и предохранителем

Для расчета номиналов R и C можно использовать следующие формулы:

Мощность, рассеиваемая резистором:

Диодные и тиристорные сборки

Как уже было отмечено, для защиты диодных выпрямителей от перенапряжений достаточно использовать снаббер по DC-выходу (в случае, если сборка не подключена к низкоиндуктивному звену постоянного тока).

Параметры резисторов и конденсаторов нормируются в соответствии с указаниями, приведенными выше и в настоящем разделе, в зависимости от того, в какой цепи (АС или DC) необходимо подавить всплески напряжения.

ЭТО ИНТЕРЕСНО:  Почему выбивает автомат при включении стиральной машины

Если мост может быть отключен от нагрузки, то по соображениям безопасности следует установить разрядный резистор.

Когда диодный выпрямитель имеет постоянную емкостную нагрузку, ее можно рассматривать как снаббер, и никаких дополнительных защитных цепей в этом случае не требуется. Однако если между выходом моста и емкостью установлен сглаживающий дроссель или предохранитель, то установка снабберной схемы необходима.

Для выпрямителей со средней точкой рекомендовано применение АС-снаббера с дополнительным мостом, первая половина которого уже образована плечом основного выпрямителя. Вторая половина состоит из дополнительных маломощных диодов, параметры которых (так же, как и номиналы R, C) нормируются по правилам, установленным для цепи переменного тока.

Как правило, для ограничения перенапряжений в тиристорных выпрямителях используются снабберы, устанавливаемые параллельно одиночным ключам и в АС-линиях. В отдельных случаях может появиться необходимость в установке защитной схемы в цепи постоянного тока, а когда не требуется защита одиночных ключей, то DC- и АС-снабберы могут использоваться совместно. В этом случае защита работает как емкостная нагрузка, обеспечивая тиристорам надежный запуск при любых условиях эксплуатации.

Наилучший эффект от использования снабберов достигается при выполнении следующих соотношений:

(см. рис. 18 в предыдущей части статьи: если R = RL, то С = LL/RL2), где LL — индуктивность нагрузки (мкГн); RL — активное сопротивление нагрузки (Ом); С — снабберный конденсатор (мкФ); R — демпфирующий резистор (Ом).

Во многих случаях можно использовать конденсатор меньшей емкости, при этом R следует пересчитать в соответствии с приведенной формулой. Мощность рассеяния определяется следующим образом:

где VALT — эффективное значение пульсаций напряжения в цепи постоянного тока, а fALT — частота пульсаций. Для нахождения номинала разрядного резистора R1 (Ом) и мощности рассеяния используются следующие формулы:

где f — рабочая частота, VD — напряжение DC-шины.

Варисторы

При производстве варисторов порошковый полупроводниковый материал подобно керамике прессуется и затем спекается в виде твердого диска. Нелинейность характеристики достигается за счет наличия большого количества хаотично расположенных pn-переходов в контактных зонах между зернистыми элементами структуры. Как правило, варисторы производятся из оксида цинка ZnO, поэтому их часто называют металл-оксидными, или MOV (Metal-Oxide Varistors).

Нелинейное сопротивление варистора снижается с ростом сигнала, поэтому в сочетании с постоянным последовательным резистором он образует делитель, коэффициент ослабления которого увеличивается пропорционально приложенному напряжению.

Для подавления коротких всплесков сигнала вместо сопротивления можно применить индуктивность, в том числе индуктивность рассеяния обмотки трансформатора или реактора входного фильтра (при прямом подключении к сети).

Варисторы используются для подавления сетевых помех, перенапряжений в DC-цепях и даже в качестве одиночных снабберов.

