Что измеряется в фарадах

Как измерить ёмкость конденсатора мультиметром?

что измеряется в фарадах

Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Источник: https://odinelectric.ru/knowledgebase/kak-izmerit-yomkost-kondensatora-multimetrom

Емкость земли в фарадах

что измеряется в фарадах

Конденсатор электр. Одно и то же количество электричества , будучи придано различным телам, вызовет в них неодинаковое повышение напряжения, подобно тому, как одно и то же количество тепла повысит температуру различных тел на различное число градусов.

Обратно, чтобы повысить напряжение потенциал различных тел на одну и ту же величину, нужны различные количества электричества, для одних тел весьма малые, для других весьма большие. О первых телах говорят, что они обладают малой электрической емкостью, о вторых, что их электрическая емкость весьма велика. Вообще же, электроемкость тела определяется тем количеством единиц электричества — кулонов см.

Поэтому за единицу электрической емкости принята емкость тела, которому нужно придать один кулон, чтобы повысить потенциал его на один вольт.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Чем опасны конденсаторы

Что измеряется в фарадах

Сообщение электрического заряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:.

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника. Одной из причин, влияющих на эту разницу, являются размеры самого проводника. Один и тот же заряд, сообщенный различным проводникам, может создать различные потенциалы.

Чтобы повысить потенциал какого-либо проводника на одну единицу потенциала, необходим определенный заряд. Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Практически заряд измеряется в кулонах, потенциал в вольтах, а емкость в фарадах:. Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица емкости — фарада обозначается ф или F очень велика. Поэтому чаще пользуются более мелкими единицами — микрофарадой мкф или , составляющей миллионную часть фарады:. Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором. Конденсатор состоит из двух металлических пластин обкладок , разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины.

Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другою, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:.

Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика.

Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью такого же конденсатора, диэлектриком в котором служит пустота воздух.

Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью хорошими изолирующими качествами.

Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора. Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов.

Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токо-ведущих жил между собой. Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических станиолевых листов с парафинированной бумажной или слюдяной прослойкой между ними. Для увеличения емкости увеличения площади пластин конденсатора чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на фиг.

Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или в трубку. Конденсаторы большой емкости во многих случаях. Определим емкость плоского конденсатора. Возьмем пронзвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:.

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин обкладок S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью б. Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько реже один медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ией полудисков входит между двумя неподвижными полуднсками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полуднсков, мы можем менять емкость коиденсатоpa.

На фиг. В радиотехнике применяются также электролитические конденсаторы. Эти конденсаторы изготовляются двух типов: жидкостные и сухие. В обоих типах конденсаторов употребляется оксидированный алюминий.

Путем специальной электрохимической обработки на поверхности алюминия получают тонкий по-. Оксидная изоляция обладает электроизолирующими свойствами, механически прочная, нагревостойка, но гигроскопична.

В жидкостных электролитических конденсаторах алюминиевую оксидированную пластину помещают внутрь металлического корпуса, который служит второй пластиной.

В корпус заливают электролит, состоящий из раствора борной кислоты с некоторыми примесями. Сухие электролитические конденсаторы изготовляют путем сворачивания трех лент.

Одна лента представляет собой алюминиевую оксидированную фольгу тонко раскатанный лист металла. Другой пластиной является лента из алюминиевой фольги.

Между двумя металлическими лентами помещается бумажная или марлевая лента, пропитанная вязким электролитом. Плотно свернутые ленты помещаются в алюминиевый корпус и заливаются битумом.

Когда емкость одного конденсатора мала, то соединяют несколько конденсаторов параллельно фиг. Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети.

Рассмотрим последовательное соединение конденсаторов фиг. Значит, при последовательном соединении каждый конденсатор независимо от величины его емкости получит один и тот же заряд, т. Таким образом, при последовательном соединении конденсаторов обратная величина общей емкости равна сумме обратных величин емкостей отдельных конденсаторов.

Каждый из конденсаторов включен на меньшее напряжение, чем напряжение сети. Конденсаторы широко применяются в радиотехнике, рентгенотехнике, высокочастотной промышленной электротехнике, для увеличения коэффициента мощности.

Электрический привод [26] Однофазный переменный ток [23] Основные законы постоянного тока [21] Электроизмерительные приборы и техника электрических измерений [21] Машины постоянного тока [20] Электростатика [14] Электромагнетизм [13] Тепловые действия электрического тока [10] Трансформаторы [9] Электромагнитная индукция [9] Химические действия тока и химические источники э.

Основы электротехники. Электрическая емкость Сообщение электрического заряда проводнику называется электризацией. Добавить . Выполняется отправка Форум Блоги Доска объявлений Разместить материал.

Новости Новости энергетики Новости сайта. Статьи Основы электротехники Основы релейной защиты. Справочник реле Каталог микропроцессорных устройств. Фотогалерея .

Электрическая емкость. Конденсаторы. Емкость конденсатора

Random converter. От истории, классификации и определения логарифмических единиц до интересных примеров их использования в акустике, телекоммуникациях, фотографии и других областях науки и техники. Конденсаторы — устройства для накопления заряда в электронном оборудовании.

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:. Здесь Q — электрический заряд, измеряется в кулонах Кл , — разность потенциалов, измеряется в вольтах В.

В системе СИ электроемкость измеряется в фарадах Ф.

Емкостью 1 Ф обладает тело, когда при заряде 1 к между ним и землей получается напряжение 1 В. Фарада – очень большая единица измерения.

Электрическая емкость уединенного проводника

На нашем сайте собрано более бесплатных онлайн калькуляторов по математике, геометрии и физике.

Не можете решить контрольную?! Мы поможем! Более 20 авторов выполнят вашу работу от руб! Подскажите, пожалуйста, в чем измеряется емкость конденсатора в системе СИ? Как данная единица измерения выражается через основные единицы системы СИ? Давайте начнем с предложенной Вами задачи. Основой для ее решения является формула, определяющая емкость:. Теперь можно вычислить емкость конденсатора:. Теперь разберемся, в чем измеряется емкость конденсатора.

Как измерить ёмкость конденсатора мультиметром?

Сообщение электрического заряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:.

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника.

Рассмотрим уединенный проводник, т.

Фарад единица измерения чего. Электрическая ёмкость, конденсатор

Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада. В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в году, одновременно с принятием системы СИ в целом [2].

В фарадах измеряют электрическую ёмкость проводников , то есть их способность накапливать электрический заряд. Например, в фарадах и производных единицах измеряют: ёмкость кабелей, конденсаторов , межэлектродные ёмкости различных приборов.

Промышленные конденсаторы имеют номиналы , измеряемые в микро- , нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т.

9. Электрическая емкость

Источник: https://all-audio.pro/c3/datashiti/emkost-zemli-v-faradah.php

Что измеряется в фарадах

что измеряется в фарадах

> Теория > Что измеряется в фарадах

Среди разных электрических параметров, которые необходимо измерять при наладке электросхем, есть электрическая ёмкость.

Важно! Электрическая ёмкость конденсаторов и проводов не имеет ничего общего с электрохимической ёмкостью батарей и аккумуляторов.

В каких единицах измеряется ёмкость

Электрическая ёмкость – это способность тел накапливать заряд. Таким свойством обладают кабеля, конденсаторы и другие элементы электросетей и схем. Она есть также у отдельно расположенных (находящихся далеко от других тел) проводников и измеряется в фарадах. Своё название эта единица получила по имени физика Майкла Фарадея.

1 фарад – это большая величина. Такую ёмкость имеет металлический шар в 13 раз больше Солнца. Шар размером в Землю имеет всего 710 микрофарад.

Обычно, говоря о том, что измеряется в фарадах, имеют в виду конденсатор. На элементах до 9999 пикофарад она указывается просто цифрами, без обозначения единиц измерения. С 9999 пикофарад до 9999 микрофарад кроме числа наносится обозначение единицы измерения: мкФ или uF.

Кроме пикофарад и микрофарад, ёмкость измеряется также в нанофарадах (nF). 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.

Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Измерение электрической ёмкости

Единица измерения напряжения

Основное свойство конденсаторов – они не пропускают постоянный ток, а сопротивление переменному току тем меньше, чем выше его частота. Поэтому измерение элемента сводится к измерению его сопротивления на определённой частоте и вычислению её по соответствующей формуле.

На практике это делается специальными приборами или мультиметром, в котором есть эта функция.

Измерение электрической ёмкости

Применение конденсаторов

Конденсаторы применяются во всех областях электротехники и в электронных устройствах любой сложности:

  • Вместе с катушками индуктивности или активными сопротивлениями входят в конструкцию фильтров определённой заранее заданной или меняющейся частоты, а также колебательных контурах и генераторах. Такие фильтры используются в радиоприёмниках, цветомузыкальных установках и других устройствах;
  • В блоках питания и выпрямителях сглаживают пульсации постоянного тока после диодного моста. Используются электролитические конденсаторы от нескольких до тысяч микрофарад;
  • Отдают свой заряд быстро, в результате чего образуется кратковременный импульс большой мощности. Это свойство используется в фотовспышках, электрошокерах, импульсных лазерах и многих других;
  • Конденсатор обладает реактивным сопротивлением и практически не греется во время работы. Это позволяет использовать его в качестве токоограничивающего сопротивления в блоках питания малой мощности;
  • При работе электродвигателей, трансформаторов и других индуктивных нагрузок, кроме активной, происходит потребление реактивной (индуктивной) мощности. Для её компенсации и снижения потребления электроэнергии параллельно вводным автоматам включаются конденсаторы;
  • Измерение перемещений на малые расстояния и влажности. Параметры устройства очень сильно зависят от расстояния между электродами и влажности диэлектрика между ними;
  • Фазосдвигающие устройства. Применяются для запуска электродвигателей от однофазной сети переменного тока, как однофазных, так и трёхфазных;
  • Заряд и разряд через сопротивление продолжается некоторое время, в течение которого напряжение меняется по экспоненциальному закону. Это позволяет, используя R-C-цепочки или генератор тока, реализовать схемы с задержкой времени на включение или отключение исполнительного механизма, а также генератор импульсов и другие схемы.

