Блуждающие токи что это такое

Блуждающие токи и борьба с ними

блуждающие токи что это такое

5 Дек 2017

Блуждающие токи, называемые также токами Фуко, являются одной из самых серьезных проблем для находящихся в земле металлоконструкций. Ещё совсем недавно, в XIX и начале XX века этого никогда не возникало.

Причиной появления стали многочисленные мощнейшие источники постоянного тока, контактирующие с поверхностью земли.

Метрополитен, троллейбусы и трамваи, различные электролитические установки, контуры заземления и прочие источники с электрическими полями порождают небольшие разряды, способные путешествовать на большие расстояния. Когда на их пути встречается металл, то происходит простейшая электролитическая коррозия.

Необходимо привести пример, для полного понимания этого явления. В одном из гаражей города, семья решила использовать недавно приобретенную бочку из нержавеющей стали для засолки овощей.

Весной ёмкость дала сильную течь, а вскоре дно, которое от 2 мм истончилось до толщины фольги, полностью выпало. Эту работу проделали блуждающие токи. Это явление являются одним из самых каверзных, потому что оно не щадит ни один металл.

Алюминий, медь, цинк и прочие элементы быстро разлагаются под действием сильнейшей коррозии.

Методы защиты от токов Фуко

Сделать это очень сложно, но многочисленные компании постоянно разрабатывают средства защиты. Они обладают определенной эффективностью, но также имеют большое количество нюансов, которые необходимо учитывать при использовании:

  • Катодная защита металлоконструкций. На поверхность наносится специализированное напыление, а затем по всему корпусу пропускается электрический ток. Эта сложная мера эффективна только на особо крупных конструкциях. Например, так защищают нефтяные танкеры, протяженные ограды, большие ёмкости и хранилища, зарытые в земле. Единственным существенным недостатком такого метода является то, что вся система сама начинает порождать блуждающие токи. Тогда необходимо каждому находящемуся в грунте металлическому элементу придавать одинаковый отрицательный потенциал.
  • Специализированные антистатические краски и покрытия. Их основная задача не допустить электролитических явлений на поверхности. Это позволяет быстро достичь определенного уровня защиты, но она неудобна тем, что рано или поздно слой вспучит ржавчина. А эти открытые места станут особо уязвимыми для коррозии.
  • Подъём на диэлектрический фундамент. Именно с этой целью рекламные щиты прикручивают на шпильки, залитые в бетон. Большое количество различных изделий имеют конструкцию из двух материалов. В землю заглубляется твердый армированный пластик, а над землей находится металл.
  • Отказ от металлов в конструкции. С учетом роста количества современных композитных материалов, это становится реальностью. Но стальным сплавам отдают предпочтение благодаря возможности сваривания металлов, чего нельзя сделать с пластиком.
  • Тотальная гидроизоляция. Она позволяет избежать доступа реакций электролитической диссоциации к поверхности металлического объекта. А это значит, что токи не смогут вызвать электрохимическую коррозию.

Какие условия являются наиболее благоприятными

Наличие солей в почве способствует распространению токов с огромной скоростью. Как показывает практика, распространение практически не происходит в песках. Это обусловлено сухостью грунта, где токи сразу же теряются.

Поэтому проблема практически не актуальна для стран Ближнего Востока, где конструкции в грунтах почти не страдают. Также токи не могут распространяться в условиях сухого климата.

Заболоченные просоленные почвы, которыми изобилуют Карелия и Финляндия — это идеальный вариант.

Где нет блуждающих токов?

Они практически полностью отсутствуют в сельской местности, а также на различных удаленных объектах. Но если будет использован заземленный трансформатор, то тогда повреждений не избежать. Правда они будут значительно меньше, чем в условиях города.

Сейчас борьба с этим явлением является одним из приоритетных направлений в своде наук, изучающих коррозию металлов. Особенно подвержены таким явлениям комплексные сплавы. В чистом виде не используется ни один металл, поэтому вопрос остаётся открытым.

Источник: https://shop.p-el.ru/blog/pro-elektrichestvo-i-svet/bluzhdayushchie-toki-i-borba-s-nimi/

Измерение блуждающих токов

блуждающие токи что это такое

✚ Измерение блуждающих токов для определения коррозионной агрессивности грунтов специалистами компании «ЭкоЭксперт».

Блуждающие токи встречаются в грунте, когда происходит их утечка из объектов на поверхности земли: электростанций, трамвайных и железнодорожных рельсов, других объектов, где установлены заземляющие устройства.

В норме ток, проходящий сквозь землю, должен выводиться, например, через тяговую подстанцию. Но при отсутствии качественной изоляции токоведущих элементов от земли возникают утечки.

Земля – отличный проводник, поэтому ток распространяется в хаотичных направлениях с неровной амплитудой и может удалиться от источника на большое расстояние. Поэтому его и называют «блуждающим».

Необходимость измерения блуждающих токов

Опасность блуждающих токов состоит в том, что, распространяясь в грунте, они могут сталкиваться с препятствиями: трубами, оболочками кабелей, подземными и стоящими на поверхности земли металлоконструкциями.

У металла удельное сопротивление ниже, чем у грунта, поэтому ток, проходя сквозь элементы конструкций вызывает образование катодной и анодной зон на входе и выходе, соответственно. Возникает процесс электролиза: металл в анодной зоне начинает окисляться и разрушаться. Также страдают и поверхностные металлоконструкции, например, рельсы.

Но они получают повреждения в катодной зоне – месте выхода тока в грунт. Таким образом, грунт, в котором присутствуют блуждающие токи является агрессивным по отношению к подземным коммуникациям, элементам зданий и сооружений.

Фото 1. Измерение блуждающих токов специалистом компании «ЭкоЭксперт».

Измерение блуждающих токов проводится в комплексе исследований для определения коррозионной агрессивности грунтов по отношению к подземным частям зданий и сооружений. Помимо блуждающих токов для точного расчета уровня опасности измеряют также сопротивление грунта.

Основные объекты, при проектировании и строительстве которых требуется проводить измерение блуждающих токов: трубопроводы, газопроводов, другие подземные коммуникации.

Способы выявления блуждающих токов

Выявить наличие в грунте блуждающих токов позволяет специальная аппаратура. В компании «ЭкоЭксперт» используются надежные современные приборы, предназначенные для электрохимической защиты.

В комплект приборов для определения блуждающих токов входят:

  • универсальный мультиметр; Фото 2. Универсальный мультимер АММ-1009.
  • электрод сравнения медно-сульфатный переносной;
  • соединительный изолированный гибкий провод длиной не менее 100 м.

С помощью такого набора можно определить наличие постоянных токов в земле, опасное влияние переменного и блуждающего тока.

Если прокладка коммуникаций только планируется, то на стадии проектирования по трассе через каждую 1000 м измеряют разность потенциалов между точками. При обследовании действующих объектов измеряют сопротивление металла под воздействием стационарного и блуждающего токов.

Фото 3. Медно-сульфатный переносной электрод сравнения ЭМС — 0,4 и соединительный изолированный гибкий провод длиной не менее 100 м.

Защита от блуждающих токов

Требования к защите сооружений от коррозии установлены ГОСТ 9.602-2005. Согласно этому документу при наличии в грунте блуждающих токов для безопасной и долговременной эксплуатации применяют:

  • электрохимическую защиту (катодная поляризация с помощью катодных установок, гальванических анодов, поляризованных и усиленных дренажей);
  • защитные покрытия;
  • ограничение утечек тока из источника (изоляция блуждающих токов).

Фото 4. Универсальный мультимер АММ-1009, Медно-сульфатный переносной электрод сравнения ЭМС — 0,4 и соединительный изолированный гибкий провод длиной не менее 100 м.

Работы по определению опасности блуждающих токов и коррозионной агрессивности грунтов проводятся специалистами компании «ЭкоЭксперт» на высоком профессиональном уровне с использованием новейшего оборудования. Материалы исследований позволяют заранее предусмотреть необходимые меры защиты и обеспечить соответствие проектной документации всем нормативным требованиям.