Типовая характеристика MOV приведена на рис. 3, с ее помощью находится соответствующее значение предельного напряжения при определенном пиковом токе. Выбор и нормирование параметров варистора должны производиться в следующей последовательности:

  • Выбор компонента с соответствующим рабочим напряжением (определенным производителем как эффективное значение): амплитуда сигнала несинусоидальной формы не должна превышать заданное в документации эффективное значение синусоидального напряжения. Это относится и к импульсам постоянного тока, а максимальное значение DC-сигнала определяется в документации отдельно.
  • Нахождение напряжения ограничения по вольт-амперной характеристике варистора, для чего необходимо определить пиковое значение ударной нагрузки. Для трансформаторов это ток намагничивания, пересчитанный с учетом коэффициента трансформации; для индуктивностей — ток непосредственно перед разрывом цепи. Допустимая величина периодически повторяемого обратного напряжения защищаемого элемента должна быть выше уровня ограничения, найденного по приведенной методике.
  • Определение мощности рассеяния и сравнение с допустимым значением, указываемым в документации при заданной температуре окружающей среды. Для металл-оксидных варисторов потерями мощности на сетевой частоте, как правило, можно пренебречь.

Рис. 3. Импульсная вольт-амперная характеристика ZnO варистора

Варисторы не способны снижать скорость нарастания сигнала, поэтому параллельно тиристорам с низким допустимым значением dv/dt следует устанавливать RC-снабберы.

Лавинные диоды

Кремниевые лавинные диоды отличаются от выпрямительных тем, что резкое нарастание обратного тока при превышении напряжением определенного уровня (VBR) у них обусловлено не пробоем по поверхности кремниевого кристалла, а лавинным эффектом всей области пространственного заряда p-n-перехода. Импульсы обратного тока малой плотности и длительности могут разрушить обычный диод, что вызвано концентрацией мощности в отдельных точках на поверхности чипа. Лавинные диоды способны нормально работать в условиях обратных токовых импульсов, создающих потери мощности в диапазоне до единиц киловатт.

Благодаря высокой стойкости к пробою лавинные диоды используются в качестве выпрямительных в широком диапазоне применений без защитных снабберов. В высоковольтных схемах они соединяются последовательно, при этом статическая и динамическая балансировка не требуется.

Производители диодов определяют напряжение пробоя VBR

Источник: https://power-e.ru/components/diody-i-tiristory-eto-ochen-prostochast-3-zashhita-vypryamitelej/

Параллельное включение светодиодов

» Статьи » Параллельное включение светодиодов

При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.

Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?

Параллельное соединение диодов шоттки

Очень часто в электротехнике или различных схемах электрических цепей встречается такое понятие, как диод Шоттки. Прежде всего, это специальный диод-полупроводник, имеющий при прямом включении маленькое падение напряжения,и состоящий из полупроводника и металла. Свое название получил в честь изобретателя из Германии Вальтера Шоттки, который изобрел этот электронный элемент.

  • Отличие от других полупроводников
  • Диод Шоттки обозначение и маркировка
  • Достоинства и недостатки
  • Диод Шоттки применение
  • Диагностика диодов Шоттки
  • Полупроводники Шоттки в современном мире

Допустимое обратное напряжение в электронном элементе в промышленных целях ограничено 250 вольтами. На практике применяется в основном в низковольтных цепях, чтобы предотвратить течение тока в обратную сторону. По своей мощности разделяются на несколько групп: маломощные, среднемощные и мощные.

Само устройство состоит из металла — полупроводника, пассивации стеклом, защитного кольца и металла. Когда по цепи начинает идти электрический ток, то на защитном кольце и по всей области барьера-полупроводника будут скапливаться положительные и отрицательные заряды, но в разных частях корпуса, при котором будет возникать электрическое поле и выделяется тепло, что является большим плюсом для некоторых опытов в физике.

Отличие от других полупроводников

Этот электронный элемент отличается от других тем, что в нем в качестве преграды используется металл — полупроводник, который имеет одностороннюю электропроводимость, и обладающий многими другими отличительными свойствами. Такими металлами-полупроводниками могут быть арсенид галлий, золото, карбид кремния, вольфрам, германий, палладий, платина и так далее.

От выбранного металла будет зависеть и вся работа электронного элемента Шоттки. Особенно часто используют кремний, потому что он надежнее других, хорошо работает на больших мощностях. Также чаще других металлов используют полупроводник на основе арсенида галлия (GaAs) — химическое соединение мышьяка и галлия, реже — на основе германия (Ge). Технология изготовления этих электронных элементов очень проста, поэтому он и является самым дешевым.