Электрическая ёмкость – важная величина, без измерения которой невозможны электроника и электротехника.

Мощность электрического тока

Источник: https://elquanta.ru/teoriya/chto-izmeryaetsya-v-faradakh.html

Конденсаторы — параметры и маркировка, перевод величин емкости

Конденсатором обычно называют устройство, которое обладает способностью накапливать электрический заряд. Конструктивно конденсатор представляет собой два проводника, разделенных диэлектриком.

Единицей электрической емкости конденсатора в системе СИ является Фарада. Сокращенно обозначается буквой Ф. Названа в честь английского физика Майкла Фарадея.

В радиоэлектронике используется емкость конденсатора, выраженная через дробные единицы фарад: пикофарад, нанофарад, микрофарад.

  • 1мкФ=10-6 Ф;
  • 1 нФ = 10-9 Ф;
  • 1 пФ = 10-12 Ф;
  • 1 мкФ = 103 нФ = 106 пФ.

В старой радиотехнической литературе использовалась единица емкости — сантиметр: 1 см = 1,11 * 10-12 Ф = 1,11 * 10-6 мкФ = 1,11 пФ.

Конденсаторы, как и резисторы бывают постоянные и переменные (КПЕ — конденсатор переменной емкости). Переменные конденсаторы бывают в виде нескольких блоков и подстроечные.

В зависимости от материала диэлектриков современные конденсаторы делятся на следующие типы:

  • бумажные;
  • вакуумные;
  • воздушные;
  • керамические;
  • лакопленочные;
  • металлобумажные;
  • оксидные;
  • пленочные;
  • слюдяные;
  • электролитические.

Основные параметры

Основными параметрами конденсаторов являются:

  • номинальная емкость (Сном), которая обычно указывается на корпусе конденсатора,
  • температурный коэффициент емкости (ТКЕ)
  • номинальное напряжение (Uном).

Номинальное напряжение — это максимальное допустимое постоянное напряжение, при котором конденсатор способен работать длительное время, сохраняя параметры неизменными при всех установленных для него температурах. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе.

При работе конденсатора в схемах переменного тока его номинальное напряжение, указанное на корпусе, должно в 1,52 раза превышать предельно допустимое действующее переменное напряжение цепи.

На корпусе конденсатора обычно указывают его тип, напряжение, номинальную емкость, допустимое отклонение емкости, ТКЕ и дату изготовления.

Маркировка конденсаторов

Маркируют конденсаторы как и резисторы буквенно-цифровым кодом, который обозначает номинальную емкость, единицу измерения, допустимое отклонение емкости и ТКЕ.

Например, маркировка на конденсаторе 62 pJL расшифровывается так: номинальная емкость 62 пФ с допустимым отклонением ±5%, ТКЕ группы М75 (75 * 10-6/1 градус С). Буквенные коды единиц измерения номинальных емкостей приведены в табл. 1.

Таблица 1. Обозначение номинальной величины емкости на корпусах конденсаторов.

Полное обозначение Сокращенное обозначение на корпусе
Обозначение единиц измерения   Примерыобозначения Обозначениеединицизмерения Примерыобозначения
Старое Новое Старое Новое
Пикофарады0999 пФ пФ 0,82 пФ5,1 пФ36 пФ П Р 5П136П   р825р136р
Нанофарады100999999 нФ   нФ,1 нФ = 1000 пФ   120 пФ3300 пФ68000 пФ Н n 3H368Н   n12ЗnЗ68n
Микрофарады1999 мкФ мкФ 0,022 мкФ0,15 мкФ2,2 мкФ10 мкФ М μ 22НМ152М210М 22 nμ152 μ210 μ

Цветовой код маркировки конденсаторов

Конденсаторы как и резисторы маркируют с помощью цветового кода (рис. 2). Цветовой код состоит из колец или точек. Каждому цвету соответствует определенное цифровое значение.

Знаки маркировки на конденсаторе сдвинуты к одному из выводов и располагаются слева направо. Номинальная емкость (в пикофарадах) представляет число, состоящее из цифр, соответствующих одной, двум и трем или одной и двум (для конденсаторов с допуском ±20%) полосам, умноженное на множитель, который определен по цвету полосы.

Последняя полоса маркировки в два раза шире других и соответствует ТКЕ. Конденсаторы с допуском ±0,1 10% имеют шесть цветовых полос. Первая, вторая и третья полосы — величина емкости в пикофарадах, четыре — множитель, пять — допуск, шесть (последняя) — ТКЕ.

Конденсаторы с допуском ±20% имеют пять цветовых полос, на них нет цветового кода допуска. Иногда этот тип конденсаторов маркируют четырьмя цветовыми кольцами. При такой маркировке первая и вторая полосы отводятся для обозначения величины, третья полоса — для множителя, четвертая — для ТКЕ.

Цветовой код танталовых конденсаторов приведен на рис. 3. Следует обратить внимание на то, что у этих конденсаторов положительный вывод в два раза толще другого, и отсчет колец начинается от головки конденсатора. На рис. 4 приведена цветовая маркировка зарубежных конденсаторов широкого использования.

Цветмаркировки Номинальнаяемкость Множитель Допуск, % ТКЕ
Перваяполоса Втораяполоса Третьяполоса Четвертаяполоса Пятаяполоса Шестаяполоса
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 1 ±252
Коричневый 1 1 1 10 ±1 ±100
Красный 2 2 2 102 ±2 ±50
Оранжевый 3 3 3 103 ±15
Желтый 4 4 4 104 ±25
Зеленый 5 5 5 105 ±0,5 ±20
Синий 6 6 6 106 ±0,25 ±10
Фиолетовый 7 7 7 107 ±0,1 ±5
Серый 8 8 8 108 ±1
Белый 9 9 9 109
Нет цвета ±20

Рис. 2. Цветовой код отечественных конденсаторов широкого применения.

Цветмаркировки Номинальная емкость Допуск, %
Первыйэлемент Второйэлемент Третийэлемент(множитель) Четвертыйэлемент
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 1
Коричневый 1 1 10 ±1
Красный 2 2 102 ±2
Оранжевый 3 3 103
Желтый 4 4 104
Зеленый 5 5 105 ±0,5
Синий 6 6 106 ±0,25
Фиолетовый 7 7 107 ±0,1
Серый 8 8 108 ±0,05
Белый 9 9 109

Рис. 3. Цветовой код для маркировки танталовых конденсаторов.

Цвет маркировки 1 и 2цифры Множитель Допуск, % класс ТКС
Черный 1 20
Коричневый 1 10 1 1 -33
Красный 2 102 2 -75
Оранжевый 3 103 2 -150
Желтый 4 104 -220
Зеленый 5 3 -330
Синий 6 -470
Фиолетовый 7 -750
Серый 8 0,5
Белый 9 4
Золотистый 5 +100
Серебряный 10

Рис. 4. Цветовая маркировка зарубежных конденсаторов широкого использования.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Источник: http://radiostorage.net/1667-kondensatory-parametry-i-markirovka-perevod-velechin-ehmkosti.html

Работаем с цифровым мультиметром. Часть 3

Добрый день, друзья!
Не так давно мы с вами учились работать с  цифровым мультиметром и ознакомились с тем, как измерять ток и напряжение. Это две величины, с которыми чаще всего имеют дело. Но есть и другие параметры, которые могут измеряться цифровыми приборами.

Хорошо бы научиться измерять и их. Вы же хотите стать экспертом в измерениях, правда? Тогда давайте с вами посмотрим

Как измерить емкость конденсатора

Конденсаторы широко применяются в качестве накопителей энергии в источниках питания.

В компьютерном блоке питания их может быть более десятка.

И на материнской плате компьютера их натыкано видимо-невидимо.

За измерение емкости отвечает отдельная группа позиций (внизу слева, левее группы измерения тока). На корпусе вблизи этой области нанесена буква F (Farade, фарада, единица измерения емкости). Емкость измеряют в 5 поддиапазонах: 0 — 2 nF (нанофарад, нФ), 0 — 20 nF, 0 — 200 nF, 0 — 2 мкФ (микрофарад) , 0 — 20 мкФ.

Напомним, что 1 нФ = 1000 пФ (пикофарад), 1 мкФ = 1000 нФ. Отметим, что емкость в 1 Фарад очень велика. Электролитические конденсаторы в блоках питания и на материнской плате имеет емкость в сотни и тысячи микрофарад. Керамические блокировочные конденсаторы имеют емкость в десятки и сотни нанофарад.