Источник: https://xn--80anccgcwd3a3hra8a.xn--p1ai/laboratornye-issledovaniya/izmerenie-bluzhdayushhix-tokov

Блуждающие токи: что это, причина, как избавиться

блуждающие токи что это такое

Всем знакомо понятие электрического тока. Есть проводник, по нем движутся заряженный частицы, на противоположных концах (или в двух произвольных точках) возникает разность потенциалов. Использование этого физического явления для организации электропитания — безусловное благо цивилизации. Появляется возможность передавать электроэнергию на значительные расстояния, приводить в движение механизмы, получать тепло, изображение, звук, преобразовывать электрическую энергию в механическую.

А если движение заряженных частиц возникает в естественном проводнике, например — в грунте? Это явление называется «блуждающие токи». Их появление не сулит ничего хорошего: возникает опасность поражения электротоком, разрушаются элементы металлических конструкций, расположенных в земле. Кроме того, на «обеспечение» блуждающих токов тратится определенное количество энергии. То есть, возникает незапланированный перерасход.

Как возникает это явление

Рассмотрим блуждающие токи на примере электрифицированной железной дороги, под которой проложен трубопровод.

Питание электропоезда осуществляется с помощью двух контактных линий: фазный провод — это контактная сеть, расположенная на опорах-столбах и подвешенная на массивных изоляторах. А нулевой «провод» — это рельсы. На всем пути следования располагаются тяговые подстанции, которые работают по одинаковому принципу: нулевой потенциал соединен с физической «землей» в качестве заземления (зануления).

Поскольку рабочее заземление в любом случае имеет физический контакт с грунтом, это абсолютно безопасно.

Для информации:

Не следует путать прохождение виртуальной линии проводника заземления с шаговым напряжением, возникающим из-за разности потенциалов на небольшом участке. Точки разности потенциалов в ситуации с блуждающими токами разнесены на сотни метров, а то и километры.

Между нулевым и фазным проводниками (рельсы и контактный провод) протекает рабочий электрический ток. Он штатно возникает при соединении колес с рельсами и пантографа электровоза с контактной линией. Поскольку рельсы непосредственно связаны с грунтом, можно предположить, что в земле также возникает потенциал, равный потенциалу нулевого проводника.

Если он одинаковый на всем протяжении рельсового пути – нет проблем, это нормальная и безопасная ситуация. Но железная дорога редко прокладывается по прямой. Кроме того, электрическая связь между физической землей и металлом ж/д пути не всегда стабильна.

Получается, что от одной тяговой подстанции до рядом стоящей (несколько десятков километров) электрический ток может протекать как по рельсу, так и по грунту. То есть, электроны могут блуждать по кратчайшему пути.

Вспоминаем про кривизну ж/д пути, и получаем те самые блуждающие токи, протекающие в толще грунта.

А если в этом месте проложены коммуникации (например, стальной трубопровод), то электроны протекают по его стенкам (смотреть иллюстрацию).

Где проблема

По аналогии с обычными электрическими процессами, возникает электрохимическая реакция. Блуждающий ток стремится по пути наименьшего сопротивления (мы же понимаем, что грунт в сравнение с металлической трубой является худшим проводником).

В том месте, где проводимость между рельсами и трубопроводом самая высокая (мокрая земля, железистый грунт, и другие причины), возникает так называемая катодная зона с точки зрения трубопровода. Электрический ток как бы «затекает» в трубу.

Пока еще это не опасно: трубопровод расположен в грунте, разницы потенциалов нет, у вас из крана не потечет вода под напряжением 3000 вольт.

Пройдя по трубе до благоприятного места перетекания в рельсы, электроны устремляются по грунту в сторону «штатного» проводника. Возникает анодная зона, электроток «вытекает» из трубы, прихватывая за собой частички металла (на молекулярном уровне).

По всем законам протекания электрохимических процессов, на этом участке интенсивно развивается коррозия. Водопроводчики недоумевают: труба из качественной стали, прошла все возможные антикоррозийные обработки, уложена согласно техническим условиям, срок эксплуатации минимум 50 лет. И вдруг прорыв и проржавевшая дыра размером с ладонь. И это все за каких-то пару лет. Причем электрохимической коррозии подвергается любой металл, будь то сталь, медь или алюминий.

Никакой связи с влажностью почвы нет, разве что блуждающие токи выбирают «мокрое место» для формирования анодной и катодной зоны. Это страшный сон аварийных бригад водоканала. Если не согласовывать проекты между отраслевыми ведомствами — проблема становится неконтролируемой.

Побочный эффект, усугубляющий потери

Напротив катодной зоны «жертвы», то есть трубопровода, возникает анодная зона рельсового пути. Это логично: если электроток куда-то входит, он должен откуда-то выходить, точнее вытекать. Это ближайшее с точки зрения электропроводности грунта место, где рельс имеет электрический контакт с физической землей (грунтом). В этой точке происходят аналогичные электрохимические разрушения металла железнодорожного полотна. А вот это уже проблема, связанная с безопасностью людей.

Кстати, эта ситуация характерна не только для магистральных железных дорог и трубопроводов. Да и прокладываются они не всегда параллельно друг другу. А вот в городе, где рядом с многочисленными подземными коммуникациями проходят трамвайные пути, возникает такое количество разнонаправленных блуждающих токов, что впору задуматься о комплексных мерах защиты.

На примере железной дороги, мы разобрали принцип негативного влияния паразитных токов. Эти процессы запрограммированы (если можно так сказать) самой конструкцией,

А где еще существует «блуждающая» проблема

Там, где генерируется электрическая энергия (что довольно логично). Разумеется, в эту «группу риска» входят не только электростанции. Там более, что на таких объектах подобных проблем практически не существует. Блуждающие токи возникают на пути следования электроэнергии к потребителю. Точнее, в точках преобразования напряжения: в зонах действия трансформаторных подстанций.

Нам уже понятно, что для появления этих самых паразитных токов необходима разность потенциалов. Представим типовую трансформаторную подстанцию, в которой применяется система заземления TN-C. При изолированной нейтрали, заземляющие контуры соединены между собой нулевым проводником, обозначаемым аббревиатурой PEN.

Получается, что по этому проводнику протекает рабочий ток всех потребителей на линии, с одновременным их заземлением. Эта линия (PEN) имеет собственное сопротивление, соответственно в разных ее точках происходит падение напряжения.

PEN (он же заземляющий проводник) получает банальную разность потенциалов между ближайшими контурами заземления. Возникает «неучтенный» ток, который по описанному выше принципу протекает и по физической земле, то есть в грунте.

Если на его пути появляется попутный металлический проводник, блуждающий ток ведет себя так же точно, как в трубе под железнодорожным полотном.

То есть, в анодной зоне разрушает металл проводника (трубопровод, арматура железобетонных конструкций, оболочка кабеля), а в катодной зоне уничтожает PEN-проводник.

Пробой изоляции

Ситуация с нарушением изолирующей оболочки кабеля может возникнуть где угодно. Вопрос в том, какие будут последствия.

Предположим утечку фазы в грунт на значительном расстоянии от рабочего контура заземления.

Если сила тока достаточно большая (точка пробоя большой площади), созданы «благоприятные» условия: влажный грунт, и прочее — достаточно быстро сработает защитная автоматика, и линия будет отключена.

А если сила тока меньше, чем ток «отсечки» автомата? Тогда между «пятном» утечки и «землей» возникают долгоиграющие блуждающие токи. А дальше вы знаете: попутный трубопровод, кабель в металлической оболочке, анодная зона, электрохимическая коррозия

Собственно, группа риска определена:

  • Трубопроводы с металлическими стенками. Это может быть вода, канализация, нефте- или газопроводы.
  • Кабельные линии (силовые, сигнальные, информационные) с металлической оболочкой.
  • Металлическая арматура в конструкциях дорог или зданий.
  • Габаритные цельнометаллические сооружения. Например, емкость (танк) для хранения нефтепродуктов.

Недостатки систем катодной защиты

Методика отнюдь не универсальна, необходимо строить каждый объект под конкретные условия эксплуатации. При неправильных расчетах силы защитного тока, происходит так называемая «перезащита», и уже катодная станция является источником блуждающих токов. Поэтому, даже после монтажа и введения в строй, катодные системы постоянно контролируются. Для этого в разных точках монтируются специальные колодцы для замера силы тока защиты.

Контроль может быть ручным или автоматическим. В последнем случае устанавливается система слежения за параметрами, соединенная с аппаратурой управления катодной станцией.

