Что такое резонанс напряжений

Что такое резонанс токов и напряжений


Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Векторная диаграмма:

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Векторная диаграмма:

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

U=I/X

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

cosФ=1

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне.

С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту.

В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена).

Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Заключение

Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:

  1. Где и в каких цепях наблюдается явление резонанса?

В индуктивно-емкостных цепях.

  1. Какие условия возникновения резонанса токов и напряжений?

Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.

  1. Как найти резонансную частоту?

В обоих случаях по формуле: w=(1/LC)(1/2)

Увеличив активное сопротивление в цепи или изменив частоту.

Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-rezonans-tokov-i-napryazhenij.html

Резонанс напряжений: причины возникновения, способы использования и возможный вред, цепь переменного тока

Резонанс напряжений происходит в электрической цепи, включающей в себя несколько элементов: источник электроэнергии, катушку индуктивности и конденсатор. Перечисленные элементы соединяются последовательно. При этом источник напряжения имеет такую частоту, которая совпадает с внутренним контуром. Это часто применяется в полосовых фильтрах.

Катушка индуктивности и последовательно включенный в цепь конденсатор вместе особенным образом воздействуют на генератор, от которого запитана цепь. Также они влияют на фазовые соотношения напряжения и тока:

  1. Первый элемент сдвигает фазу, при этом напряжение начинает обгонять ток примерно на четверть периода.
  2. Второй элемент действует иначе. Он заставляет ток обгонять напряжение также на одну четвертую часть периода фазы.

Индуктивное сопротивление действует на смещение фаз, из-за чего его можно считать противоположным работе емкостного сопротивления. В результате итоговый сдвиг фаз между напряжением и током в цепи зависит от суммарного действия индуктивного и емкостного сопротивлений, а также соотношения между ними. От этого тоже зависит характер цепи.

Если одноимённая величина превосходит противоположную, то систему можно считать емкостной, ведь ток превосходит по фазе. При иной ситуации характер цепи считается индуктивным, ведь напряжение доминирует.

Общее реактивное сопротивление определить просто. Необходимо сложить два показателя сопротивления:

  1. Индуктивное от катушки.
  2. Емкостное от конденсатора.

Из-за того, что они оказывают противоположное воздействие, одному из них присваивается отрицательный знак (обычно ёмкостному сопротивлению конденсатора). Тогда общее реактивное сопротивление можно найти так: из показателя катушки вычесть конденсатор.

Если общее напряжение разделить на найденный параметр, то по закону Ома получится сила тока. Эту формулу можно легко изменить, переведя на напряжение.

Оно будет равно произведению силы тока и разности двух сопротивлений (индуктивное берется с катушки, а емкостное — с конденсатора).

Если раскрыть скобку, то первое значение отразит действительный показатель части общего напряжения, которая старается преодолеть сопротивление. Второе — слагающая всего напряжения, которая пытается преодолеть емкостный параметр. Так, общее напряжение можно рассматривать как сумму этих слагаемых.

Обычно значением активного сопротивления можно пренебречь. Если оно слишком велико, учитывать его все же нужно.

Для определения этого значения нужно вычислить квадратный корень из суммы двух частей:

  1. Общее активное сопротивление, возведенное в квадрат.
  2. Квадрат разности индуктивного и емкостного сопротивлений, то есть общее реактивное.

Очевиден переход к закону Ома. Если разделить силу тока на найденное значение, то можно получить напряжение.

ЭТО ИНТЕРЕСНО:  Как сделать стробоскопы своими руками

Цепь переменного тока

Если соединить катушку с конденсатором последовательно, происходит меньшее смещение по фазе, чем если бы эти элементы были включены отдельно. Это связано с тем, что эти элементы действуют на цепь совершенно иначе, сдвигая баланс в разные стороны. Они компенсируют фазовый сдвиг, усредняют его значение.

Возможен и равный баланс. Полная компенсация соотношения между напряжением и током произойдет, если сопротивление катушки и конденсатора будут равны друг другу. В этом случае цепь будет вести себя так, будто бы в нее не включены эти элементы. Действие системы сведется к чистому активному сопротивлению, образованному соединительными проводами и катушкой. Сила действующего тока достигнет максимального значения, его можно будет вычислить по стандартному закону Ома.

Понятие резонанса

При описанной ситуации действующие напряжения на катушке и конденсаторе сравняются, а также достигнут максимального значения. Если активное сопротивление в этой цепи минимальное, то локальные показатели будут в несколько раз превышать общее напряжение. Такое явление принято называть резонансом напряжений.

Важно понимать, что местные сопротивления напрямую зависят от показателей тока. Если частоту тока уменьшить, то индуктивное значение снизится, а емкостное — возрастет. Помимо активного сопротивления, в сети также возникнет реактивное, из-за чего резонанс сойдет на нет. Это случится и в том случае, если изменить значения индуктивности или емкости.