Конденсатор при измерении емкости присоединяют не к щупам, а вставляют выводами в специальное гнездо. Это не всегда удобно, так как конденсатор (особенно выпаянный), часто имеет короткие выводы.

Если вставить в гнезда короткие металлические пластинки, удобство пользования тестером возрастает.

Теперь при измерении емкости достаточно коснуться выводами конденсатора металлических пластинок.

Отметим, что хорошо было бы в таких мультиметрах расширить пределы измерения в верхнюю сторону. Большинство электролитических конденсаторов, устанавливаемых в компьютерные блоки питания или на материнские платы, имеет гораздо большую емкость.

Существуют специальные измерители не только емкости, но и ESR (Equivalent Series Resistance, эквивалентное последовательное сопротивление) конденсаторов. Они позволяют оценить емкость в десятки и сотни тысяч микрофарад.

ЭТО ИНТЕРЕСНО:  Что такое отклонение напряжения

Измерения сопротивления

Следующая группа позиций — для измерения сопротивления (на 7 поддиаазонах): 0 — 200 Ом, 0 — 2 кОм, 0 — 20 кОм, 0 — 200 кОм, 0 — 2 МОм, 0 — 20 МОм, 0 — 200 МОм . Вблизи этой группы нанесен специальный значок (греческая буква Омега).

Деление на поддиапазоны обусловлено стремлением точнее измерить величину сопротивления.

Например, сопротивление в несколько Ом лучше  измерять на поддиапазоне 0 – 200 Ом, а не на верхних.

На верхних диапазонах будет либо пониженная точность, либо вообще «0» кОм (Мом). Если измерять большие значения сопротивления на нижних диапазонах, то прибор покажет превышение значения (минус и единицу в самом левом разряде).

На младшем поддиапазоне есть возможность «прозвонки» цепей, если их сопротивление не превышает некоей величины (для данного прибора — около 50 Ом).

При этом прибор издает звуковой сигнал. Это очень удобно, в частности, при поиске жил в кабельных соединениях. При этом можно не смотреть на табло прибора, что экономит время.

При измерении сопротивления на самом нижнем поддиапазоне надо учитывать, что щупы прибора также имеют некоторое сопротивление.

Если их замкнуть между собой, прибор покажет не «0» Ом, а некоторую небольшую величину (в диапазоне примерно 0,5 – 1 Ом). Эту величину надо вычесть из измеренного значения.

Отметим, что проводники из металлов имеют небольшое сопротивление. Лучшими проводниками являются медь и серебро. Поэтому, например, обмотки трансформаторов выполняют из медных проводов, а сильноточные контакты покрывают слоем серебра. Чем меньше сопротивление проводника, тем меньше он греется.

Сплавы металлов имеют повышенное сопротивление, соответственно, они сильнее греются, поэтому из них изготавливают различные нагреватели. Кстати сказать, в паяльниках, которые используют при пайке часто используется нихром (сплав НИкеля и ХРОМа).

Изоляторы, наоборот, имеют очень большое сопротивление, поэтому при прикладывании к ним напряжения ток через них практически не протекает. Пример изолятора – стеклотекстолит, из которого изготовлена материнская плата компьютера.

Заканчивая тему измерения сопротивления, отметим, что сопротивление тела человека лежит в пределах от нескольких килоом до нескольких десятков или сотен килоом и зависит от состояния его здоровья и кожных покровов.

Теперь вы знаете, как выполнять измерения и можете оценить сопротивление своего тела. И похвастаться этой величиной и своим умением перед товарищами :yes:

В заключение расскажем, как выполнить

Измерение температуры

Мультиметр может измерять и температуру.

При этом переключатель ставится напротив зеленой метки «Temp».

В гнездо выше переключателя ставится термопара типа К. Термопара — это два проводника из разных сплавов, спаянные в одной точке. При этом на противоположных концах возникает термоЭДС (электродвижущая сила).

Чем сильнее нагрето место спая, тем больше термоЭДС. Прибор измеряет это значение и выводит сразу температуру в привычных нам градусах Цельсия. Отметим, что термопара обладает некоторой инерционностью, особенно при измерении больших температур.

Термопарой можно измерить температуру жала паяльника. При этом важно обеспечить надежный тепловой контакт между нею (шариком спая) и жалом. Отметим, что паяльник в паяльных станциях имеет встроенный датчик, при этом температура жала показывается на специальном табло.

У нас осталась не рассмотренной важная тема – как проверять с помощью цифрового мультиметра полупроводниковые приборы. Этим мы займемся в следующих постах.

Всего наилучшего!

С вами бы Виктор Геронда. До встречи на блоге!

Источник: https://vsbot.ru/pomoshty-zhelezu/rabotaem-s-multimetrom-chast-3.html

Электрическая емкость. Понятие. Единицы измерения

Понятие электрической емкости. Единицы измерения. Конденсаторы. (10+)

Электрическая емкость. Понятие. Единицы измерения

Оглавление :: ПоискТехника безопасности :: Помощь

Материал является пояснением и дополнением к статье:
Единицы измерения физических величин в радиоэлектронике
Единицы измерения и соотношения физических величин, применяемых в радиотехника.

Если от одного тела отводить заряженные определенным образом частицы (например, электроны) к другому, то вследствие избытка заряженных частиц между двумя телами возникнет разность потенциалов, то есть электрическое напряжение. Емкость между двумя телами показывает нам, сколько заряженных частиц нужно перенести от одного тела к другому, чтобы получить заданное напряжение.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Понятие емкости

Если между двумя телами емкость составляет один Фарад (Ф), Farad (F), это значит, что при переносе заряда в один Кулон напряжение изменится на один Вольт

[Изменение напряжения, В] = [Перенесенный заряд, К] / [Емкость, Ф]

Помня, что перенесенный заряд равен силе тока, помноженной на время его протекания, запишем формулу в более привычном виде:

[Изменение напряжения, В] = [Сила тока, А] * [Время, с] / [Емкость, Ф]

Конденсатор, прибор с нормированной емкостью

Электронный прибор, который специально предназначен для изменения напряжения пропорционально накопленному заряду, называется конденсатором. Практически любые тела в природе образуют между собой конденсатор, но электронным прибором он становится тогда, когда у него строго определенная емкость, что позволяет применять его в радиоэлектронных схемах.

Таким образом, ток в один Ампер, заряжает конденсатор емкостью один Фарад на один Вольт за одну секунду.

Напряжение на конденсаторе не может измениться мгновенно, так как в природе не бывает бесконечной силы тока. Если выводы заряженного конденсатора замкнуть, то сила тока должна быть бесконечной.

На самом деле конденсатор и его выводы имеют некоторое внутреннее сопротивление, так что сила тока будет конечной, но может быть очень большой. Аналогично, если разряженный конденсатор подключить к источнику напряжения.

Ток будет стремиться к бесконечности и будет ограничен внутренним сопротивлением конденсатора и источника напряжения.

Многие ошибки в переключательных и импульсных схемах связаны с тем, что разработчики забывают учесть тот факт, что напряжение на конденсаторе не может меняться мгновенно. Быстро открывающийся транзистор, подключенный напрямую к заряженному конденсатору, может просто сгореть или очень сильно нагреваться.

Емкость пластин и генератор Ван де Граафа

Конденсаторы обычно представляют собой две пластины, между которыми проложен слой диэлектрика.

[Емкость между двумя пластинами, Ф] = [Диэлектрическая проницаемость вакуума, Ф/м] * [Диэлектрическая проницаемость диэлектрика между пластинами] * [Площадь пластин, кв. м] / [Расстояние между пластинами, м]

[Диэлектрическая проницаемость вакуума, Ф/м] приблизительно равна 8.854E-12, [Расстояние между пластинами, м] много меньше линейных размеров пластин.

Рассмотрим такой интересный случай. Пусть у нас есть две пластины с определенной разностью потенциалов. Начнем их физически разносить в пространстве. Мы тратим энергию, так как пластины притягиваются друг к другу. Напряжение между пластинами будет расти, так как заряд остается прежним, а емкость убывает.

На этом принципе основана работа генератора Ван де Граафа. Там на ленте транспортера установлены металлические пластины или крупицы вещества, способного переносить заряд. Когда эти крупицы приближаются к заземленной пластине, между ними и землей прилагается некоторое, довольно высокое напряжение (1000 и более Вольт). Они заряжаются.

Дальше транспортер увозит их от заземленной пластины. Емкость между ними и землей падает в тысячи или десятки тысяч раз, напряжение, соответственно, растет в то же количество раз. Далее эти крупицы контактируют с телом, на котором накапливается заряд, и отдают ему часть своего заряда. Так можно получить 10 или даже 100 миллионов Вольт.

Единицы измерения, кратные Фараду (Farad)

Один Фарад — очень большая емкость. Сейчас появились специальные наноконденсаторы, в которых очень тонкие пластины, проложенные очень тонким, но электрически прочным изолятором намотаны в огромные бобины. Такие конденсаторы могут иметь емкость даже в десятки Фарад. Но электроника оперирует обычно с гораздо меньшими емкостями.