Дополнительные способы защиты от блуждающих токов

  • Применение кабельных магистралей с внешней оболочкой, которая является хорошим диэлектриком. Например, из сшитого полиэтилена.
  • При проектировании систем энергоснабжения, использовать только системы заземления типа TN-S. В случае капитального ремонта сетей, заменять устаревшую систему TN-C.
  • При расчете маршрутов железнодорожных путей и подземных коммуникаций, по возможности разносить эти объекты.
  • Использовать под рельсами изолирующие насыпи, из материалов с минимальной электропроводностью.
ЭТО ИНТЕРЕСНО:  Клеммник что это такое

Источник: https://profazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/bluzhdayushhie-toki.html

Блуждающие токи: причины возникновения и методы защиты

Блуждающие токи – разновидность тока, возникающая в земле, которая является и проводником. При попадании блуждающего тока на металлическую оболочку проложенных в земле кабелей происходит постепенное разрушение оболочки. В этом и заключается основная проблема этого явления. В этой статье мы рассмотрим это явление в целом, причины его возникновения, а также способы защиты.

Почему возникают блуждающие токи

Любой современный город имеет сложнейшую сеть различных электрических коммуникаций, многие из которых проложены в земле. Более крупные города имеют также контактные рельсы для трамваев и метро. Так как земля сама по себе способна проводить электрический ток, то зачастую между различными коммуникациями возникают определенные связи.

Напомним, что для появления электрического тока, то есть направленного движения заряженных частиц, необходима разность потенциалов между двумя различными точками проводника. В данном случае, проводником является земля, а разность потенциалов возникает благодаря наличию контуров заземления в системах с изолированной нейтралью.

То есть, если нейтральный проводник присоединен к заземляющему контуру, то при прохождении через него электрического тока из-за сопротивления этого проводника напряжение снизится. Такой проводник называется PEN. Один его конец соединен с системой заземления подстанции, а другой – с контуром заземления здания, куда ведет ЛЭП.

В итоге обе системы заземления, к которым подключен PEN-проводник, обеспечивают разность потенциалов между его концами. Что в свою очередь вызывает блуждающие токи.

Подобное же явление можно увидеть при нарушении изоляции силового кабеля, проложенного в земле. В этом случае если происходит замыкание с землей, то земля получает определенный электрический потенциал. Если это серьезная авария, то неисправность будет быстро устранена автоматическими устройствами защиты. Но при малых значения утечки тока найти подобную проблему достаточно сложно, поэтому она может существовать достаточно долго.

Одной из основных причин появления блуждающих токов являются сети трамваев и метро. Троллейбусы, в свою очередь, подключаются к электросети с помощью «вилки», которая расположена на самом троллейбусе. Поэтому этот вид транспорта блуждающие токи не генерирует.

А вот электропитание для электричек подается немного по-другому. Нейтральный проводник присоединяется к рельсам, а фазный – прокладывается над ж/д дорогой. Электропоезд соединяется с ним с помощью пантографов.

Питание для электропоездов генерируют тяговые подстанции, расположенные вдоль всей трассы. При наличии поворотов ток как бы «срезает угол», то есть идет не по рельсам, а напрямую, через землю.

Воздействие блуждающих токов

Как уже говорилось выше, в земле расположено множество металлических конструкций, устройств и объектов: инженерные коммуникации, кабельные линии, ж/б строения. Так как металлы гораздо лучше проводят ток, чем земля, то блуждающие токи тут же перейдут на эти металлические конструкции. Зона входа токов на конструкцию называется катодной. Зона выхода – анодной. Обычно наибольшие разрушения происходят в анодной зоне.

Помимо грунта и металлических конструкций в земле есть и подземные воды, которые также являются отличным проводником тока.

Локализация и измерение блуждающих токов

При прокладке металлических труб блуждающие токи в земле определяются через вычисление разности потенциалов между двумя точками поверхности земли, расстояние между которыми составляет 100 метров.

Измерительные устройства должны иметь класс точности не менее 1,5 и собственное электрическое сопротивление – от 1 МОм. По действующим в настоящее время нормативам, разность потенциалов не должна превышать 10 мВ. Продолжительность измерения – не менее 10 минут, с фиксацией данных через каждые 10 секунд.

Измерение наличия блуждающих токов в зоне работы электрического транспорта необходимо производить во время наибольшей нагрузки транспортной сети. Если разность потенциалов будет больше 40 мВ – это значит, что в земле есть блуждающие токи.

В качестве измерительного прибора, как правило, используются два электрода: медно-сульфатный и соединительный. Также необходим точный мультиметр и гибкий изолированный провод (например, ПВС) длиной более 100 м.

В заключение скажем, что несмотря на казалось бы низкие значения, блуждающие токи со временем могут нанести существенные повреждения кабельной линии. Поэтому заранее следует предусмотреть меры по их выявлению и нейтрализации.

Источник: http://www.yugtelekabel.ru/bluzhdayushhie-toki-prichiny-vozniknoveniya-i-metody-zashhity.html

Принцип возникновения вредного влияния систем ЭХЗ на сторонние объекты или как ЭХЗ может навредить — блуждающие токи, защита трубопроводов, коррозионное влияние, коррозия, система ЭХЗ, электрохимическая защита, электрохимическая коррозия, ЭХЗ

Электрохимическая защита от коррозии (ЭХЗ) — хорошо известное и могущественное оружие для защиты от электрохимической коррозии разнообразных объектов. Однако, как и всякий инструмент, она должна применяться обдуманно, иначе вред от ее использования может существенно превысить положительный эффект.

Основным вредным последствием работы систем ЭХЗ, возникающим вследствие ошибок при проектировании и строительстве подобных систем, может быть ускоренная коррозия соседних с защищаемым металлических объектов.

Обычно такая ситуация реализуется в многониточных близкорасположенных трубопроводных системах различного назначения, например, на нефтепромысловых трубопроводах, но может быть встречена и на других объектах, где выборочно применяются системы ЭХЗ, например, на промышленных площадках, нефтебазах и др.

Рис. 1. Распределение токов утечки с постороннего трубопровода при сближении с трубопроводом, защищенным катодными установками

Вредное влияние системы ЭХЗ защищаемого трубопровода на сторонние трубопроводы реализуется вследствие возникновения блуждающих токов. Величина такого тока может быть довольно велика, из практики до 50 А. Однако, сама по себе величина тока, протекающего на подземном сооружении, не определяет опасности коррозионного влияния.

Существенной является плотность тока, которая возникает на анодных поверхностях при стекании тока с металлического сооружения в окружающую почву. Эта плотность зависит не только от величины тока, но и от площади поверхности анодной зоны.

Согласно практике защиты подземных сооружений от блуждающих токов опасной средней суточной плотностью блуждающего тока для стальных трубопроводов считается 75 мА/м2.

При этом та часть металлического сооружения, из которой ток выходит в землю, является анодом, а та часть сооружения, где постоянный ток входит в него, является катодом. В анодных зонах при условии контакта сооружения с влажной почвой блуждающие токи вызывают электролиз и причиняют сооружению чрезвычайно большие коррозионные разрушения. Блуждающий ток в 1 А за один год «разъедает» в анодной зоне металлического сооружения около 9 кг железа.

Рис. 2. Повреждение трубопровода блуждающими токами

Скорость и интенсивность коррозии блуждающими токами совместно с почвенной коррозией особенно сильно возрастает при наличии частых и резких перепадов значений электрического сопротивления почв вдоль линейного сооружения.

Объясняется это тем, что в этих условиях блуждающие и гальванические токи то входят в сооружение и проходят по нему, то выходят из сооружения и проходят по почве, создавая тем самым множество анодных и катодных зон. Установлено, что в почвах с высоким сопротивлением блуждающие токи более или менее полно собираются металлическим сооружением и протекают по нему.

На участках, где почва имеет низкое сопротивление, эти токи покидают сооружение и частично переходят в почву. Места наиболее сильных утечек тока из сооружения, совпадающие с участками низкого сопротивления почвы, характеризуются наиболее интенсивными явлениями коррозии.

Таким образом, при наличии систем ЭХЗ на одном трубопроводе в коридоре и при отсутствии компенсирующих мероприятий сторонний трубопровод, находясь в зоне распространения токов ЭХЗ, привлекает на себя эти токи, передает их как проводник более низкого омического сопротивления и возвращает их через землю к источнику в анодных зонах, в которых и происходит его интенсивное разрушение (Рис. 1).