Также диод Шоттки отличается от других стабильной работой при подаче тока. Для стабильности используют внедрение в корпус этого электронного элемента специальных кристаллов, что является очень тонкой работой, потому что халатность или невнимательность может привести к неисправности устройства. Этим редко занимаются люди, чаще всего эту работу выполняет специальный робот — автомат, запрограммированный для такой операции.

Диод Шоттки обозначение и маркировка

Как и все электронные детали и элементы имеют обозначения, на принципиальных схемах этот электронный элемент изображается вот так (см. рис. 1), что несколько отличается от обозначения обычного полупроводника.

Еще на схемах можно встретить изображение сдвоенного диода Шоттки (см. рис. 2). Это два смонтированных электронных элемента в одном общем корпусе. Аноды или катоды у них спаяны, поэтому имеют три вывода.

Этот электронный элемент, как и большинство, маркируется сбоку. И если непонятны буквы и цифры на обозначении, то можно посмотреть по радиотехническому справочнику их расшифровку.

Достоинства и недостатки

У этого устройства есть свои положительные стороны и свои недостатки.

Плюсы:

  1. Хорошо удерживает электрический ток в цепи;
  2. Маленькая емкость барьера из металлов — полупроводников, что увеличивает долгосрочную работоспособность диода;
  3. В отличие от других полупроводников, в диоде Шоттки наблюдается низкое падение напряжения;
  4. В электрической цепи данный диод Шоттки быстро действует.

Большой минус в том, что бывает очень большим обратный ток. В некоторых случаях, например, превышение нужного уровня обратного тока даже на несколько ампер, электронный элемент просто ломается или выходит из строя в самый неподходящий момент вне зависимости от того, новый он или старый. Также часто можно наблюдать утечки диодов, что может привести в некоторых случаях к печальным последствиям, если относится к проверке полупроводников с пренебрежением.

Диод Шоттки применение

Эти электронные элементы, представленные выше, можно встретить в нашем мире практически везде: в компьютерах, стабилизаторах, бытовой технике, радиовещании, телевидении, блоках питания, солнечных батареях, транзисторах и во многих других приборах из всех сферах жизни.

Во всех случаях поднимает эффективность и работоспособность, уменьшает численность потерь динамики напряжения, восстанавливает обратное сопротивление тока, принимает на себя излучение альфа, бета и гамма- зарядов, позволяет работать достаточно много времени без пробоев, удерживает ток в напряжении электрической цепи.

Диагностика диодов Шоттки

Можно провести диагностику электронного элемента Шоттки, если возникнет такая необходимость, но на это уйдет немного времени. Прежде всего, необходимо выпаять один элемент из диодного моста или электронной схемы. Осмотреть визуально и проверить тестером. В результате этих простых технических операций узнаете исправный ли полупроводник или нет. Хотя и необязательно выпаивать всю сборку, ведь это лишняя работа, а самое главное — затраты времени.

Также можно проверить данный диод или диодный мост мультиметром, при этом учитывайте то, что на приборе изготовитель пишет ток сбоку. Мы включаем мультиметр и подводим его щупы к концам анода и катода, и он покажет нам напряжение диода.

Иногда бывает так, что диод Шоттки может стать неисправным по некоторым причинам. Рассмотрим их:

  1. Если в полупроводниковом элементе возникнет пробоина, то он просто перестает держать ток и становится проводником.
  2. Если в полупроводнике или диодном мосту возникнет обрыв, тогда он вообще перестанет пропускать ток.

Причем в обоих случаях запаха гари вы не почувствуете и дыма не увидите, так как в корпусе встроена специальная защита против таких происшествий. Если вдруг в одном транзисторе сгорел вышесказанный диод, то убедитесь, что это единственное устройство, где вы нашли неисправность, потому что диоды обязательно нужно проверять все.

Хотя иногда может и не быть такой возможности для того, чтобы проверить диоды на исправность, когда это будет необходимо. Иногда бывает так, что компьютер начинает тормозить, включаться очень долго, «зависает». Возможно, дело связано именно с диодами, и каждый может разобрать процессор и посмотреть, что внутри случилось.

  Как выполняется соединение звездой?

Нужно, прежде всего, обесточить компьютер и открыть блок питания в системном блоке. Сразу же можно заметить диоды. Проверьте, есть ли в них пробоины или обрывы. Если есть, то нужно их достать и заменить новым полупроводником, устранив неполадки самостоятельно, но лучше обратиться за помощью к профессионалам.