микрофарад мкФ mcF 1E-6 Ф 0.000001 Ф
нанофарад нФ nF 1E-9 Ф 0.001 мкФ
пикофарад пФ pF 1E-12 Ф 0.001 нФ

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/units-farad

Что такое электрическая емкость и в чем она измеряется

В электротехнике часто встречается понятие ёмкости. При этом речь идёт не о ведре или другом сосуде, а об электрической ёмкости проводника, аккумулятора и конденсатора. Путать эти понятия нельзя. В этой статье мы разберемся, что такое электрическая ёмкость, от чего она зависит и в каких единицах измеряется.

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10(-3) Ф

1 мкФ = 10(-6) Ф

1 нФ = 10(-9) Ф

1 пФ = 10(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной.

Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках.

Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Для двух концентрических сфер с общим центром:

Для цилиндрического конденсатора:

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства.

Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту.

Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-elektricheskaya-emkost-i-v-chem-ona-izmeryaetsya.html

Понятие емкости, правила измерения

Данная величина показывает, какое количество электронов (или других заряженных частиц) должно переместиться от одного объекта к другому для получения необходимого значения напряжения. Последнее возникает по той причине, что при перемещении частиц между объектами образуется разница потенциалов.

Единицей измерения емкостного значения является фарад (на письме обозначается заглавной кириллической литерой Ф). Когда при перенесении заряда в 1 Кулон напряжение меняется на 1 Вольт, значение емкости между перенесенными объектами составляет 1 Фарад. Формула зависимости емкости от напряжения имеет такой вид:

С (емкость) = Q (заряд)/U(напряжение).

Если мастер собрался измерять емкость используемого в радиоэлектронной схеме конденсатора, ему потребуется такой прибор, как мультиметр.

С задачей способен справиться даже бюджетный аппарат, при этом наибольшая точность демонстрируется при работе с пленочными конденсаторными элементами.

Для максимально точных замеров можно воспользоваться измерителем иммитанса, но данный прибор отличается очень высокой ценой (около 120 тыс. руб.). При использовании мультиметра нужно придерживаться следующего алгоритма:

  1. Отсоединить электроцепь от источника нагрузки. Проверить отсутствие питания, установив на устройстве режим замера напряжения и поставив щупы к источнику: показатель должен быть равен нулю.
  2. Снять заряд с конденсатора пассивным способом (подождать 20-30 минут) или активным (с помощью резистора). Для маленьких элементов нужен прибор с сопротивлением более 2 кОм. С достаточно крупными конденсаторами (например, в фотоаппаратах и бытовой технике) лучше вообще не работать в домашних условиях без подготовки – они накапливают опасно высокий заряд. Для разрядки такого элемента требуется резистор на 20 кОм и 5 Вт, подсоединенный через изолированный провод диаметром 3,3 мм2, предназначенный для эксплуатации под напряжением до 600 В.
  3. Отключить конденсатор от цепи. После этого поставить мультиметр в режим замера емкости. Если прибор снабжен несколькими настроечными диапазонами, нужно поставить тот, что с наибольшей вероятностью окажется верным (сориентироваться можно по маркировке). При наличии клавиши Rel нужно нажать ее, чтобы емкость сошла со щуповых элементов.
  4. Щупы помещаются к выводам конденсатора. При тестировании поляризованных элементов надо обязательно соблюдать полярность. Теперь нужно дождаться вывода данных на дисплей. Если высветилось слово overload (или OL), показатель слишком высокий для обнаружения данным прибором или в данном диапазоне (во втором случае нужно выбрать другой диапазон).

Важно! Нельзя подключать мультиметр к конденсаторному элементу, на корпусе которого имеются проколы или выпуклые места. Такие элементы вообще не стоит эксплуатировать – при подключении питания они способны взорваться.

Процесс измерения емкости конденсатора мультиметром

Область применения

Эта единица измерения используется не только для емкости конденсаторов, но и других проводниковых элементов (например, проводов). Поскольку 1 фарад – емкость довольно значительная, небольшие промышленные конденсаторные элементы чаще имеют номиналы, составляющие сотые, тысячные и т.д. доли фарада, например, микрофарады обозначение мкФ. У ионисторных сверхвысокоемких элементов показатель, напротив, может измеряться в килофарадах.

Эквивалентное представление

В чем измеряется освещенность

Данную величину можно выразить, используя другие единицы измерения: Ф=с4*А2*м-2*кг-1 (секунда, ампер, метр и килограмм, соответственно). Если использовать формулу, базирующуюся на напряжении и заряде, получается: Ф=Кл*В-1 (кулон и вольт).

Кратные и дольные единицы

Чаще всего в электронике используются элементы с небольшими емкостями, в связи с чем у начинающих работать со схемами возникают вопросы: пФ это сколько фарад, 100 nf сколько микрофарад и так далее. В связи с этим надлежит иметь при себе таблицу перевода одних единиц в другие. К наиболее часто используемым дольным единицам относятся:

  • микрофарад (мкФ) – 0,000001 Ф;
  • нанофарад (нФ) – 0,000000001 Ф;
  • пикофарад (пФ) – 0,000000000001 Ф.

Из кратных единиц используется килофарад (кФ), равный тысяче фарад. Такие показатели характерны для ионисторов. У обычных конденсаторов емкость, как правило, измеряется максимум десятками фарад.

В Советском Союзе на электросхемах и корпусах конденсаторов была тенденция указывать емкостным значением целое число (к примеру, 35). Подразумевать пикофарады, а дробное с одной цифрой после запятой – обозначало микрофарады.

Буквы в таких маркировках емкости не использовались. На современных отечественных конденсаторах при указании емкости в пикофарадах измерительные единицы после числа обычно не пишут. Если указаны буквы «мк», подразумеваются микрофарады, если «н» – нанофарады.

За рубежом используют маркировку из цветных полос.

Таблица перевода одних дробных емкостных единиц в другие

Связь с единицами измерения в других системах

В системе Гаусса существует такая измерительная единица, как статфарад (статФ). Она примерно равна 1,11 пФ и обозначает емкость шарообразного тела с диаметром 2 см в условиях вакуума.

Абфарад (абФ) – сверхкрупная единица измерения электрической емкости, равная 1000000000 Ф (или 1 гигафараду – ГФ).

Фарад

Источник: https://academic2.ru/фарад_20883148

Ёмкость конденсатора: в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

Ёмкость конденсатора: в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

Ёмкость конденсатора: в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

Ёмкость конденсатора: в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

Один из наиболее важных эффектов, используемых в электронике, — ёмкость конденсаторов. Способность накапливать и хранить электрический заряд нашла применение практически во всех аналоговых цепях и логических схемах. Пассивные устройства, запасающие энергию в виде электрического поля, называли конденсаторами уже в те времена, когда учёные ещё очень мало знали о природе электричества.

История накопителей заряда

Как измерить ёмкость конденсатора мультиметром?

что измеряется в фарадах

Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Источник: https://odinelectric.ru/knowledgebase/kak-izmerit-yomkost-kondensatora-multimetrom

Емкость земли в фарадах

что измеряется в фарадах

Конденсатор электр. Одно и то же количество электричества , будучи придано различным телам, вызовет в них неодинаковое повышение напряжения, подобно тому, как одно и то же количество тепла повысит температуру различных тел на различное число градусов.

Обратно, чтобы повысить напряжение потенциал различных тел на одну и ту же величину, нужны различные количества электричества, для одних тел весьма малые, для других весьма большие. О первых телах говорят, что они обладают малой электрической емкостью, о вторых, что их электрическая емкость весьма велика. Вообще же, электроемкость тела определяется тем количеством единиц электричества — кулонов см.

Поэтому за единицу электрической емкости принята емкость тела, которому нужно придать один кулон, чтобы повысить потенциал его на один вольт.

Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Чем опасны конденсаторы

Что измеряется в фарадах

Сообщение электрического заряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:.

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника. Одной из причин, влияющих на эту разницу, являются размеры самого проводника. Один и тот же заряд, сообщенный различным проводникам, может создать различные потенциалы.

Чтобы повысить потенциал какого-либо проводника на одну единицу потенциала, необходим определенный заряд. Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

Практически заряд измеряется в кулонах, потенциал в вольтах, а емкость в фарадах:. Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица емкости — фарада обозначается ф или F очень велика. Поэтому чаще пользуются более мелкими единицами — микрофарадой мкф или , составляющей миллионную часть фарады:. Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором. Конденсатор состоит из двух металлических пластин обкладок , разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины.

Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другою, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:.

Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика.

Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью такого же конденсатора, диэлектриком в котором служит пустота воздух.

Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью хорошими изолирующими качествами.

Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора. Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов.

Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токо-ведущих жил между собой. Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических станиолевых листов с парафинированной бумажной или слюдяной прослойкой между ними. Для увеличения емкости увеличения площади пластин конденсатора чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на фиг.

Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или в трубку. Конденсаторы большой емкости во многих случаях. Определим емкость плоского конденсатора. Возьмем пронзвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:.

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин обкладок S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью б. Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько реже один медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ией полудисков входит между двумя неподвижными полуднсками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полуднсков, мы можем менять емкость коиденсатоpa.

На фиг. В радиотехнике применяются также электролитические конденсаторы. Эти конденсаторы изготовляются двух типов: жидкостные и сухие. В обоих типах конденсаторов употребляется оксидированный алюминий.

Путем специальной электрохимической обработки на поверхности алюминия получают тонкий по-. Оксидная изоляция обладает электроизолирующими свойствами, механически прочная, нагревостойка, но гигроскопична.