Решение подобной проблемы на существующих объектах должно начинаться с комплексного электрометрического обследования системы трубопроводов для оценки непосредственной опасности коррозионного разрушения стороннего трубопровода и поиска существующих анодных зон.

После этого необходимо либо организовать полноценную совместную защиту объектов, либо разработать технические решения по снятию существующего вредного влияния.

Последнее, кстати, лучше всего получается при проведении предварительных полевых испытаний применяемых решений, так как очевидная установка перемычек в районе точке дренажа действующей катодной станции может просто переместить анодную зону на соседний участок трубы, тем самым стимулировав электрокоррозию в другом месте.

А самый лучший способ избежать таких проблем, это конечно предусмотреть все заранее при проектировании объекта на основании качественных, а не формальных инженерных коррозионных изысканий. Сделать хорошо сразу всегда проще, чем переделывать уже построенный объект!

Источник: http://transenergostroy.ru/blog/princip_vozniknoveniya_vrednogo_vliyaniya_sistem_ehz_na_storonnie_ob_ekty_ili_kak_ehz_mozhet_navredi.html

Блуждающие токи и полотенцесушитель

Многие люди, установив в ванной комнате новый водяной полотенцесушитель из нержавеющей стали, через какое-то время замечают, что на поверхности металла появились мелкие пятнышки ржавчины, диаметр которых обычно не превышает 5-6 мм.

Эта «россыпь» – не что иное, как банальная коррозия металла. И дело тут вовсе не в бракованном сантехническом изделии или неправильной эксплуатации, а в блуждающих токах.

Что это? Откуда они берутся? И как нейтрализовать их пагубное влияние на полотенцесушитель? Разбираемся в вопросе.

Что надо знать о блуждающих токах?

Любые находящиеся в воде или в земле металлические предметы, независимо от их назначения, подвержены воздействию коррозии, которая может быть:

Гальванической

Она связана с реакцией между разными металлами. Так, например, гальваническую пару, ведущую к разрушению, могут создать сталь и латунь или сталь и алюминий. Реакция начинается сразу, как только складывается «дуэт» из разных металлов и получившийся узел соприкасается с электролитом.

В ситуации с полотенцесушителем роль электролита играет обычная водопроводная вода, вступающая в реакцию с металлами благодаря содержанию значительного количества минеральных веществ (такая же реакция будет и с морской водой, богатой солью). И чем выше температура воды, тем активней идет процесс разрушения металла.

Именно поэтому корпуса судов, которые ходят по теплым южным морям, изнашиваются быстрей, чем корабли на северном флоте.

Коррозией блуждающих токов

Этот процесс вызывается так называемыми блуждающими токами, возникающими в земле, если она выполняет функцию токопроводящей среды.

При этом разрушающему воздействию подвергаются не только металлические предметы, полностью находящиеся в земле, но и те, что только соприкасаются с ней.

Но откуда берутся эти токи? Все просто: в большинстве случаев их появление является результатом утечки с линий электропередач. Также к этой группе относятся так называемые нулевые токи, присутствующие в незаземленных конструкциях.

Первые признаки коррозии

Определить, что ваш полотенцесушитель стал «жертвой» коррозионных процессов, можно по внешнему виду оборудования. Первыми признаками разрушения металла являются:

  • вздутие декоративного слоя (краски) – сначала это происходит в местах соединений и на острых гранях конструкции;
  • появление на пострадавшей поверхности заметного белесого налета, напоминающего мелкий порошок;
  • образование на поврежденных участках небольших вмятин и углублений – создается впечатление, что металл поеден жучком.

Незначительные повреждения, как правило, являются результатом гальванической коррозии, вызванной разностью электрических потенциалов разнородных металлов, один из которых выступает в качестве катода, а другой – анода. А если добавить к этому еще и блуждающие токи, разрушения будут намного серьезней.

Немного о природе блуждающих токов и их опасности

Причина появления блуждающих токов, действующие на ваш полотенцесушитель, в разности потенциалов заземленных конструкций. А чтобы уравнять потенциалы, необходимо создать систему, в которой все металлические элементы будут контактировать с нулевым проводником в имеющемся вводно-распределительном устройстве.

Такая система позволит максимально обезопасить пользователя (если вы возьметесь рукой за трубу и заземленное оборудование, то не получите смертельный разряд). И это очень важно, ведь чем больше разность потенциалов, тем более серьезная опасность угрожает человеку. Так, например:

  1. Если эта величина составляет 4 или 6B, вы можете получить удар тока силой 5 мА. Это будет чувствительно, но не смертельно.
  2. Если же его сила будет 50 мА, может развиться фибрилляция сердца.
  3. А при воздействии на тело человека тока 100 мА наступает смерть.

Но известны случаи, когда причиной летального исхода становилась даже небольшая разность потенциалов в 4B.

Разность потенциалов: причины возникновения

Но откуда берется разность потенциалов, если дом построен с учетом всех действующих норм? В теории при соблюдении строительных правил разности потенциалов быть не должно.

Но на практике часто бывает так, что при сборке конструкций и инженерных систем сварные соединения заменяют сгонами. Еще один распространенный вариант – интеграция в схему дополнительных сопротивлений или металлических деталей.

И то, и другое может стать причиной возникновения разности потенциалов на противоположных концах трубы и, соответственно, инициировать коррозию металла.

Не стоит забывать и о «конфликте» между металлом и пластиком, который тоже играет важную роль в разрушении различных периферических устройств (к ним относятся и полотенцесушители). Из-за того, что между сантехническим оборудованием из нержавеющей стали и металлическим стояком часто ставятся пластиковые трубы (их используют для выполнения разводки по квартире), связь между этими частями системы разрывается.

И хотя стояк в любом случае будет заземлен (в новых многоэтажках это делается посредством системы уравнивания, а в домах старого фонда – через расположенный в подвале здания контур заземления), разность потенциалов все равно образуется. А при движении по трубам воды, которая демонстрирует отличную токопроводность, возникает еще и микротрение, гарантированно ведущее к появлению блуждающих токов.

А они, в свою очередь, провоцируют коррозию. Круг замкнулся!

Почему раньше не возникало подобных сложностей?

Как ни странно это прозвучит, но причиной появления такой проблемы, как разность потенциалов в инженерных системах, стал прогресс. А именно, повсеместная замена металлических труб на пластиковые. Пока трубопроводы ГВС, ХВС и отопления были полностью металлическими, сложностей не возникало.

Да и необходимости отдельно заземлять каждый радиатор, смеситель или полотенцесушитель тоже не было – все трубы заземлялись централизованно в подвале дома, в двух местах. И все металлические приборы в ванных комнатах и санузлах автоматически становились безопасными и защищенными от блуждающих токов.

Переход же на пластик все изменил: с одной стороны, трубопроводы стали служить дольше, а с другой стороны, возникла необходимость в дополнительной защите сантехнического оборудования. И тут дело не только в самих трубах, ведь по проводимости металлопластик близок к традиционному металлу, а еще и в фитингах – соединительных элементах. Точнее, в материалах, из которых их производят и которые не могут обеспечить электрический контакт с алюминиевым «сердечником» металлопластиковой трубы.

Заземление как защита от электрокоррозии

Чтобы предотвратить возникновение в системе блуждающих токов и защитить полотенцесушитель от электрохимической коррозии, нужно воссоздать устойчивую связь между ним и трубой стояка. Другими словами, нужно просто заземлить периферическое устройство, соединив полотенцесушитель проводом с металлическим стояком, или же смонтировать систему уравнивания потенциалов.

Это важно сделать еще и потому, что некоторые недобросовестные жильцы многоквартирных домов, желая сэкономить, ставят на свои электросчетчики жучки, а в качестве заземления используют трубопроводы систем отопления или водоснабжения. И тогда их соседям грозит реальная опасность, ведь даже простое прикосновение к металлической батарее даст человеку «шанс» получить смертельный удар током.

Полимерная обработка – решение проблемы без заземления

Но можно решить проблему и по-другому, обработав внутреннюю поверхность водяного полотенцесушителя из нержавеющей стали специальным полимерным составом. Он создаст изолирующее покрытие, которое будет эффективно «работать», препятствуя образованию разности потенциалов и возникновению коррозии.

