Что называется сопротивлением проводника

Сопротивление проводника

что называется сопротивлением проводника

Электрическое сопротивление является основной характеристикой проводниковых материалов.

В зависимости от области применения проводника величина его сопротивления может играть как положительную, так и отрицательную роль в функционировании электротехнической системы.

Также, особенности применения проводника могут вызывать необходимость учёта дополнительных характеристик, влиянием которых в конкретном случае нельзя пренебрегать.

Природа сопротивления

Проводниками являются чистые металлы и их сплавы. В металле, фиксированные в единую «прочную» структуру атомы, обладают свободными электронами (так называемый «электронный газ»). Именно эти частицы в данном случае являются носителями заряда. Электроны находятся в постоянном беспорядочном движении от одного атома к другому.

При появлении электрического поля (подключении к концам металла источника напряжения) движение электронов в проводнике становится упорядоченным. Движущиеся электроны встречают на своём пути препятствия, вызванные особенностями молекулярной структуры проводника.

При столкновении со структурой носители заряда теряют свою энергию, отдавая её проводнику (нагревают его). Чем больше препятствий проводящая структура создаёт носителям заряда, тем выше сопротивление.

При увеличении поперечного сечения проводящей структуры для одного количества электронов «канал пропускания» станет шире, сопротивление уменьшится. Соответственно, при увеличении длины провода таких препятствий будет больше и сопротивление увеличится.

Таким образом, в базовую формулу для вычисления сопротивления входит длина провода, площадь поперечного сечения и некий коэффициент, связывающий эти размерные характеристики с электрическими величинами напряжения и тока (1).

Этот коэффициент называют удельным сопротивлением.

R= r*L/S                                                                                                                                                         (1)

Удельное сопротивление

Удельное сопротивление неизменно и является свойством вещества, из которого изготовлен проводник. Единицы измерения r — ом*м. Часто величину удельного сопротивления приводят в ом*мм кв./м. Это связанно с тем, что величина сечения наиболее часто применяемых кабелей является относительно малой и измеряется в мм кв. Приведём простой пример.

Задача №1. Длина медного провода L = 20 м, сечение S = 1.5 мм. кв. Рассчитать сопротивление провода.
Решение: удельное сопротивление медного провода r = 0.018 ом*мм. кв./м. Подставляя значения в формулу (1) получим R=0.24 ома.

Вычисляя сопротивление системы питания сопротивление одного провода нужно умножить на количество проводов.
Если вместо меди использовать алюминий с более высоким удельным сопротивлением (r = 0.028 ом*мм. кв./м), то сопротивление проводов соответственно возрастёт.

Для вышеприведенного примера сопротивление будет равно R = 0.373 ома (на 55 % больше). Медь и алюминий – основные материалы для проводов. Существуют металлы с меньшим удельным сопротивлением, чем удельное сопротивление меди, например серебро.

Однако его применение ограничено из-за очевидной дороговизны. В таблице ниже приведены сопротивления и другие основные характеристики проводниковых материалов.

Таблица – основные характеристики проводников

Источник: https://chipstock.ru/remont/soprotivlenie-provodnika.html

Сопротивление

что называется сопротивлением проводника

Сопротивление (R) — основная электрическая характеристика проводника. Чем больше электрическоесопротивление при заданном напряжении, тем меньше сила тока в проводнике. Сопротивление характеризует степень противодействия проводника направленному движению по нему заряженных частиц.

Электрическое сопротивление зависит от геометрических параметров (длины l и площади поперечного сечения S) и от вещества, из которого сделан проводник.

Зависимость удельного сопротивления от температуры

Удельное сопротивление проводника пропорционально частоте столкновений электронов с ионами и атомами кристаллической решётки. В свою очередь, частота столкновений тем больше, чем больше поперечное сечение атомов и ионов, с которыми сталкивается электрон.

На характер движения электронов в проводнике влияет температура, так как при её увеличении увеличивается и амплетуда колебаний ионов и атомов, вследствие чего, у электронов остаётся меньше места для беспрепятственного движения в кристаллической решётке. Следовательно, сопротивление упорядоченному движению возрастает.

Удельное сопротивление металлического проводника линейно возрастает с температурой.