В жидкостных электролитических конденсаторах алюминиевую оксидированную пластину помещают внутрь металлического корпуса, который служит второй пластиной.

В корпус заливают электролит, состоящий из раствора борной кислоты с некоторыми примесями. Сухие электролитические конденсаторы изготовляют путем сворачивания трех лент.

Одна лента представляет собой алюминиевую оксидированную фольгу тонко раскатанный лист металла. Другой пластиной является лента из алюминиевой фольги.

Между двумя металлическими лентами помещается бумажная или марлевая лента, пропитанная вязким электролитом. Плотно свернутые ленты помещаются в алюминиевый корпус и заливаются битумом.

Когда емкость одного конденсатора мала, то соединяют несколько конденсаторов параллельно фиг. Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети.

Рассмотрим последовательное соединение конденсаторов фиг. Значит, при последовательном соединении каждый конденсатор независимо от величины его емкости получит один и тот же заряд, т. Таким образом, при последовательном соединении конденсаторов обратная величина общей емкости равна сумме обратных величин емкостей отдельных конденсаторов.

Каждый из конденсаторов включен на меньшее напряжение, чем напряжение сети. Конденсаторы широко применяются в радиотехнике, рентгенотехнике, высокочастотной промышленной электротехнике, для увеличения коэффициента мощности.

Электрический привод [26] Однофазный переменный ток [23] Основные законы постоянного тока [21] Электроизмерительные приборы и техника электрических измерений [21] Машины постоянного тока [20] Электростатика [14] Электромагнетизм [13] Тепловые действия электрического тока [10] Трансформаторы [9] Электромагнитная индукция [9] Химические действия тока и химические источники э.

Основы электротехники. Электрическая емкость Сообщение электрического заряда проводнику называется электризацией. Добавить . Выполняется отправка Форум Блоги Доска объявлений Разместить материал.

Новости Новости энергетики Новости сайта. Статьи Основы электротехники Основы релейной защиты. Справочник реле Каталог микропроцессорных устройств. Фотогалерея .

Электрическая емкость. Конденсаторы. Емкость конденсатора

Random converter. От истории, классификации и определения логарифмических единиц до интересных примеров их использования в акустике, телекоммуникациях, фотографии и других областях науки и техники. Конденсаторы — устройства для накопления заряда в электронном оборудовании.

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:. Здесь Q — электрический заряд, измеряется в кулонах Кл , — разность потенциалов, измеряется в вольтах В.

В системе СИ электроемкость измеряется в фарадах Ф.

Емкостью 1 Ф обладает тело, когда при заряде 1 к между ним и землей получается напряжение 1 В. Фарада – очень большая единица измерения.

Электрическая емкость уединенного проводника

На нашем сайте собрано более бесплатных онлайн калькуляторов по математике, геометрии и физике.

Не можете решить контрольную?! Мы поможем! Более 20 авторов выполнят вашу работу от руб! Подскажите, пожалуйста, в чем измеряется емкость конденсатора в системе СИ? Как данная единица измерения выражается через основные единицы системы СИ? Давайте начнем с предложенной Вами задачи. Основой для ее решения является формула, определяющая емкость:. Теперь можно вычислить емкость конденсатора:. Теперь разберемся, в чем измеряется емкость конденсатора.

Как измерить ёмкость конденсатора мультиметром?

Сообщение электрического заряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:.

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника.

Рассмотрим уединенный проводник, т.

Фарад единица измерения чего. Электрическая ёмкость, конденсатор

Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием фарада. В Международную систему единиц фарад введён решением XI Генеральной конференции по мерам и весам в году, одновременно с принятием системы СИ в целом [2].

В фарадах измеряют электрическую ёмкость проводников , то есть их способность накапливать электрический заряд. Например, в фарадах и производных единицах измеряют: ёмкость кабелей, конденсаторов , межэлектродные ёмкости различных приборов.

Промышленные конденсаторы имеют номиналы , измеряемые в микро- , нано- и пикофарадах и выпускаются ёмкостью до ста фарад; в звуковой аппаратуре используются гибридные конденсаторы ёмкостью до сорока фарад. Ёмкость т.

9. Электрическая емкость

Источник: https://all-audio.pro/c3/datashiti/emkost-zemli-v-faradah.php

Что измеряется в фарадах

что измеряется в фарадах

> Теория > Что измеряется в фарадах

Среди разных электрических параметров, которые необходимо измерять при наладке электросхем, есть электрическая ёмкость.

Важно! Электрическая ёмкость конденсаторов и проводов не имеет ничего общего с электрохимической ёмкостью батарей и аккумуляторов.

В каких единицах измеряется ёмкость

Электрическая ёмкость – это способность тел накапливать заряд. Таким свойством обладают кабеля, конденсаторы и другие элементы электросетей и схем. Она есть также у отдельно расположенных (находящихся далеко от других тел) проводников и измеряется в фарадах. Своё название эта единица получила по имени физика Майкла Фарадея.

1 фарад – это большая величина. Такую ёмкость имеет металлический шар в 13 раз больше Солнца. Шар размером в Землю имеет всего 710 микрофарад.

Обычно, говоря о том, что измеряется в фарадах, имеют в виду конденсатор. На элементах до 9999 пикофарад она указывается просто цифрами, без обозначения единиц измерения. С 9999 пикофарад до 9999 микрофарад кроме числа наносится обозначение единицы измерения: мкФ или uF.

Кроме пикофарад и микрофарад, ёмкость измеряется также в нанофарадах (nF). 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.

Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя.

Измерение электрической ёмкости

Единица измерения напряжения

Основное свойство конденсаторов – они не пропускают постоянный ток, а сопротивление переменному току тем меньше, чем выше его частота. Поэтому измерение элемента сводится к измерению его сопротивления на определённой частоте и вычислению её по соответствующей формуле.

На практике это делается специальными приборами или мультиметром, в котором есть эта функция.

Измерение электрической ёмкости

Применение конденсаторов

Конденсаторы применяются во всех областях электротехники и в электронных устройствах любой сложности:

  • Вместе с катушками индуктивности или активными сопротивлениями входят в конструкцию фильтров определённой заранее заданной или меняющейся частоты, а также колебательных контурах и генераторах. Такие фильтры используются в радиоприёмниках, цветомузыкальных установках и других устройствах;
  • В блоках питания и выпрямителях сглаживают пульсации постоянного тока после диодного моста. Используются электролитические конденсаторы от нескольких до тысяч микрофарад;
  • Отдают свой заряд быстро, в результате чего образуется кратковременный импульс большой мощности. Это свойство используется в фотовспышках, электрошокерах, импульсных лазерах и многих других;
  • Конденсатор обладает реактивным сопротивлением и практически не греется во время работы. Это позволяет использовать его в качестве токоограничивающего сопротивления в блоках питания малой мощности;
  • При работе электродвигателей, трансформаторов и других индуктивных нагрузок, кроме активной, происходит потребление реактивной (индуктивной) мощности. Для её компенсации и снижения потребления электроэнергии параллельно вводным автоматам включаются конденсаторы;
  • Измерение перемещений на малые расстояния и влажности. Параметры устройства очень сильно зависят от расстояния между электродами и влажности диэлектрика между ними;
  • Фазосдвигающие устройства. Применяются для запуска электродвигателей от однофазной сети переменного тока, как однофазных, так и трёхфазных;
  • Заряд и разряд через сопротивление продолжается некоторое время, в течение которого напряжение меняется по экспоненциальному закону. Это позволяет, используя R-C-цепочки или генератор тока, реализовать схемы с задержкой времени на включение или отключение исполнительного механизма, а также генератор импульсов и другие схемы.

Электрическая ёмкость – важная величина, без измерения которой невозможны электроника и электротехника.

Мощность электрического тока

Источник: https://elquanta.ru/teoriya/chto-izmeryaetsya-v-faradakh.html

Конденсаторы — параметры и маркировка, перевод величин емкости

Конденсатором обычно называют устройство, которое обладает способностью накапливать электрический заряд. Конструктивно конденсатор представляет собой два проводника, разделенных диэлектриком.

Единицей электрической емкости конденсатора в системе СИ является Фарада. Сокращенно обозначается буквой Ф. Названа в честь английского физика Майкла Фарадея.

В радиоэлектронике используется емкость конденсатора, выраженная через дробные единицы фарад: пикофарад, нанофарад, микрофарад.

  • 1мкФ=10-6 Ф;
  • 1 нФ = 10-9 Ф;
  • 1 пФ = 10-12 Ф;
  • 1 мкФ = 103 нФ = 106 пФ.

В старой радиотехнической литературе использовалась единица емкости — сантиметр: 1 см = 1,11 * 10-12 Ф = 1,11 * 10-6 мкФ = 1,11 пФ.

Конденсаторы, как и резисторы бывают постоянные и переменные (КПЕ — конденсатор переменной емкости). Переменные конденсаторы бывают в виде нескольких блоков и подстроечные.

В зависимости от материала диэлектриков современные конденсаторы делятся на следующие типы:

  • бумажные;
  • вакуумные;
  • воздушные;
  • керамические;
  • лакопленочные;
  • металлобумажные;
  • оксидные;
  • пленочные;
  • слюдяные;
  • электролитические.