ЭТО ИНТЕРЕСНО:  Что такое шаговое напряжение определение

Полимерная обработка водяных полотенцесушителей – дополнительная услуга, которая выполняется нашей компанией по запросу покупателя. А заказать ее можно онлайн на сайте ZIGZAG.

Перейти к услуге «Полимерная защита полотенцесушителя»

Источник: https://zigzag-line.ru/2018/05/13/elektrokorroziya/

Блуждающие токи что это такое в полотенцесушителе

В каждой ванной комнате можно отыскать полотенцесушитель. Это простое устройство идеально подходит к интерьеру ванной, и исправно служит владельцам. Чтобы продлить срок эксплуатации полотенцесушителя, особое внимание следует уделить его заземлению.

Для чего необходимо заземление полотенцесушителя:

  1. 1. Защита от возникающих вихревых токов (еще их называют “блуждающие токи” или “токи Фуко”), то есть делает полотенцесушитель безопасным для пользователя.
  2. 2. Предотвращает гальваническую и электрохимическую коррозию полотенцесушителя, тем самым увеличивая срок эксплуатации.

Для чего заземлять водяной полотенцесушитель

После того, как пластиковые трубы начали вытеснять обычные металлические, на их заземление стали не обращать внимания, ошибочно полагая, что металлическая труба и труба из металлопластика имеют одинаковую токопроводимость. Это не так. Между металлопластиковой трубой и алюминием отсутствует контакт: они не соединены.

Практика показывает, что 90 процентов полотенцесушителей начинают протекать именно в случае замены металлических систем горячего водоснабжения на их пластиковые аналоги (например, полипропилен). Старые металлические трубы меняются на современные пластиковые с целью уменьшения вихревых токов. Однако коррозия продолжает себя проявлять.

Первые симптомы электрической коррозии – возникновение пятен ржавчины на полотенцесушителе, причем ржавчина проявляется даже на устройствах, сделанных из нержавейки.

Вообще, все металлические электро-изделия, контактирующие с водой, подвержены как электрохимической так и гальванической коррозии. Электрокоррозия возникает при наличии блуждающих токов.

В результате на металл оказывается одновременное воздействие электрического тока и воды, после чего появляются металлические пробои, а уже оттуда начинает свое распространение коррозия.

При контакте двух разных металлов, один из которых более химически активен, чем другой, оба металла вступают в химическую реакцию. Чистая вода является очень плохим проводником электрического тока (диэлектриком), но, благодаря большой концентрации различных примесей, вода превращается в своеобразный электролит.

Не стоит забывать о том, что температура оказывает большое влияние на электропроводимость: чем выше температура воды, тем лучше она проводит электрический ток. Данное явление известно под именем “гальваническая коррозия”, именно она методично приводит полотенцесушитель в негодность.

Причины возникновения электрокоррозии

Появление вихревых токов Фуко – довольно сложное непредсказуемое явление. В системах горячего водоснабжения, а порой и в системе отопления такие токи появляются из-за многих причин, казалось бы не связанных между собой.

Вообще, вихревые токи образуются при разности потенциалов. При строительстве дома, все металлические конструкции подключаются к общему контуру заземления, причем раньше в строительстве использовали заземление по контуру, а сейчас довольствуются методом уравнивания потенциалов.

Когда в квартире вместо существующей металлической системы ставят пластиковые – разность потенциалов возникает из-за разрыва заземления (например, на полотенцесушителе один потенциал, а на стояке – совсем другой). Отсюда и разность потенциалов, отсюда и блуждающие токи. Еще они могут возникать в результате короткого замыкания, отсутствия заземления близнаходящихся электрических бытовых приборов, будь то стиральная машина и так далее.

Даже наличие/отсутствие трамвайных путей в непосредственной близости играет роль. Блуждающие токи возникают также при нарушении изоляции электропроводки, обрыва сети, заземления, сделанного на систему отопления.

Все это ведет к электрокоррозии сантехники, к ней еще приводит соседство двух разных материалов, особенно нержавеющей и черной стали. То место, через которое в полотенцесушитель проходит заряд, в результате подвергается электрохимической реакции, поэтому там образуется повреждение. Такие проблемы обычно решаются непосредственно заземлением самого полотенцесушителя.

При покупке водяного полотенцесушителя необходимо ознакомиться с правилами его эксплуатации, в частности, обратить внимание нужно ли заземлять полотенцесушитель или нет, чтобы учесть этот момент во время ремонта, а не после того, как ремонт будет завершен.

Нужно ли заземлять полотенцесушитель

Для начала необходимо знать, что заземление (сооружение контуров заземления собственноручно) не требуется, если:

  1. 1. Вы используете электрический полотенцесушитель (такие полотенцесушители обычно снабжены специальными вилками, в которых присутствует заземляющий провод , все это подключается в розетку, а сами розетки уже должны быть присоединены к контуру заземления).
  2. 2. Вы живете в частном доме или квартире, и у Вас отдельная система отопления.

Заземление полотенцесушителя обязательно производить в следующих случаях:

  1. 1. Если ваша сушилка соединена с системой отопления металлопластиковой трубой. Внутри металлопластиковой трубы находится алюминий, который проводит электрический ток: в местах соединения, где расположены фитинги, электрическая цепь разрывается. Соответственно, такой полотенцесушитель необходимо подключить к контуру заземления, либо к стояку горячего водоснабжения.
  2. 2. Если ваша система горячего водоснабжения сделана из металлопластиковых труб.

Как заземлить полотенцесушитель

Все электрические полотенцесушители, как было указано выше, подключаются к розетке с заземлением, при этом в таких сушилках предусмотрен заземляющий провод с отдельным контактом на вилке. Так как полотенцесушители обычно устанавливаются в ванной комнате, следует осмотреть розетку, к которой он будет подключен. Такая розетка должна быть в специальном защитном корпусе, предотвращающем попадание влаги внутрь самой розетки.

Существует 2 основных способа заземления полотенцесушителя:

  1. 1. Использование системы уравнивания потенциалов, которую необходимо смонтировать собственноручно, затем осуществить заземление этой системы на общее заземление электрического щитка. Так следует поступать, если в доме или квартире вместо металлических коммуникаций используются коммуникации, сделанные из полимеров (металлопластиковые трубы).
  2. 2. Заземление непосредственно трубы корпуса полотенцесушителя обычным проводом к стальному стояку.

Чтобы реализовать заземление полотенцесушителя вторым способом, нужно для начала обзавестись хомутом, предварительно сняв с него все изолирующие материалы. Этот хомут должен иметь клемму для присоединения провода. Затем хомут крепится на трубу корпуса полотенцесушителя.

Берется обычный медный провод, который должен иметь сечение 4 мм2. Этот провод с одной стороны подключается к клемме хомута, другой его конец необходимо подключить либо к заземлению электрического щитка, либо к стальному стояку. Помимо этого, не забудьте подключить к контуру заземления и другие устройства, находящиеся в вашей ванной комнате.

Такие методы не требуют много времени на их осуществление, но взамен достается долгая и бесперебойная работа полотенцесушителя, и в дальнейшем вопрос “как заземлить полотенцесушитель” не вызовет затруднений.

Друзья также смотрите видео для чего нужно заземлять полотенцесушитель.

Вы заметили, что полотенцесушитель из нержавейки в ванной комнате начинает покрываться пятнами ржавчины размером с 2-3 спичечные головки. А если это пятно вытереть, то за ним стоит маленькая еле заметная точечка, которая и ржавеет, и распространяется по поверхности. Это – коррозия металла. И рок здесь ни при чем. Находящиеся в воде и земле металлические конструкции подвергаются двум типам коррозии: гальванической и так называемой «коррозии от блуждающих токов».

Читайте так же:  Печь для бани со змеевиком

Блуждающие токи — токи, возникающие в земле при её использовании в качестве токопроводящей среды. Вызывают коррозию металлических предметов, полностью или частично находящихся под землёй, а иногда и лишь соприкасающихся с поверхностью земли.

Характерны, в частности, для трамвайных и железнодорожных путей электрифицированных железных дорог, не обслуживаемых должным образом. В ряде случаев блуждающие токи являются следствием аварийной утечки с линий электропередачи. Очень часто «блуждающими токами» называют нулевые токи, существующие в металлических незаземленных (необнуленных) конструкциях.