Удельное соротивление полупроводников, напротив, уменьшается при увеличении температуры, так как с её увеличением увеличивается и количество свободных зарядов, создающих электрический ток.

Сверхпроводимость

При охлеждении некоторых металлических проводников до определённой температуры их удельное сопротивление скачкообразно подает практически до нуля (напимер у свинца оно уменьшается в 1014 раз по сравнению с ρ0). Это явление было открыто в 1911 г. и названо сверхпроводимостью.

Сверхпроводимость — физическое явление, заключающееся в скачкообразном падении сопротивления проводника практически до нуля.

Критическая температура (Tкр) — температура скачкообразного перехода вещества из нормального состояния в сверхпроводящее. На графике показана зависимость удельного сопротивления проводника и сверхпроводника от температуры:

Вещество Tкр, К
Вольфрам 0,015
Титан 0,4
Кадмий 0,5
Уран 0,8
Цинк 0,9
Алюминий 1,2
Индий 3,4
Олово 3,7
Ртуть 4,2
Свинец 7,2
Ниобий 9,2
Технеций 11,2
Сплав (Ba-La-Cu-O) 35
Сплав (Ba-Yt-Cu-O) 98
Сплав (Ti-Ca-Ba-Cu-O) 125

Это явление объясняется изотопическим эффектом и образованием куперовских пар электронов.

Изотопический эффект — это зависимость критической температуры от массы ионов в кристаллической решётке.

Электрический ток в сверхпроводнике обусловлен согласованным движеним куперовских пар электронов.

Источник: http://school56.pips.ru/resist.html

Закон Ома

что называется сопротивлением проводника

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: закон Ома для участка цепи, электрическое сопротивление

Рассмотрим некоторый элемент электрической цепи постоянного тока. Это может быть что угодно: металлический проводник, раствор электролита, лампочка накаливания, газоразрядная трубка. . .
Будем менять напряжение , поданное на наш элемент, и измерять силу тока , протекающего через него. Получим функциональную зависимость . Эта зависимость называется вольт-амперной характеристикой элемента и является наиважнейшим показателем его электрических свойств.

Вольт-амперные характеристики различных элементов цепи могут выглядеть по-разному.
Очень простой вид имеет вольт-амперная характеристика металлического проводника. Эту зависимость экспериментально установил Георг Ом.

Закон Ома для участка цепи

Оказалось, что сила тока в металлическом проводнике прямо пропорциональна напряжению на его концах: . Коэффициент пропорциональности принято записывать в виде :

(1)

Величина называется сопротивлением проводника. Измеряется сопротивление в омах (Ом). Как видим, Ом=В/А.

Дадим словесную формулировку закона Ома.

Закон Ома для участка цепи. Сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.

Закон Ома оказался справедливым не только для металлов, но и для растворов электролитов.

Сформулированный закон имеет место для так называемого однородного участка цепи — участка, не содержащего источников тока. Закон Ома для неоднородного участка (на котором имеется источник тока) мы обсудим позже.

Вольт-амперная характеристика (1) является линейной функцией. Её графиком служит прямая линия (рис. 1).

Рис. 1. Вольт-амперная характеристика металлического проводника

По этой причине металлические проводники (и электролиты) называются линейными элементами. А вот газоразрядная трубка, например, является нелинейным элементом — её вольт-амперная характеристика уже не будет линейной функцией. Но об этом мы поговорим позднее.

Электрическое сопротивление

А сейчас давайте подумаем вот о чём. Пусть к концам проводника приложено постоянное напряжение . Тогда на свободные заряды проводника действует сила со стороны стационарного электрического поля. Раз есть сила — значит, эти заряды должны двигаться с ускорением; скорость их направленного движения будет увеличиваться, а вместе с ней будет возрастать и сила тока. Но закон Ома гласит, что сила тока будет постоянной. Как же так?

Дело в том, что сила со стороны стационарного поля — не единственная сила, действующая на свободные заряды проводника.

Например, свободные электроны металла, совершая направленное движение, сталкиваются с ионами кристаллической решётки. Возникает своего рода сила сопротивления, действующая со стороны проводника на свободные заряды. Эта сила уравновешивает электрическую силу, с которой на свободные заряды действует стационарное поле.