Основные параметры

Основными параметрами конденсаторов являются:

  • номинальная емкость (Сном), которая обычно указывается на корпусе конденсатора,
  • температурный коэффициент емкости (ТКЕ)
  • номинальное напряжение (Uном).

Номинальное напряжение — это максимальное допустимое постоянное напряжение, при котором конденсатор способен работать длительное время, сохраняя параметры неизменными при всех установленных для него температурах. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе.

При работе конденсатора в схемах переменного тока его номинальное напряжение, указанное на корпусе, должно в 1,52 раза превышать предельно допустимое действующее переменное напряжение цепи.

На корпусе конденсатора обычно указывают его тип, напряжение, номинальную емкость, допустимое отклонение емкости, ТКЕ и дату изготовления.

Маркировка конденсаторов

Маркируют конденсаторы как и резисторы буквенно-цифровым кодом, который обозначает номинальную емкость, единицу измерения, допустимое отклонение емкости и ТКЕ.

Например, маркировка на конденсаторе 62 pJL расшифровывается так: номинальная емкость 62 пФ с допустимым отклонением ±5%, ТКЕ группы М75 (75 * 10-6/1 градус С). Буквенные коды единиц измерения номинальных емкостей приведены в табл. 1.

Таблица 1. Обозначение номинальной величины емкости на корпусах конденсаторов.

Полное обозначение Сокращенное обозначение на корпусе
Обозначение единиц измерения   Примерыобозначения Обозначениеединицизмерения Примерыобозначения
Старое Новое Старое Новое
Пикофарады0999 пФ пФ 0,82 пФ5,1 пФ36 пФ П Р 5П136П   р825р136р
Нанофарады100999999 нФ   нФ,1 нФ = 1000 пФ   120 пФ3300 пФ68000 пФ Н n 3H368Н   n12ЗnЗ68n
Микрофарады1999 мкФ мкФ 0,022 мкФ0,15 мкФ2,2 мкФ10 мкФ М μ 22НМ152М210М 22 nμ152 μ210 μ

Цветовой код маркировки конденсаторов

Конденсаторы как и резисторы маркируют с помощью цветового кода (рис. 2). Цветовой код состоит из колец или точек. Каждому цвету соответствует определенное цифровое значение.

Знаки маркировки на конденсаторе сдвинуты к одному из выводов и располагаются слева направо. Номинальная емкость (в пикофарадах) представляет число, состоящее из цифр, соответствующих одной, двум и трем или одной и двум (для конденсаторов с допуском ±20%) полосам, умноженное на множитель, который определен по цвету полосы.

Последняя полоса маркировки в два раза шире других и соответствует ТКЕ. Конденсаторы с допуском ±0,1 10% имеют шесть цветовых полос. Первая, вторая и третья полосы — величина емкости в пикофарадах, четыре — множитель, пять — допуск, шесть (последняя) — ТКЕ.

Конденсаторы с допуском ±20% имеют пять цветовых полос, на них нет цветового кода допуска. Иногда этот тип конденсаторов маркируют четырьмя цветовыми кольцами. При такой маркировке первая и вторая полосы отводятся для обозначения величины, третья полоса — для множителя, четвертая — для ТКЕ.

Цветовой код танталовых конденсаторов приведен на рис. 3. Следует обратить внимание на то, что у этих конденсаторов положительный вывод в два раза толще другого, и отсчет колец начинается от головки конденсатора. На рис. 4 приведена цветовая маркировка зарубежных конденсаторов широкого использования.

Цветмаркировки Номинальнаяемкость Множитель Допуск, % ТКЕ
Перваяполоса Втораяполоса Третьяполоса Четвертаяполоса Пятаяполоса Шестаяполоса
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 1 ±252
Коричневый 1 1 1 10 ±1 ±100
Красный 2 2 2 102 ±2 ±50
Оранжевый 3 3 3 103 ±15
Желтый 4 4 4 104 ±25
Зеленый 5 5 5 105 ±0,5 ±20
Синий 6 6 6 106 ±0,25 ±10
Фиолетовый 7 7 7 107 ±0,1 ±5
Серый 8 8 8 108 ±1
Белый 9 9 9 109
Нет цвета ±20

Рис. 2. Цветовой код отечественных конденсаторов широкого применения.

Цветмаркировки Номинальная емкость Допуск, %
Первыйэлемент Второйэлемент Третийэлемент(множитель) Четвертыйэлемент
Серебристый 10-2 ±10
Золотистый 10-1 ±5
Черный 1
Коричневый 1 1 10 ±1
Красный 2 2 102 ±2
Оранжевый 3 3 103
Желтый 4 4 104
Зеленый 5 5 105 ±0,5
Синий 6 6 106 ±0,25
Фиолетовый 7 7 107 ±0,1
Серый 8 8 108 ±0,05
Белый 9 9 109

Рис. 3. Цветовой код для маркировки танталовых конденсаторов.

Цвет маркировки 1 и 2цифры Множитель Допуск, % класс ТКС
Черный 1 20
Коричневый 1 10 1 1 -33
Красный 2 102 2 -75
Оранжевый 3 103 2 -150
Желтый 4 104 -220
Зеленый 5 3 -330
Синий 6 -470
Фиолетовый 7 -750
Серый 8 0,5
Белый 9 4
Золотистый 5 +100
Серебряный 10

Рис. 4. Цветовая маркировка зарубежных конденсаторов широкого использования.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Источник: http://radiostorage.net/1667-kondensatory-parametry-i-markirovka-perevod-velechin-ehmkosti.html

Работаем с цифровым мультиметром. Часть 3

Добрый день, друзья!
Не так давно мы с вами учились работать с  цифровым мультиметром и ознакомились с тем, как измерять ток и напряжение. Это две величины, с которыми чаще всего имеют дело. Но есть и другие параметры, которые могут измеряться цифровыми приборами.

Хорошо бы научиться измерять и их. Вы же хотите стать экспертом в измерениях, правда? Тогда давайте с вами посмотрим

Как измерить емкость конденсатора

Конденсаторы широко применяются в качестве накопителей энергии в источниках питания.

В компьютерном блоке питания их может быть более десятка.

И на материнской плате компьютера их натыкано видимо-невидимо.

За измерение емкости отвечает отдельная группа позиций (внизу слева, левее группы измерения тока). На корпусе вблизи этой области нанесена буква F (Farade, фарада, единица измерения емкости). Емкость измеряют в 5 поддиапазонах: 0 — 2 nF (нанофарад, нФ), 0 — 20 nF, 0 — 200 nF, 0 — 2 мкФ (микрофарад) , 0 — 20 мкФ.

Напомним, что 1 нФ = 1000 пФ (пикофарад), 1 мкФ = 1000 нФ. Отметим, что емкость в 1 Фарад очень велика. Электролитические конденсаторы в блоках питания и на материнской плате имеет емкость в сотни и тысячи микрофарад. Керамические блокировочные конденсаторы имеют емкость в десятки и сотни нанофарад.

Конденсатор при измерении емкости присоединяют не к щупам, а вставляют выводами в специальное гнездо. Это не всегда удобно, так как конденсатор (особенно выпаянный), часто имеет короткие выводы.

Если вставить в гнезда короткие металлические пластинки, удобство пользования тестером возрастает.

Теперь при измерении емкости достаточно коснуться выводами конденсатора металлических пластинок.

Отметим, что хорошо было бы в таких мультиметрах расширить пределы измерения в верхнюю сторону. Большинство электролитических конденсаторов, устанавливаемых в компьютерные блоки питания или на материнские платы, имеет гораздо большую емкость.

Существуют специальные измерители не только емкости, но и ESR (Equivalent Series Resistance, эквивалентное последовательное сопротивление) конденсаторов. Они позволяют оценить емкость в десятки и сотни тысяч микрофарад.

Измерения сопротивления

Следующая группа позиций — для измерения сопротивления (на 7 поддиаазонах): 0 — 200 Ом, 0 — 2 кОм, 0 — 20 кОм, 0 — 200 кОм, 0 — 2 МОм, 0 — 20 МОм, 0 — 200 МОм . Вблизи этой группы нанесен специальный значок (греческая буква Омега).

Деление на поддиапазоны обусловлено стремлением точнее измерить величину сопротивления.

Например, сопротивление в несколько Ом лучше  измерять на поддиапазоне 0 – 200 Ом, а не на верхних.

На верхних диапазонах будет либо пониженная точность, либо вообще «0» кОм (Мом). Если измерять большие значения сопротивления на нижних диапазонах, то прибор покажет превышение значения (минус и единицу в самом левом разряде).

На младшем поддиапазоне есть возможность «прозвонки» цепей, если их сопротивление не превышает некоей величины (для данного прибора — около 50 Ом).

При этом прибор издает звуковой сигнал. Это очень удобно, в частности, при поиске жил в кабельных соединениях. При этом можно не смотреть на табло прибора, что экономит время.

При измерении сопротивления на самом нижнем поддиапазоне надо учитывать, что щупы прибора также имеют некоторое сопротивление.

Если их замкнуть между собой, прибор покажет не «0» Ом, а некоторую небольшую величину (в диапазоне примерно 0,5 – 1 Ом). Эту величину надо вычесть из измеренного значения.

Отметим, что проводники из металлов имеют небольшое сопротивление. Лучшими проводниками являются медь и серебро. Поэтому, например, обмотки трансформаторов выполняют из медных проводов, а сильноточные контакты покрывают слоем серебра. Чем меньше сопротивление проводника, тем меньше он греется.