Неправильность употребления термина никак не уменьшает разрушительных способностей таких электро токов.

Гальваническая коррозия представляет собой электрохимическую реакцию между двумя и более различными (или разнородными) металлами. Различными, потому что для того, чтобы началась реакция, один должен быть более химически активным (или менее стабильным), чем другой или другие. Когда же речь идет о гальванической коррозии, то имеется в виду электрообмен. Все металлы обладают электрическим потенциалом, поскольку у всех атомов есть электроны, движение которых и есть электричество.

Гальваническая коррозия более активного металла начинается в тот момент, когда две или более детали из разнородных металлов, имеющие взаимный контакт (благодаря обычному соприкосновению или же посредством проводника) помещаются в жидкость, проводящую электричество (электролит). Электролитом может быть что угодно, за исключением химически чистой воды.

Не только соленая морская, но и обычная вода из-под крана благодаря наличию минеральных веществ является превосходным электролитом, и с ростом температуры электропроводность ее только растет (по этой причине корпуса судов, эксплуатирующихся в жарком климате, заметно больше подвержены коррозии, чем в северных морях).

Это же справедливо и по отношению к полотенцесушителям для ванной.

На примере морских судов, первый признак гальванической коррозии — вздутие краски на поверхностях, расположенных ниже ватерлинии, начинающееся обычно на острых гранях, и образование на обнажившемся металле белесого порошкообразного налета.

Потом на поверхности металла начинают образовываться заметные углубления — словно кто-то выгрызает из него кусочек за кусочком.

Гальваническую коррозию подводных частей подвесных моторов и угловых колонок — или любых алюминиевых частей лодки — значительно ускоряет наличие деталей из нержавеющей стали, таких, как гребные винты, триммеры (особенно если они «заземлены» на двигатель), узлы дистанционного управления. Именно на них и уходят электроны алюминиевых деталей.

Другая причина, способная ускорить процесс гальванической коррозии — это уменьшение полезной площади анодных протекторов.

Но и без наличия нержавеющей стали расположенные под водой алюминиевые детали все равно подвергаются воздействию гальванической коррозии — хотя и не столь интенсивной, как при контакте с иным металлом.

При наличии электролита на большинстве однородных, вроде бы, металлических поверхностях все равно образуются крошечные аноды и катоды — в тех местах, где состав сплава неоднороден или имеются посторонние вкрапления или примеси — например, частицы металла с форм или штампов.

Другая причина гальванической коррозии — подключение к береговой электросети. При этом алюминиевая подводная часть мотора посредством заземляющего вывода подключается к подводным частям других лодок и становится частью огромной гальванической батареи, связанной с погруженным в воду береговым металлом. При этом не только на одной лодке, но и на соседних коррозия значительно ускоряется.

Коррозии от блуждающих токов

Вы узнали, на что способная гальваническая коррозия при использовании электрического потенциала самих металлов.

Представьте что будет, если добавить еще электричества! Произойти подобное может в том случае, если металл, по которому течет электрический ток, поместить в любой заземленный водоем (в реку, озеро, море, океан — без разницы, не в счет разве что стеклянный аквариум). Ток через воду устремится в землю.

Следствием этого явится интенсивная коррозия в том месте, где произошел «пробой». В наихудшем случае та же алюминиевая подводная часть мотора может разрушиться буквально за несколько дней.

Данная разновидность коррозии отличается от гальванической, хотя природа у них одна. Гальваническая коррозия вызывается соединением двух разнородных металлов и происходит за счет разности их электрических потенциалов. Один металл выступает в роли анода, другой — в роли катода.

Здесь же электрический ток попадает на подводную часть лодки из внешнего источника и через воду уходит в землю.

Блуждающие токи могут вызываться не только внешними, но и внутренними источниками — коротким замыканием в сети лодки, плохой изоляцией проводки, подмокшим контактом или неправильным подключением какого-либо элемента электрооборудования.

Источник: https://iobogrev.ru/bluzhdajushhie-toki-chto-jeto-takoe-v

Зависимость долговечности трубопровода от блуждающих токов

Высокая частотность немотивированного разрушения трубопроводов отопления и водоснабжения вызвала интерес ученых.

Когда было однозначно доказано, что состав воды соответствует нормам, температурный режим соблюдается, а коррозия ускорилась в несколько раз, сотрудники центра электромагнитной безопасности нашли причину. На трубопроводы влияют блуждающие токи.

Когда системы отопления или водоснабжения подвергаются воздействию токов, источниками которых, может служить электроснабжение строений, появляется ускорение коррозийных воздействий.

Что может спровоцировать утечку токов?

  • Ошибки в эксплуатации функционирующей системы электроснабжения здания. Необдуманное применение системы трубопровода в роли нулевых проводников.
  • Не правильное подключение электрических приборов, которые связывают систему электроснабжения с трубопроводными системами. Сложности могут возникать из-за неправильной установки посудомоечных и автоматических стиральных машин, электрических водонагревающих котлов, душевых кабин, джакузи, ванн с гидромассажем.
  • Появившиеся при эксплуатации разрушения изоляции кабеля или поломки электрического оборудования: отгорание, ослабление и технические неполадки нулевых проводников.

Устранение воздействия блуждающих токов

Решить проблему воздействия бесконтрольного воздействия токов можно при помощи изоляции внутренних линий водопровода или заменой металлических труб на пластиковые, для которых коррозия не страшна.

Важно понимать, что при наличии блуждающих токов, трубопровод является элементом системы электроснабжения, а значит, при монтаже пластиковых труб нагрузка нулевых рабочих проводников повыситься. Это может вызвать отгорание нулевых проводников, спровоцировать замыкания, поломки электрического оборудования и возгорания.

Чтобы обеспечить безопасность здания, предупредить сбои в системе электроснабжения, проводя замену металлических труб на пластиковые, нужно детально проверить и провести замер величины сопротивления заземляющих цепей.

Источник: https://sanline.by/articles/truboprovod-i-bluzhdajushhih-tok

Электрокоррозия полотенцесушителя и водонагревателя

11 Мая 2018

Электрокоррозия – это коррозия материалов под влиянием электрического тока от внешнего источника (коррозия блуждающих токов)

Признаки электрокоррозии – это единичные или множественные потемнения корпуса полотенцесушителя с образованием пор (мелких сквозных отверстий) на сварочных швах и ровных участках поверхности трубы.

Причина возникновения электрокоррозии – это наличие блуждающих токов в системе водоснабжения. Такие токи возникают из-за разности потенциалов. Т.е. потенциал в стояке равен потенциалу земли (заземлено), а тот что в полотенцесушителе – имеет другой потенциал. Между разными потенциалами и возникают «блуждающие токи» при условии появления между ними проводника. Таким проводником является текущая вода. К сожалению, у современных полотенцесушителей, какой бы вы ни выбрали: водяной, электрический, из нержавейки или комбинированный, — существует определенная проблема при их использовании, а именно электрокоррозия полотенцесушителя. Если вы заметили, что полотенцесушитель (даже из нержавейки) начинает постепенно покрываться пятнами ржавчины, — это признаки электрокоррозии метала. Причины ее образования в том, что металлические конструкции, находящиеся в воде, подвергаются двум видам коррозии: гальванической и коррозии, которую вызывают блуждающие токи. Второй вариант возможен в том случае, если металл, по которому уже протекает электрический ток, дополнительно подвергается воздействию воды. Вследствие такой нагрузки появляются так называемые пробои, от которых распространяется коррозия металла.

Этот вид электрокорозии отличается от гальванической, хотя у них одна природа появления. Гальваническая коррозия возникает из-за соединения двух разных видов металла.

Блуждающие токи возникают не только из-за внешних, но и из-за внутренних источников, а именно в связи с коротким замыканием. Теоретически при правильном строительстве коротких замыканий в системе быть не должно, но на практике получается по-другому. В каких-то местах сварочное соединение заменяют на обычные сгоны или меняют кусок трубы на металлопласт, поэтому возникают блуждающие токи, и все это приводит к электрической и электрохимической коррозии.