В результате скорость направленного движения заряженных частиц не меняется по модулю (точнее говоря, свободные электроны всё же двигаются равноускоренно, но только в промежутках между соударениями с ионами кристаллической решётки.

В среднем же оказывается, что электроны перемещаются с постоянной скоростью); вместе с ней остаётся постоянной и сила тока.

Так что величина названа сопротивлением не случайно. Она и в самом деле показывает, в какой степени проводник «сопротивляется» прохождению тока.

Электрическое сопротивление. Определение, единицы измерения, удельное, полное, активное, реактивное

Электрическое сопротивление — электротехническая величина, которая характеризует свойство материала препятствовать протеканию электрического тока. В зависимости от вида материала, сопротивление может стремиться к нулю — быть минимальным (мили/микро омы — проводники, металлы), или быть очень большим (гига омы — изоляция, диэлектрики). Величина обратная электрическому сопротивлению — это проводимость.

ЭТО ИНТЕРЕСНО:  Что такое внутреннее сопротивление

Единица измерения электрического сопротивления — Ом. Обозначается буквой R. Зависимость сопротивления от тока и напряжения в замкнутой цепи определяется законом Ома.

Омметр — прибор для прямого измерения сопротивления цепи. В зависимости от диапазона измеряемой величины, подразделяются на гигаомметры (для больших сопротивление — при измерении изоляции), и на микро/милиомметры (для маленьких сопротивлений — при измерении переходных сопротивлений контактов, обмоток двигателей и др.).

Существует большое разнообразие омметров по конструктиву разных производителей, от электромеханических до микроэлектронных. Стоит отметить, что классический омметр измеряет активную часть сопротивления (так называемые омики).

Любое сопротивление (металл или полупроводник) в цепи переменного токаимеет активную и реактивную составляющую. Сумма активного и реактивного сопротивления составляют полное сопротивление цепи переменного тока и вычисляется по формуле:

где, Z — полное сопротивление цепи переменного тока;

R — активное сопротивление цепи переменного тока;

Xc — емкостное реактивное сопротивление цепи переменного тока;

( С- емкость, w — угловая скорость переменного тока)

Xl — индуктивное реактивное сопротивление цепи переменного тока;

( L- индуктивность, w — угловая скорость переменного тока).

Активное сопротивление— это часть полного сопротивления электрической цепи, энергия которого полностью преобразуется в другие виды энергии (механическую, химическую, тепловую). Отличительным свойством активной составляющей — полное потребление всей электроэнергии (в сеть обратно в сеть энергия не возвращается), а реактивное сопротивление возвращает часть энергии обратно в сеть (отрицательное свойство реактивной составляющей).

Физический смысл активного сопротивления

Каждая среда, где проходят электрические заряды, создаёт на их пути препятствия (считается, что это узлы кристаллической решётки), в которые они как-бы ударяются и теряют свою энергию, которая выделяется в виде тепла.

Таким образом, происходит падение напряжения (потеря электрической энергии), часть которого теряется из-за внутреннего сопротивления проводящей среды.

Численную величину, характеризующую способность материала препятствовать прохождению зарядов и называют сопротивлением. Измеряется оно в Омах (Ом) и является обратно пропорциональной электропроводности величиной.

Разные элементы периодической системы Менделеева имеют различные удельные электрические сопротивления (р), например, наименьшим уд. сопротивлением обладают серебро (0,016 Ом*мм2/м), медь (0,0175 Ом*мм2/м), золото (0,023) и алюминий (0,029). Именно они применяются в промышленности в качестве основных материалов, на которых строится вся электротехника и энергетика. Диэлектрики, напротив, обладают высоким уд. сопротивлением и используются для изоляции.

Сопротивление проводящей среды может значительно изменяться в зависимости от сечения, температуры, величины и частоты тока. К тому же, разные среды обладают различными носителями зарядов (свободные электроны в металлах, ионы в электролитах, «дырки» в полупроводниках), которые являются определяющими факторами сопротивления.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

В каких единицах выражается удельное сопротивление проводника

Многие люди, изучающие электрику, в первую очередь сталкиваются с таким понятием как удельное сопротивление. Что оно собой представляет, в каких единицах измеряется удельное сопротивление проводника, от чего зависит и как его найти по формуле далее.