Сплавы металлов имеют повышенное сопротивление, соответственно, они сильнее греются, поэтому из них изготавливают различные нагреватели. Кстати сказать, в паяльниках, которые используют при пайке часто используется нихром (сплав НИкеля и ХРОМа).

Изоляторы, наоборот, имеют очень большое сопротивление, поэтому при прикладывании к ним напряжения ток через них практически не протекает. Пример изолятора – стеклотекстолит, из которого изготовлена материнская плата компьютера.

Заканчивая тему измерения сопротивления, отметим, что сопротивление тела человека лежит в пределах от нескольких килоом до нескольких десятков или сотен килоом и зависит от состояния его здоровья и кожных покровов.

Теперь вы знаете, как выполнять измерения и можете оценить сопротивление своего тела. И похвастаться этой величиной и своим умением перед товарищами :yes:

В заключение расскажем, как выполнить

Измерение температуры

Мультиметр может измерять и температуру.

При этом переключатель ставится напротив зеленой метки «Temp».

В гнездо выше переключателя ставится термопара типа К. Термопара — это два проводника из разных сплавов, спаянные в одной точке. При этом на противоположных концах возникает термоЭДС (электродвижущая сила).

Чем сильнее нагрето место спая, тем больше термоЭДС. Прибор измеряет это значение и выводит сразу температуру в привычных нам градусах Цельсия. Отметим, что термопара обладает некоторой инерционностью, особенно при измерении больших температур.

Термопарой можно измерить температуру жала паяльника. При этом важно обеспечить надежный тепловой контакт между нею (шариком спая) и жалом. Отметим, что паяльник в паяльных станциях имеет встроенный датчик, при этом температура жала показывается на специальном табло.

У нас осталась не рассмотренной важная тема – как проверять с помощью цифрового мультиметра полупроводниковые приборы. Этим мы займемся в следующих постах.

Всего наилучшего!

С вами бы Виктор Геронда. До встречи на блоге!

Источник: https://vsbot.ru/pomoshty-zhelezu/rabotaem-s-multimetrom-chast-3.html

Электрическая емкость. Понятие. Единицы измерения

Понятие электрической емкости. Единицы измерения. Конденсаторы. (10+)

Электрическая емкость. Понятие. Единицы измерения

Оглавление :: ПоискТехника безопасности :: Помощь

Материал является пояснением и дополнением к статье:
Единицы измерения физических величин в радиоэлектронике
Единицы измерения и соотношения физических величин, применяемых в радиотехника.

Если от одного тела отводить заряженные определенным образом частицы (например, электроны) к другому, то вследствие избытка заряженных частиц между двумя телами возникнет разность потенциалов, то есть электрическое напряжение. Емкость между двумя телами показывает нам, сколько заряженных частиц нужно перенести от одного тела к другому, чтобы получить заданное напряжение.

Вашему вниманию подборка материалов:Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Понятие емкости

Если между двумя телами емкость составляет один Фарад (Ф), Farad (F), это значит, что при переносе заряда в один Кулон напряжение изменится на один Вольт

[Изменение напряжения, В] = [Перенесенный заряд, К] / [Емкость, Ф]

Помня, что перенесенный заряд равен силе тока, помноженной на время его протекания, запишем формулу в более привычном виде:

[Изменение напряжения, В] = [Сила тока, А] * [Время, с] / [Емкость, Ф]

Конденсатор, прибор с нормированной емкостью

Электронный прибор, который специально предназначен для изменения напряжения пропорционально накопленному заряду, называется конденсатором. Практически любые тела в природе образуют между собой конденсатор, но электронным прибором он становится тогда, когда у него строго определенная емкость, что позволяет применять его в радиоэлектронных схемах.

Таким образом, ток в один Ампер, заряжает конденсатор емкостью один Фарад на один Вольт за одну секунду.

Напряжение на конденсаторе не может измениться мгновенно, так как в природе не бывает бесконечной силы тока. Если выводы заряженного конденсатора замкнуть, то сила тока должна быть бесконечной.

На самом деле конденсатор и его выводы имеют некоторое внутреннее сопротивление, так что сила тока будет конечной, но может быть очень большой. Аналогично, если разряженный конденсатор подключить к источнику напряжения.

Ток будет стремиться к бесконечности и будет ограничен внутренним сопротивлением конденсатора и источника напряжения.

Многие ошибки в переключательных и импульсных схемах связаны с тем, что разработчики забывают учесть тот факт, что напряжение на конденсаторе не может меняться мгновенно. Быстро открывающийся транзистор, подключенный напрямую к заряженному конденсатору, может просто сгореть или очень сильно нагреваться.

Емкость пластин и генератор Ван де Граафа

Конденсаторы обычно представляют собой две пластины, между которыми проложен слой диэлектрика.

[Емкость между двумя пластинами, Ф] = [Диэлектрическая проницаемость вакуума, Ф/м] * [Диэлектрическая проницаемость диэлектрика между пластинами] * [Площадь пластин, кв. м] / [Расстояние между пластинами, м]

[Диэлектрическая проницаемость вакуума, Ф/м] приблизительно равна 8.854E-12, [Расстояние между пластинами, м] много меньше линейных размеров пластин.

Рассмотрим такой интересный случай. Пусть у нас есть две пластины с определенной разностью потенциалов. Начнем их физически разносить в пространстве. Мы тратим энергию, так как пластины притягиваются друг к другу. Напряжение между пластинами будет расти, так как заряд остается прежним, а емкость убывает.

На этом принципе основана работа генератора Ван де Граафа. Там на ленте транспортера установлены металлические пластины или крупицы вещества, способного переносить заряд. Когда эти крупицы приближаются к заземленной пластине, между ними и землей прилагается некоторое, довольно высокое напряжение (1000 и более Вольт). Они заряжаются.

Дальше транспортер увозит их от заземленной пластины. Емкость между ними и землей падает в тысячи или десятки тысяч раз, напряжение, соответственно, растет в то же количество раз. Далее эти крупицы контактируют с телом, на котором накапливается заряд, и отдают ему часть своего заряда. Так можно получить 10 или даже 100 миллионов Вольт.

Единицы измерения, кратные Фараду (Farad)

Один Фарад — очень большая емкость. Сейчас появились специальные наноконденсаторы, в которых очень тонкие пластины, проложенные очень тонким, но электрически прочным изолятором намотаны в огромные бобины. Такие конденсаторы могут иметь емкость даже в десятки Фарад. Но электроника оперирует обычно с гораздо меньшими емкостями.

микрофарад мкФ mcF 1E-6 Ф 0.000001 Ф
нанофарад нФ nF 1E-9 Ф 0.001 мкФ
пикофарад пФ pF 1E-12 Ф 0.001 нФ

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/units-farad

Что такое электрическая емкость и в чем она измеряется

В электротехнике часто встречается понятие ёмкости. При этом речь идёт не о ведре или другом сосуде, а об электрической ёмкости проводника, аккумулятора и конденсатора. Путать эти понятия нельзя. В этой статье мы разберемся, что такое электрическая ёмкость, от чего она зависит и в каких единицах измеряется.

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10(-3) Ф

1 мкФ = 10(-6) Ф

1 нФ = 10(-9) Ф

1 пФ = 10(-12) Ф

Конденсаторы

Конденсатор — это две пластины из проводящего материала, расположенные друг напротив друга, между которым находится слой диэлектрика. В заряженном состоянии обкладки имеют разные потенциалы: одна из них будет положительной, а вторая отрицательной.

Электроемкость конденсатора зависит от величины заряда на его обкладках и разности потенциалов, напряжения между ними. Между пластинами возникает электростатическое поле, которое удерживает заряды на обкладках.

Формула электрической емкости конденсатора в общем случае:

C=q/U

Если сказать простыми словами, то емкость конденсатора зависит от площади пластин и расстояния между ними, а также относительной диэлектрической проницаемости материала, расположенного между ними. Их различают по используемому диэлектрику:

  • керамические;
  • плёночные;
  • слюдяные;
  • металлобумажные;
  • электролитические;
  • танталовые и пр.

По форме обкладок:

  • плоские;
  • цилиндрические;
  • сферические и пр.

Так как формула площади фигуры зависит от её формы, то и формула ёмкости будет разной для каждого случая.

Для плоского конденсатора:

Для двух концентрических сфер с общим центром:

Для цилиндрического конденсатора:

Как и у других элементов электрической цепи и в этом случае есть два основных способа соединения конденсаторов: параллельное и последовательное.

От этого зависит итоговая электрическая емкость полученной цепи. Расчёты ёмкости нескольких конденсаторов напоминают расчёты сопротивления резисторов в разном включении, только формулы для способов соединения расположены наоборот, то есть:

  1. При параллельном соединении общая электроемкость цепи является суммой емкостей каждого из элементов. Каждый следующий подключенный увеличивает итоговую емкость

Cобщ=C1+C2+C3

  1. При последовательном подключении электроемкость цепи снижается, подобно снижение сопротивления в цепи параллельно включённых резисторов. То есть:

Cобщ=(1/С1)+ (1/С2)+ (1/С3)

Важно! В параллельной схеме соединения напряжения на обкладках каждого элемента одинаковы. Это используют для получения больших значений электроемкости. В последовательном включении двух элементов напряжения на обкладках каждого из конденсаторов составляют по половине общего напряжения. Для трёх – трети и так далее.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства.

Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту.

Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-elektricheskaya-emkost-i-v-chem-ona-izmeryaetsya.html

Понятие емкости, правила измерения

Данная величина показывает, какое количество электронов (или других заряженных частиц) должно переместиться от одного объекта к другому для получения необходимого значения напряжения. Последнее возникает по той причине, что при перемещении частиц между объектами образуется разница потенциалов.

Единицей измерения емкостного значения является фарад (на письме обозначается заглавной кириллической литерой Ф). Когда при перенесении заряда в 1 Кулон напряжение меняется на 1 Вольт, значение емкости между перенесенными объектами составляет 1 Фарад. Формула зависимости емкости от напряжения имеет такой вид:

С (емкость) = Q (заряд)/U(напряжение).

Если мастер собрался измерять емкость используемого в радиоэлектронной схеме конденсатора, ему потребуется такой прибор, как мультиметр.

С задачей способен справиться даже бюджетный аппарат, при этом наибольшая точность демонстрируется при работе с пленочными конденсаторными элементами.

Для максимально точных замеров можно воспользоваться измерителем иммитанса, но данный прибор отличается очень высокой ценой (около 120 тыс. руб.). При использовании мультиметра нужно придерживаться следующего алгоритма:

  1. Отсоединить электроцепь от источника нагрузки. Проверить отсутствие питания, установив на устройстве режим замера напряжения и поставив щупы к источнику: показатель должен быть равен нулю.
  2. Снять заряд с конденсатора пассивным способом (подождать 20-30 минут) или активным (с помощью резистора). Для маленьких элементов нужен прибор с сопротивлением более 2 кОм. С достаточно крупными конденсаторами (например, в фотоаппаратах и бытовой технике) лучше вообще не работать в домашних условиях без подготовки – они накапливают опасно высокий заряд. Для разрядки такого элемента требуется резистор на 20 кОм и 5 Вт, подсоединенный через изолированный провод диаметром 3,3 мм2, предназначенный для эксплуатации под напряжением до 600 В.
  3. Отключить конденсатор от цепи. После этого поставить мультиметр в режим замера емкости. Если прибор снабжен несколькими настроечными диапазонами, нужно поставить тот, что с наибольшей вероятностью окажется верным (сориентироваться можно по маркировке). При наличии клавиши Rel нужно нажать ее, чтобы емкость сошла со щуповых элементов.
  4. Щупы помещаются к выводам конденсатора. При тестировании поляризованных элементов надо обязательно соблюдать полярность. Теперь нужно дождаться вывода данных на дисплей. Если высветилось слово overload (или OL), показатель слишком высокий для обнаружения данным прибором или в данном диапазоне (во втором случае нужно выбрать другой диапазон).

Важно! Нельзя подключать мультиметр к конденсаторному элементу, на корпусе которого имеются проколы или выпуклые места. Такие элементы вообще не стоит эксплуатировать – при подключении питания они способны взорваться.

Процесс измерения емкости конденсатора мультиметром

Область применения

Эта единица измерения используется не только для емкости конденсаторов, но и других проводниковых элементов (например, проводов). Поскольку 1 фарад – емкость довольно значительная, небольшие промышленные конденсаторные элементы чаще имеют номиналы, составляющие сотые, тысячные и т.д. доли фарада, например, микрофарады обозначение мкФ. У ионисторных сверхвысокоемких элементов показатель, напротив, может измеряться в килофарадах.

Эквивалентное представление

В чем измеряется освещенность

Данную величину можно выразить, используя другие единицы измерения: Ф=с4*А2*м-2*кг-1 (секунда, ампер, метр и килограмм, соответственно). Если использовать формулу, базирующуюся на напряжении и заряде, получается: Ф=Кл*В-1 (кулон и вольт).

Кратные и дольные единицы

Чаще всего в электронике используются элементы с небольшими емкостями, в связи с чем у начинающих работать со схемами возникают вопросы: пФ это сколько фарад, 100 nf сколько микрофарад и так далее. В связи с этим надлежит иметь при себе таблицу перевода одних единиц в другие. К наиболее часто используемым дольным единицам относятся:

  • микрофарад (мкФ) – 0,000001 Ф;
  • нанофарад (нФ) – 0,000000001 Ф;
  • пикофарад (пФ) – 0,000000000001 Ф.

Из кратных единиц используется килофарад (кФ), равный тысяче фарад. Такие показатели характерны для ионисторов. У обычных конденсаторов емкость, как правило, измеряется максимум десятками фарад.

В Советском Союзе на электросхемах и корпусах конденсаторов была тенденция указывать емкостным значением целое число (к примеру, 35). Подразумевать пикофарады, а дробное с одной цифрой после запятой – обозначало микрофарады.

Буквы в таких маркировках емкости не использовались. На современных отечественных конденсаторах при указании емкости в пикофарадах измерительные единицы после числа обычно не пишут. Если указаны буквы «мк», подразумеваются микрофарады, если «н» – нанофарады.

За рубежом используют маркировку из цветных полос.

Таблица перевода одних дробных емкостных единиц в другие

Связь с единицами измерения в других системах

В системе Гаусса существует такая измерительная единица, как статфарад (статФ). Она примерно равна 1,11 пФ и обозначает емкость шарообразного тела с диаметром 2 см в условиях вакуума.

Абфарад (абФ) – сверхкрупная единица измерения электрической емкости, равная 1000000000 Ф (или 1 гигафараду – ГФ).

Фарад

Источник: https://academic2.ru/фарад_20883148

Ёмкость конденсатора: в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

Ёмкость конденсатора: в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

Один из наиболее важных эффектов, используемых в электронике, — ёмкость конденсаторов. Способность накапливать и хранить электрический заряд нашла применение практически во всех аналоговых цепях и логических схемах. Пассивные устройства, запасающие энергию в виде электрического поля, называли конденсаторами уже в те времена, когда учёные ещё очень мало знали о природе электричества.

История накопителей заряда

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Первое устройство для хранения полученных зарядов было создано в 1745 г. двумя электриками (так тогда называли людей, изучающих природу статического электричества), работающими независимо друг от друга: Эвальдом фон Клейстом, деканом собора в Пруссии, и Питером ван Мюссенбруком, профессором математики и физики в университете Лейдена.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях.

Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни.

Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Физика ёмкостных характеристик

Физика ёмкостных характеристик

Устройства, обладающие способностью хранения энергии в форме электрического заряда и производящие при этом разность потенциалов, называют конденсаторами. В простейшем виде они состоят из двух или более параллельных проводящих пластин, находящихся на небольшом расстоянии друг от друга, но электрически разделённых либо воздухом, либо каким-либо другим изоляционным материалом, например, вощёной бумагой, слюдой, керамикой, пластмассой или специальным гелем.

Вам это будет интересно  Клеммные колодки Wago для электрических соединений

Если подключить к пластинам источник напряжения, то одна из них получит избыток электронов, а на другой сформируется их дефицит.

Ионы и электроны на каждой из этих пластин притягиваются друг к другу, но благодаря диэлектрическому барьеру они не соединяются, а накапливаются на плоскостях проводников. В результате первая пластина (электрод) окажется заряженной отрицательно, а вторая — положительно.

Неподвижные заряды создают постоянное электрическое поле, теоретически сохраняемое неограниченное количество времени в незамкнутой электрической цепи.

Поток электронов на пластины называется зарядным током, продолжающим присутствовать до тех пор, пока напряжение на пластинах не сравняется с приложенным.

В этот момент конденсатор считается полностью заряженным, то есть зарядов на пластинах становится так много, что они отталкивают вновь поступающие. При подключении к заряженному устройству нагрузки электроны и ионы находят новый путь друг к другу.

В этом случае конденсатор работает как источник тока до момента потери разности потенциалов на электродах.

Способность конденсатора хранить заряд Q (измеряется в кулонах) называют ёмкостью. Чем больше площадь пластин и меньше расстояние между ними (благодаря усилению эффекта притяжения зарядов между обкладками), тем большая ёмкость устройства. Степень приближения пластин ограничивается способностью диэлектрика сопротивляться разрядке пробоем между ними. Таким образом, три характеристики определяют производительность конденсатора:

  • геометрия пластин;
  • расстояние между ними;
  • диэлектрический материал между пластинами.

Единица и формулы расчёта

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Математическое выражение фарада

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Диэлектрическая проницаемость

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Поскольку эффективность конденсатора зависит от применяемого в нём изолятора, его качество как накопителя можно определить через удельную ёмкость — величину, равную отношению ёмкости к объёму диэлектрика.

Практические измерения

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми.

Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования.

Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость.

Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат.

Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно  Понятие заземления и заземляющего контура

Более сложные и специализированные инструменты — мостовые измерители, испытывающие конденсаторы в мостовой схеме. Этот метод косвенного измерения обеспечивает высокую точность. Современные устройства такого типа оснащены цифровыми дисплеями и возможностью автоматизированного использования в производственной среде, они могут быть сопряжены с компьютерами и экспортировать показания для внешнего контроля.

Идея суперконденсатора

Понравилась статья? Поделиться с друзьями:
220 вольт
Латр что это такое

Закрыть