Особенно подвержены этим видам электрокорозии подземные коммуникации, так как они проходят через разные виды грунта. Дополнительная опасность возникает, если эти коммуникации проложены рядом с местами с повышенными электрическими затратами. Сама проблема возникновения коррозии на полотенцесушителях заключается в том, что большинство людей сейчас пытается заменить старые трубы на пластиковые, предполагая, что от этого исчезнут блуждающие токи. Но чаще получается совсем наоборот.

ЭТО ИНТЕРЕСНО:  Что такое ов в строительстве

Когда весь стояк состоит из металлических труб, а в квартирах их заменяют на пластиковые, возникают блуждающие токи из-за разных видов труб. Все это происходит потому, что все металлические трубы при постройке заземлены.

В новых домах, например, заземление происходит через систему уравнения потенциалов, а в старых в подвалах — по контуру заземления. А при установке пластика эта металлосвязь между трубами и полотенцесушителем нивелируется, и появляются блуждающие токи.

Следовательно, разрывается уже существующий потенциал: получается, что на стояке он будет один, а на полотенцесушителе — другой.

Как защитить полотенцесушитель от корозии

Как защитить новый полотенцесушитель от такой проблемы? Ответ достаточно прост: необходимо обеспечить серьезную металлическую связь между двумя трубами, а именно между трубами стояка и самим устройством. Тогда блуждающие токи устранятся. Проще говоря, нужно заземлить полотенцесушитель к металлическим трубам стояка. Если трубы водопровода в квартире выполнены из метала, вопросов об их дополнительном заземлении не должно возникнуть.

Каждая ванная комната также имеет заземление на трубопровод отдельным проводником, потому что у нее нет другой связи с водопроводной трубой.

Когда в моду вошло использование пластиковых труб, о заземлении стали мало задумываться, так как металлопластиковая труба похожа по токопроводимости на металлическую. Но это большое заблуждение. Не существует соединительных элементов, обеспечивающих контакт между алюминием и металлопластиковой трубой.

Получается так: вода имеет высокую токопроводимость, чтобы подвести накопившееся опасное напряжение в безопасное место, но она недостаточно проводима, чтобы защитить пользователя от нежелательного разряда тока. К тому же при движении вода трется о стенки труб и сама образует определенный заряд, который затем скапливается на металлических элементах, что тоже может привести к коррозии.

Как показывает практика, токи в системе отопления большой опасности не представляют, а вот их скопление и наличие в полотенцесушителях массово наносят вред здоровью пользователей, которые могли не знать, забыть или проигнорировать факт необходимости заземления металлопластиковых труб. Особенно это опасно, когда в доме находятся дети.

Итак, при установке металлопластиковых и пластиковых труб все металлические элементы существующей и новой системы водопровода необходимо заземлять (в том числе и отопительные батареи, полотенцесушители, раковины, ванны и другие металлические элементы, которые могут проводить скопившийся ток).

Заземление водонагревателя

Почему-то мало кто уделяет должное внимание вопроса как правильно заземлить водонагреватель. Роль заземления в водонагревательном баке не ограничивается только своей функцией защиты человека от поражения электрическим током — существует и масса других причин, заставляющих не на шутку задуматься о его наличии. Дело в том, что в своём большинстве накопительная ёмкость для горячей воды производится из нержавеющей стали. С одной стороны это, конечно, хорошо — долговечный, неподверженный коррозии металл способен прослужить долгие годы. А вот с другой стороны нержавеющая сталь довольно-таки сильно подвержена воздействию блуждающих токов, для отвода которых как раз и используется защитное заземление, именно они способны поразить человека электрическим разрядом. На нержавеющую сталь эти блуждающие токи влияют очень сильно — проходя через тонкий металл, ток оставляет в нём микроскопические поры, которые впоследствии становятся всё больше и больше, тем самым нарушая герметичность всей конструкции в целом. Чтобы немного уменьшить воздействие этого неблагоприятного фактора, в водонагревательный бак устанавливается анод — помимо избавления воды от солей и других примесей он выполняет функцию «громоотвода», собирая все блуждающие токи. При отсутствии надлежащего заземления этим токам просто некуда будет деваться, и даже при наличии полноценного анода статистическое напряжение будет накапливаться и выводить из строя водонагревательный бак.

Источник: https://vtt14.ru/info/articles/2018/elektrokorroziya/

Блуждающие токи что это защита от них определение

Мир меняется очень быстро. Для комфорта человеку с каждым годом необходимо всё больше и больше ресурсов. И одним из таких ресурсов можно назвать энергию. Энергопотребление растёт с каждым годом.

Увеличивается число новых трансформаторных станций, кабельных и воздушных ЛЭП и всего прочего. Одним из проводников на нашей планете является сама земля, поэтому между ней и различными объектами возникает определённый вид связи. Например, блуждающие токи.

Блуждающие токи – это токи, возникающие в земле в результате её использования в качестве токопроводящей среды. Такие токи могут послужить причиной для развития коррозий металлических предметов, частично или полностью погружённых в землю. Они характерны, в частности, для трамвайных и железнодорожных путей, которым не уделяется должное обслуживание. Но что же служит причиной для возникновения блуждающих токов? И как от них можно избавиться? Об этом и не только расскажем в данной статье.

Причины возникновения

Причиной возникновения электрического тока является разность потенциалов между двумя точками проводника. Это же происходит и при возникновении блуждающего тока. Только в данном случае проводником служит сама почва.

Всего можно выделить четыре причины возникновения блуждающего тока:

  1. Как было сказано выше, земля, служащая проводником (эта причина чаще всего встречается в районах, где есть железные дороги или крупные электрические станции).
  2. Плохая изоляция проводов (результат плохого обслуживания).
  3. Установленная телевизионная вышка. Радиосигнал высокой мощности порождает собой блуждающий ток, является причиной его возникновения.
  4. Транспортные средства, работающие на электрической тяге. Основной причиной возникновения блуждающего тока в приведённом примере является искривлённость маршрутов.

Воздействие на металлические объекты

Как известно из школьного курса физики, для любого тока какие-либо металлические объекты служат лучшим проводником, нежели земля. Именно по этой причине блуждающий ток проходит по металлу, а не по почве.

Токи, встречая на своём пути любой металлический объект, имеющий меньшее удельное сопротивление, чем окружающий его грунт, натекают на него. Место входа называется катодной зоной. Пройдя по металлическому пути, блуждающий ток выходит из него. И это место выхода принято называть анодной зоной.

Именно здесь и происходит реакция, вызывающая коррозию. Такая коррозия может встречаться и в месте входа тока в землю из источника блуждающего тока.

проблема заключается в том, что, в основном, блуждающий ток носит постоянный характер. Это служит причиной быстрого разрушения металлических объектов. Таким образом, разрушаются не только рельсы, но и, например, их скрепления.

Если повреждено защитное покрытие металлических конструкций, то в местах таких анодных зон возникают дыры. Читая всё вышеперечисленное, можно сделать вывод, что блуждающий ток может нанести не только достаточно серьёзные повреждения изделиям из металла, но и существенный экономический ущерб.

Способы защиты

Для защиты своего дома или квартиры от блуждающих токов выделяется один основной способ — заземление металлических и электротехнических изделий. Заземление уравнивает разность потенциалов, делая невозможным возникновение блуждающего тока. В более крупных масштабах профессионалы обычно используют другой метод. Суть его заключается в установке катодной защиты, которая осуществляется при помощи постоянного электрического источника. Станция такой защиты генерирует постоянный ток.

Но у катодной защиты существуют свои недостатки:

  1. Превышение защитного потенциала. Из-за этого повышается вероятность возникновения коррозий на металлической конструкции.
  2. Неправильный расчёт защиты, в результате которого происходит коррозийное поражение металлических объектов, расположенных по близости.

Проявление блуждающих токов можно свести к минимуму, но для этого необходимо сделать более тщательную изоляцию в тех местах, где они появляются.

Методы измерений

Блуждающие токи вычисляются путём измерения разности потенциалов точек земной поверхности, перпендикулярных друг другу и находящихся на расстоянии в 100 метров. Такие измерения проводятся каждый километр. Для них необходимы специальные приборы, которые должны обладать классом точности не менее 1,5 и иметь собственное сопротивление от 1 Ом.