Что это такое

Удельным сопротивлением проводника называется физический вид величины, который показывает, что материал может препятствовать электротоку. По-другому, это такое сопротивление металлов, которое оказывает материал с единичным сечением сопротивление протекающему току. Отличается удельное сопротивление постоянному току тем, что оно вызывается током на проводник. Что касается переменного тока, то он появляется в проводнике под действием вихревого поля.

Важно также уточнить, что собой представляет удельная электрическая проводимость. Электропроводимость — это величина, которая обратна сопротивлению и называется электропроводностью. Это показатель, показывающий меру проводимости силы электротока.

Обратите внимание! Чем больше он, тем лучше способен проводник проводить электричество.

В чем измеряется

Согласно международной системе единиц, измеряется величина в омах, умноженных на метр. В некоторых случаях применяется единица ом, умноженная на миллиметр в квадрате, поделенная на метр. Это обозначение для проводника, имеющего метровую длину и миллиметровую площадь сечения в квадрате.

Формула как найти

Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину. Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз.

Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.

Источник: https://vemiru.ru/info/v-kakih-edinicah-vyrazhaetsja-udelnoe/

Электрическое сопротивление и проводимость

26 марта 2013.
Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду.

Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводника Удельное сопротивление ρ в
Серебро Медь Алюминий Вольфрам Железо Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца) 0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.

1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

ЭТО ИНТЕРЕСНО:  Что такое двухполупериодный выпрямитель

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Металл α Металл α
Серебро Медь Железо ВольфрамПлатина 0,0035 0,0040 0,0066 0,00450,0032 Ртуть Никелин Константан НихромМанганин 0,0090 0,0003 0,000005 0,000160,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (t – t0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: https://www.electromechanics.ru/electrical-engineering/482-resistance-resistivity-and-conductivity-of-conductors.html

От чего зависит удельное сопротивление проводника: металлического проводника

Работая с электрооборудованием, люди задаются вопросом — от чего зависит сопротивление проводника? Физическая величина отображает проводимость электрического тока. При рассмотрении вопроса учитывается длина проводника и его тип.

Условия, определяющие сопротивление проводников

При определении сопротивления учитывается ряд характеристик:

  • сечение элемента;
  • длина проводника;
  • удельное сопротивление;
  • тип материала.

Предметы с высоким сопротивлением практически не проводят ток. Также есть обратная зависимость, которая прописана в законе Ома. Для расчета показателя учитывается электрическая проводимость. Она показывает возможность проводника принимать электрический ток.

Проводимость электрического тока

Изменения проводника при увеличении длины

Во время испытаний замечено, что при увеличении длины проводника его электрическое сопротивление увеличивается. Для проведения эксперимента, необходимо выбрать заготовки из одинакового материала. К примеру, это может быть проволока из никелина. Для считывания параметров используется амперметр, который подключен к зажимам.

Устанавливая заготовки меньшей длины, отмечено, что ток в цепи увеличивается. Даже на одном изделии можно поиграться с амперметром. Поставив щуп на середину заготовки, к примеру, может отображаться значение 50 ампер.

Показатель амперметра

Интересно! Если отводить его в сторону, к краю, чтобы увеличить дальность держателя, показатель тока будет снижаться. Тоже самое, касается проводников из других материалов.

Виды

Проводником называют среду или предмет, который способен проводить электрический ток. Внутри него, при подключении к источнику энергии, начинает активно двигаться заряженная частица. Амперметр показывает возрастание электрического напряжения в цепи. Рассматривая проводники разных типов, учитывается удельная электропроводность и тип материала:

  • медь;
  • алюминий;
  • метал;
  • золото;
  • сплав никеля и хрома.

Вам это будет интересно  Реактивное и активное сопротивление

В научной среде есть понятие сверхпроводника, который считается идеальным. Он обладает значительным углом диэлектрической потери. Когда ток идёт от цепи, учитывается процент смещения. У сверхпроводника данный параметр минимален.

Из меди

Медь относится к компонентам 11 группы из таблицы химических элементов. По классификации он является пластинчатым, встречается в разных видах. Зачастую вещество имеет розовый оттенок. В электротехнике медь отличается низким удельным сопротивлением и лежит на одной нише с серебром, золотом.