Полупроводники Шоттки в современном мире

Диоды Шоттки получили широкую популярность и распространение во всех сферах современной жизни, особенно в электронике. Их можно найти как сдвоенные выпрямительные диоды, где два полупроводника установлены в одном корпусе и концы анодов или катодов связаны между собой, так и простые, также бывают очень маленькими (например, очень часто встречается в мелких электрических деталях).

Этот полупроводник очень часто используют в импульсных блоках питания в бытовой технике, что значительно снижает потери и улучшает тепловой режим работы. Также данные электронные элементы используются в транзисторах в качестве выпрямителей тока, и в таких специальных диодах, которые используют для объединения параллельных источников питания.

Источник: https://1000eletric.com/parallelnoe-soedinenie-diodov-shottki/

Параллельное включение блоков питания

Два источника питания SITOP одного и того же типа могут быть соединены параллельно через диоды (V1, V2 на рисунке) для достижения резервирования.

100% резервирование с двумя источниками питания SITOP существует только когда полный ток нагрузки не превышает тока нагрузки который может обеспечить один источник питания SITOP и источник питания на входной стороне тоже сконфигурирован с избыточностью.

То есть, в случае короткого замыкания в первичной сети источника питания не должно быть общих предохранителей отключающих оба источника от системы электропитания.

Параллельное соединение с разделительными диодами для резервирования допускается со всеми источниками SITOP. Диоды V1 и V2 служат для разделения. Они должны иметь обратное напряжение, по крайней мере, не менее 40 В и должны обеспечивать номинальный ток, соответствующий максимальному выходному току установленного источника SITOP power.

Руководство

Диоды должны соответствовать максимальному динамическому току. Это может быть динамический ток короткого замыкания при пуске или работе (должна быть принята большая величина).

Для рассеивания значительной мощности теряемой на (current x conducting-state voltage drop) диоды необходимо снабдить теплоотводами соответствующего размера.

Разумно оставить дополнительный резерв безопасности, потому что входной конденсатор в источнике питания SITOP дает дополнительный токовый пик в случае короткого замыкания. Однако, этот дополнительный ток течет в течение нескольких миллисекунд и поэтому в диапазоне времени (< 8.3 мс, допустимый кратковременный ток диодов) в течение которого диоды могут подвергаться многократному превышению номинального тока.

Пример 1

Два однофазных источника питания SITOP с номинальным выходным током — 10 A подключаются параллельно (заказной номер продукта 6ES7307-1KA00-0AA0). Динамический ток во время короткого замыкания пуска примерно 22 A для 150 мс.

Для сохранности, диоды должны иметь номинальный ток 30 A; Теплоотвод должен обеспечивать возможный длительный ток (см. техническую спецификацию): ограничение тока 13 A на диод or или предпочтительно, для безопасности, по крайней мере 15 A на диод.

Пример 2

Два преобразователя DC/DC с номинальным выходным током 20 A (заказной номер 6EP1536-1SL01) подключаются параллельно. Динамический ток для короткого замыкания работы примерно 38 A для 500 ms.

Для сохранности, диоды должны иметь номинальный ток 50 A; Теплоотвод должен обеспечивать возможный длительный ток (см. техническую спецификацию): ограничение тока 23 A на диод или предпочтительно, для безопасности, по крайней мере 30 A на диод.

Тип диодов

Например, подходящий тип для SITOP power 20
ISOTOP модуль BYV 54V-50 (обратное напряжение 50 В).

Изготовитель
SGS Thomson

Поставщик
например, Spoerle

Преимущество:

Каждый модуль содержит два диода изолированных друг от друга и от подложки, с номинальным током DC I F AV — 50 A каждый и I F RMS — 100 A. С током нагрузки 50 A при падении напряжения приблизительно 0.8 В.

Замечание: ISOTOP модули BYV 54V-200 (обратное напряжение 200 В) обычно доступны от дистрибьюторов.

Источник: http://siemens71.ru/RUS_8841.shtml

Понравилась статья? Поделиться с друзьями:
220 вольт
Что такое короткое замыкание по простому

Закрыть