Также для данных измерений используются медно-сульфатные электроды сравнения. В их конструкцию входят неметаллические корпусы, внутри которых находятся стержни из красной меди и насыщенный раствор медного купороса. Стоит отметить, что измерения должны проводиться в каждой точке не менее 10 минут, с ручной или компьютерной записью результатов каждые 10 секунд. Если наибольший размах колебаний потенциалов превышает отметку 0,4 В, то это подтверждает наличие блуждающих токов.

Источник: https://web-electric.ru/chto-takoe-bluzhdayushhie-toki-i-kak-ot-nih-izbavitsya

Блуждающие токи: причины возникновения и способы защиты от них

Последние 10-20 лет во многих мегаполисах наблюдается резкое снижение срока службы подземных металлических сооружений (трубопроводов горячего и холодного водоснабжения, системы отопления и т.д.).

После проведения ряда экспертиз было установлено, что основная причина разрушения металла — электрохимическая коррозия, которую вызывают блуждающие токи.

Из данной статьи Вы узнаете о природе этого явления, а также получите представление о способах защиты подземных сооружений и инженерных коммуникаций от гальванической коррозии.

Что такое блуждающий ток?

Как известно, земля является проводником электрического тока, что позволяет применять это свойство для создания заземляющих устройств. Но в тоже время, когда почва выступает в качестве токопроводящей среды, в ней образуются утечки. Поскольку нельзя спрогнозировать в какое время начнется процесс, и где он будет протекать, то такие проявления получили термин «блуждающие».

Причины и источники возникновения

Как мы помним из школьного курса физики, для образования электрического тока необходимо, чтобы возникла разность потенциалов между двумя участками цепи. Принцип возникновения блуждающих токов – аналогичный. Только роль проводника в данном случае исполняет земля.

На территории современных городов и населенных пунктов находится множество электрифицированных объектов, начиная от ЛЭП и заканчивая рельсовым транспортом, включая оборудование тяговых подстанций. Их объединяет один фактор – расположение на земле. Это приводит к довольно специфичному взаимодействию с последней, проявляющемуся в виде появления блуждающих токов. Ниже представлена таблица, которой приводятся их потенциальные источники и условия образования электросвязи связи с почвой.

Таблица 1. Потенциальные источники.

Название объекта Взаимосвязь с землей
Различные виды распределительных устройств, оборудование подстанций, ВЛ с нулевым проводником (глухозаземленная нейтраль), подключенным к повторным заземлителям. При наличии на объекте ЗУ.
ВЛ сетей с изолированной нейтралью, кабельные магистрали. Возникает при повреждении изоляционного покрытия токонесущих элементов кабелей.
Рельсовый электротранспорт, системы с заземленной нейтралью. Наличие технологической связи между одним из проводников и землей.

Механизм образования блуждающих токов

В таблице мы привели в качестве примера несколько источников, теперь рассмотрим подробно, как в них образуется интересующий нас процесс. Как уже упоминалось выше, чтобы он появился, между двумя точками на земле должно произойти возникновение разности потенциалов. Такие условия создаются контурами ЗУ систем с глухоизолированной нейтралью.

Нулевой провод (PEN) одним концом соединен с ЗУ электроподстанции, а вторым подключен к шине PEN потребителя, которая соединена с заземляющим устройством объекта. Соответственно, разница электрических потенциалов между выводами нулевого проводника будет передаваться ЗУ, что создаст условия для образования цепи. Величина утечки будет незначительной, поскольку основная нагрузка пойдет по пути наименьшего сопротивления (нулевому проводнику), но, тем не менее, часть ее пойдет по земле.

Образование блуждающих токов между ЗУ нулевого провода

Практически аналогичные условия образуются, когда возникают проблемы с изоляцией проводов (разрушение оболочек) кабельных магистралей или ВЛ. При возникновении КЗ на землю, в этой точке потенциал равный или близкий к фазе. Это вызывает образование тока утечки к ближайшему ЗУ с потенциалом PEN-провода.

В приведенном примере о постоянной утечке переменных токов речь не идет, поскольку согласно действующим нормам на поиск и устранение повреждения отводится два часа. При этом, в большинстве случаев, отключение поврежденной линии или локализация участка с КЗ производится автоматически. Процесс может существенно затянуться, если сила тока КЗ ниже аварийного порога.

Как показывает практика, наибольшая доля источников токов постоянной утечки приходится на городской и пригородный рельсовый электротранспорт. Механизм их образования продемонстрирован ниже.

Рельсовый электротранспорт в качестве источника блуждающих токов

Обозначения:

  1. Контактный провод, от которого получает питание силовая установка электротранспорта.
  2. Питающий фидер (подключен к контактному проводу).
  3. Одна из тяговых подстанций, питающая сети трамваев.
  4. Дренажный фидер (подключен к рельсам).
  5. Рельсы.
  6. Трубопровод на пути прохождения блуждающих токов.
  7. Анодная зона (положительные потенциалы).
  8. Катодная зона (отрицательные потенциалы).

Как видно из рисунка, постоянное напряжение в тяговую сеть поступает с подстанции и по рельсам возвращается обратно. При недостаточном сопротивлении рельсовых путей относительно земли, в грунте возникают электрические блуждающие токи. Если на пути распространения утечки блуждающих токов находится трубопровод или другая металлическая конструкция, то она становится проводником электричества.

Это связано с тем, что ток распространяется по пути наименьшего сопротивления. Соответственно, как только появляется проводник, ток будет распространяться по металлу, поскольку его электрическое сопротивление меньше, чем у земли. В результате участок трубопровода, через который проходит электроток, будет в большей степени подвержен коррозии металла. О причинах этого рассказано ниже.

Связь блуждающего тока и коррозии на металле

Ввиду наличия в земле воды и растворенных в ней солей любая металлическая конструкция в почве подвержена коррозии. Но если металл помимо этого подвергается воздействию блуждающих токов, то процесс приобретает электролитическую природу.

Согласно закону Фарадея скорость электрохимической реакции напрямую зависит от тока, протекающего между анодом и катодом.

Следовательно, на скорость коррозии металлической трубы (уложенной в грунте) будет влиять электрическое сопротивление почвы, а также сложная природа процессов, протекающих в катодной и анодной зоне.

В результате металлическая конструкция помимо обычной коррозии подвергается воздействию токов утечки. Это может стать причиной образования гальванической пары, что существенно ускорит процесс коррозии. На практике отмечались случаи, когда участок трубопровода системы водоснабжения, подвергавшийся гальванической коррозии выходил из строя через два года, при расчетном сроке эксплуатации 20 лет. Пример такого воздействия представлен ниже.

Труба после воздействия блуждающих токов

Способы защиты от блуждающих токов

Для предотвращения пагубного воздействия электрохимического потенциала применяются методы защиты, которые могут отличаться в зависимости от особенностей металлических конструкций. Рассмотрим в качестве примера способы защиты водопроводных труб, полотенцесушителей и газопроводов, начнем в порядке данной очередности.

про различные защиты от блуждающих токов

Защита водопроводных труб

Для проложенных в земле металлоконструкций, в частности водопроводных труб, применяются две методики защиты: пассивная и активная. Подробно опишем каждую из них.

Пассивная защита

Данная методика предусматривает нанесение на поверхность металлоконструкций специального изолирующего слоя, образующего защитный барьер между землей и металлической оболочкой. В качестве изоляционного материала используются полимеры, различные виды эпоксидных смол, битумное покрытие и т.д.

Пример защитного покрытия трубы для подземной укладки

К сожалению, современная технология не позволяет создать защитный барьер, обеспечивающий полную изоляцию.

Любое покрытие обладает определенной диффузионной проницаемостью, поэтому при данном способе возможна только частичная изоляция от грунта. Помимо этого следует учитывать, что в процессе транспортировки и монтажа может быть нанесено повреждение защитному слою.

В результате на нем образуются различные дефекты изоляции в виде микротрещин, царапин, вмятин и сквозных повреждений.

Поскольку рассмотренный метод не обладает достаточной эффективностью, он применяется в качестве дополнения активной защиты, о которой пойдет речь далее.

Активная защита

Под данным термином подразумевается управление механизмами электрохимических процессов, которые протекают в местах контакта металлических конструкций с образующимся в грунте электролитом. Для этой цели применяется катодная поляризация, при которой отрицательный потенциал смещает естественный.

Источник: https://www.asutpp.ru/bluzhdayuschie-toki.html

Понравилась статья? Поделиться с друзьями:
220 вольт