Серебро и золото

Материал применим при изготовлении проводки, а также печатных плат. Ещё вещество востребовано при изготовлении электроприводов. Рассматривая сложные управляемые, электромеханические системы, заметно, что у них используются обмотки с низким удельным сопротивлением.

Если оценивать силовые трансформаторы, у них также применяется данный металл, однако он зачастую используется с примесями. Это необходимо, чтобы снизить показатель электропроводимости. В печатных платах медь используется на пару с алюминием. Рассматривая радиодетали, востребованными остаются сплавы на основе меди, которые также отличаются низким сопротивлением.

Разбирая персональные компьютеры, вещество встречается с бронзой либо латунью. Также используются добавки из цинка либо никеля. Чтобы повысить упругость проводника, применяются другие материалы, такие как олово, цинк. По таблице удельного сопротивления, веществу присвоен показатель 0,0157 Ом.

Свойства меди

Из алюминия

Среди элементов 13 группы в таблице выделяется алюминий. Он является отличным проводником в цепи, изготовлен из парамагнитного металла. По цвету наблюдается серебристый оттенок. Проводник хорошо поддается механической обработке. Помимо значительной электропроводимости, отмечается коррозийная стойкость.

При термической обработке образуется оксидная пленка, которая защищает поверхность. В природе предусмотрены различные соединения алюминия. Если рассматривать стандартную проволоку небольшого сечения, она востребована в электрических катушках. Вещество обладает низкой плотностью, а также массой, поэтому аналоги сложно подобрать. Используя алюминий в движущихся элементах, можно повысить их производительность.

Зачастую проводник встречается в жестких дисках, а также аудиосистемах. Востребованными остаются проволоки, покрытые слоем лака. Встречаются эмалированные аналоги, отличающиеся повышенной защищенностью. В качестве изоляции используется резина, берилл. Производители выпускают проводники с сечением от 0.003 мм.

Свойства алюминия

Помимо катушек индуктивности проволока может устанавливаться в индукторах, громкоговорителях, наушниках. Касательно соединений, встречаются варианты с алунитами. Дополнительная информация о физических свойствах:

  • низкая температура плавления;
  • высокая теплоемкость;
  • значительная твёрдость;
  • слабый парамагнетик;
  • широкий температурный диапазон.

Вам это будет интересно  Особенности расчета делителя напряжения

Алюминий встречается в печатных платах, поскольку поддается в штамповке. Коррозионная стойкость — дополнительное преимущество. Алюминиевые проводники являются популярными и востребованными в промышленности. Удельное сопротивление — 0,028 Ом. Также необходимо рассмотреть недостаток — значительное содержание примесей.

Из металла

Среди металлов, распространенными типами проводников считаются следующие:

  • свинец;
  • олово;
  • платина;
  • никель;
  • вольфрам.

Свинец — это элемент из 14 группы, который может использоваться в качестве проводника. У него предельная плотность 11.35 грамм на кубический метр. Область применения ограничена, поскольку материал токсичен и относится к тяжелым металлам. История происхождения формулы неясна, есть лишь догадки.

Группы металлов

Если говорить о проводниковых элементах, то зачастую применяется нитрат свинца. В источниках тока, резервных блоках встречается версия с хлоридом. Рассматривая неорганические соединения, выделяется материал теллурид. Он подходит в качестве термоэлектрического проводника, поэтому используется в электростанциях разной мощности. Ещё металлический элемент востребован в холодильниках.

Если детально рассматривать теллурид, к числу особенности стоит приписать значительную диэлектрическую проницаемость. В составе помимо свинца имеется олово и теллур. По отдельности вещества встречаются в фоторезисторах и диодах. Если разбирать полупроводниковые приборы, элементы содержатся в стабилизаторах и указывают направление тока.

Важно! Олово — это проводник из 14 группы химических элементов. Материал безопасен, не содержит токсичных веществ.

Наравне с золотом, олово обладает отличными антикоррозионными свойствами. Зачастую в технике применяется дисульфид. Наиболее высокий показатель сопротивления показывает двуокись олова. В аккумуляторах он используется в чистом виде. Рассматривая гальванические элементы, стоит упомянуть про марганцево-оловянный диоксид.

Платина — это проводника с десятой группы химических элементов. Представленный металл имеет электросопротивление 0,098 Ом, и отличается повышенной плотностью. Если рассматривать сферу применения, то зачастую вещество встречается в лазерной технике. Речь идет о принтерах, а также измерительных приборах.

Свойства платины

Дополнительно платина используется в электромагнитных реле. В представленных автоматических устройствах он выступает проводником. Речь идет о механических, тепловых либо оптических реле. В электронных датчиках платина содержится в меньшем количестве, однако используется за счёт широкого диапазона температур. В частности, можно рассмотреть электронный термометр сопротивления. Резистивный элемент по большей части состоит из платины.

Вам это будет интересно  Вычисления напряжения в сети электричества

Из золота

Удельное сопротивление золота 0,023 Ом. Материал относится к первой группе металлов и по физическим свойствам является мягким. Золото встречается с примесями и в чистом виде. Плотность составляет 19,32 г/см³, сфера применения широка. В промышленности проводник востребован в качестве припоя.

Припой золото

Его разрешается наносить на различные поверхности, он служит отличным материалом для соединения заготовок, поскольку наблюдается низкая температура плавления. Также золото востребовано для защиты от коррозии.

Недостатки:

  • мягкость материала;
  • подвержен точечной коррозии.

Если использовать материал с добавками, то снижается температура плавления. Также это оказывает воздействие на механические свойства вещества.

Золото с добавками

Из сплавов никеля и хрома

Никель обладает удельным сопротивлением 0,087 Ом. Это элемент из 8 группы, который является пластинчатым. При термической обработке элемент покрывается пленкой оксида.

ЭТО ИНТЕРЕСНО:  Что такое разность потенциалов

Особенности:

  • высокое электрическое сопротивление;
  • значительное линейное расширение;
  • упругость.

Никель активно используется в качестве проводника в аккумуляторах.

Различные добавки:

  • нихром;
  • пермаллои;
  • золото.

По сопротивлению элемент схож с константином, никелином. Хром является элементом шестой группы, проводник внешне имеет голубоватый оттенок. В качестве проводника он встречается в бытовой технике. Наиболее часто хром используется на пару с легированными сталями.

Свойства хрома

При соединении с нержавейкой образуется отличный проводник. Он демонстрирует антикоррозионные свойства, плюс повышенную твердость. На печатной плате элемент не боится износа. Устройства из хрома востребованы в авиакосмической промышленности.

Выше рассмотрены факторы, от чего зависит сопротивление проводника. Элементы изготавливаются из различных материалов, необходимо учитывать их свойства.

Источник: https://rusenergetics.ru/polezno-znat/ot-chego-zavisit-soprotivlenie-provodnika

Сопротивление тока

Как устроено внутри твердое вещество, в частности, металл? Атомы металла представляют собой кристаллическую решетку из положительно заряженных ионов, между которыми свободно движутся отрицательно заряженные электроны.

Электроны практически не связаны со своими атомами, и, вследствие этого, возможно существование электрического тока в металле, т.е. проводнике. Под действием электрического поля электроны могут перемещаться вдоль проводника. Это понятно. Но возникает вопрос – раз электроны не связаны с ядрами атомов, почему они вообще не вылетают прочь из тела, а продолжают оставаться внутри?

Притяжение ядер атомов

Очевидно, что их что-то удерживает. И удерживает их притяжение ядер атомов. Оно позволяет им почти свободно перемещаться внутри вещества, но ограничивает свободу границами самого тела. Это же притяжение сковывает их передвижение внутри проводника под действием электрического поля. И притяжение это различается у разных веществ, вследствие различий в строении кристаллической решетки.

Соответственно, одни вещества пропускают ток лучше, другие хуже. Поэтому все вещества разделяются на проводники и непроводники тока. Однако, все без исключения вещества все равно противодействуют, как бы сопротивляются прохождению тока через них. Величина, характеризующая это противодействие, называется сопротивлением электрическому току.

Сопротивление электрического тока

Сопротивление проходят в курсе физики восьмого класса. Сопротивление току зависит от структуры вещества, а также от его температуры. При увеличении температуры сопротивление увеличивается.  Силу сопротивления в физике измеряют в единицах, называемых Ом. Обозначается сопротивление буквой R. Сопротивление проводника в один Ом – это такое сопротивление, при котором при напряжении на концах проводника в один вольт сила тока равна одному амперу.

Сопротивление проводников различается. Есть проводники, которые проводят ток лучше, как например, серебро или медь, или хуже, как например, железо. От этого зависят потери тока при прохождении через проводник.

У некоторых веществ сопротивление току настолько сильно, что они не способны его проводить в обычных условиях. Такие вещества называют непроводниками. Их используют в качестве изоляторов. Это такие вещества, как фарфор, резина, эбонит и так далее.

Величина, характеризующая сопротивление вещества, называется удельным сопротивлением. Удельные сопротивления различных веществ можно найти из специальных таблиц.

Нужна помощь в учебе?

Предыдущая тема: Электрическое напряжение: определение, формула, вольтметр
Следующая тема:   Закон Ома для участка цепи: формулировка и формула, применение

Источник: http://www.nado5.ru/e-book/soprotivlenie-toka

§ 45. Расчёт сопротивления проводника. Удельное сопротивление

Мы знаем, что причиной электрического сопротивления проводника является взаимодействие электронов с ионами кристаллической решётки металла (§ 43). Поэтому можно предположить, что сопротивление проводника зависит от его длины и площади поперечного сечения, а также от вещества, из которого он изготовлен.

На рисунке 74 изображена установка для проведения такого опыта. В цепь источника тока по очереди включают различные проводники, например:

  1. никелиновые проволоки одинаковой толщины, но разной длины;
  2. никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения);
  3. никелиновую и нихромовую проволоки одинаковой длины и толщины.

Силу тока в цепи измеряют амперметром, напряжение — вольтметром.

Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.

Рис. 74. Зависимость сопротивления проводника от его размеров и рода вещества

Выполнив указанные опыты, мы установим, что:

  1. из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление;
  2. из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше;
  3. никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.

Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

Как учесть зависимость сопротивления от вещества, из которого изготовляют проводник? Для этого вычисляют так называемое удельное сопротивление вещества.

Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной 1 м, площадью поперечного сечения 1 м2.

Введём буквенные обозначения: ρ — удельное сопротивление проводника, I — длина проводника, S — площадь его поперечного сечения. Тогда сопротивление проводника R выразится формулой

Из неё получим, что:

Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является 1 Ом, единицей площади поперечного сечения — 1 м2, а единицей длины — 1 м, то единицей удельного сопротивления будет:

Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметpax, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:

В таблице 8 приведены значения удельных сопротивлений некоторых веществ при 20 °С. Удельное сопротивление с изменением температуры меняется. Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

Таблица 8. Удельное электрическое сопротивление некоторых веществ (при t = 20 °С)

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.

При проводке электрических цепей используют алюминиевые, медные и железные провода.

Во многих случаях бывают нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы 8, сплав нихром имеет удельное сопротивление почти в 40 раз большее, чем алюминий.

Фарфор и эбонит имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток, их используют в качестве изоляторов.

Вопросы

  1. Как зависит сопротивление проводника от его длины и от площади поперечного сечения?
  2. Как показать на опыте зависимость сопротивления проводника от его длины, площади поперечного сечения и вещества, из которого он изготовлен?
  3. Что называется удельным сопротивлением проводника?
  4. По какой формуле можно рассчитывать сопротивление проводников?
  5. каких единицах выражается удельное сопротивление проводника?
  6. Из каких веществ изготавливают проводники, применяемые на практике?

Источник: https://ansevik.ru/fizika_8/45.html

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности R между напряжением U и силой постоянного тока I в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом (1 Ом) — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А.

Зависимость сопротивлений от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на 1 °С к величине его сопротивления при 0 ºС:

.

Зависимость удельного сопротивления проводников от температуры выражается формулой:

.

В общем случае α зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов α = (1/273)К-1. Для растворов электролитов α < 0. Например, для 10% раствора поваренной соли α = -0,02 К-1. Для константана (сплава меди с никелем) α = 10-5 К-1.

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Источник: https://www.calc.ru/Elektricheskoye-Soprotivleniye.html

Что называется электрическим сопротивлением — Все об электричестве

26 марта 2013.
Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду.

Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Понравилась статья? Поделиться с друзьями:
220 вольт