Если в цепи возникает резонанс, то энергия источника расходуется исключительно на нагрев проводов, то есть преодоление активного сопротивления, так как катушка перекидывает ток на конденсатор и обратно без усилий генератора. Ведь в цепи с одним из элементов ток колеблется, периодически переходя от истока в магнитное поле.

Это касается катушки. В случае с конденсатором наблюдается аналогичная ситуация, только участвует электрическое поле. Если эти два элемента объединены, а также наблюдается резонанс, то энергия циклично движется от катушки к конденсатору и обратно. При этом она тратится в большей степени только из-за сопротивления проводника.

При нарушении резонанса количество энергии, требуемой первому и второму элементу, не совпадает. Возникнет избыток, который будет покрываться усилиями генератора. Этот процесс можно сравнить с механизмом часов с маятником.

Если бы силы трения не было, он мог колебаться без использования дополнительного груза или пружины в механизме. Но эти элементы, когда необходимо, передают часть своей энергии маятнику, из-за чего тот преодолевает силу трения и движется непрерывно.

При резонансе в электроцепи количество энергии, которую необходимо сообщить для поддержания колебаний, минимально.

Цепь считается колебательным контуром, если соблюдено несколько условий. Во-первых, ток должен быть переменным. Во-вторых, в систему должны входить генератор, конденсатор и катушка индуктивности. В-третьих, элементы должны быть соединены последовательно. В-четвертых, показатели внутренних сопротивлений должны быть равны.

Но резонанс невозможен, если частота генератора, емкость и индуктивность цепи не будут соответствовать значениям, зависящим от других параметров цепи. Все они вычисляются по специальным несложным формулам.

Польза и вред

Резонанс часто используют с пользой. Один из ярких бытовых примеров — починка радиоприемника. Электрика устройства настраивается таким образом, чтобы возник резонанс. Благодаря этому напряжение на катушке повышается и превосходит значение в цепи, созданной антенной. Это необходимо для нормальной работы приемника.

Но иногда действие резонанса сказывается на технике исключительно пагубно. Рост напряжения на некоторых участках может привести к их порче. Из-за того, что локальные значения не соответствуют генератору, отдельные детали или измерительные приборы могут выйти из строя.

Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/prichiny-vozniknoveniya-i-ispolzovanie-rezonansa-napryazheniy.html

При каких условиях возникает резонанс – : , —

Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.

Резонанс в электрической цепи

> Теория > Резонанс в электрической цепи

Резонанс в электрической цепи возникает при резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определенной резонансной частотой системы. Это происходит тогда, когда два элемента противоположного характера компенсируют эффект друг друга в цепи.

Резонанс токов и напряжений

RLC-цепь

Схема RLC – это электрическая цепь с последовательно или параллельно соединенными элементами:

  • резистора,
  • индуктора,
  • конденсатора.

Название RLC связано с тем, что эти буквы являются обычными символами электрических элементов: сопротивления, индуктивности и емкости.

Векторная диаграмма последовательной RLC-цепи представлена в одном из трех вариантов:

  • индуктивном,
  • емкостном,
  • активном.

В последнем варианте при нулевом сдвиге фаз, равенстве индуктивного и емкостного сопротивлений возникает резонанс напряжений.

Электрический резонанс

В природе бывают резонанс токов и резонанс напряжений. Наблюдаются они в цепи с параллельным и последовательным соединением элементов R, L и С. Резонансная частота одинакова для обеих цепей, она находится из условия противоположности сопротивлений реактивных элементов и вычисляется по нижеследующей формуле.

Векторные диаграммы практически идентичны, только сигналы отличаются. В последовательном контуре резонируют напряжения, в параллельном – ток. Но если отступиться от резонансной частоты такая симметрия естественно нарушится. В первом случае сопротивление возрастет, во втором – уменьшится.

Резонанс напряжений, достигающих максимальной амплитуды

На картинке ниже представлена векторная диаграмма цепи последовательного контура, где:

  • I – вектор общего тока;
  • Ul – опережает I на 900;
  • UС – отстает от I на 900;
  • UR – синфазно I.

Из трех векторов напряжения (Ul, UС, UR) два первых взаимно компенсируют друг друга. Они между собой:

  • противоположны по направлению,
  • равны по амплитуде,
  • отличаются по фазе на пи.

Получается, что напряжение по второму закону Кирхгофа приложено только к резистору. В этот момент:

  • импеданс последовательного контура на резонансной частоте минимален и равен просто R;
  • так как сопротивление цепи минимальное, то соответственно ток по амплитуде максимальный;
  • также приблизительно максимальны напряжения на индуктивности и на емкости.

Если рассматривать отдельно последовательный контур LC, то он даёт нулевое сопротивление на резонансной частоте:

ZL = -ZC

Резонанс напряжений в цепи переменного тока

Важно! Когда установился гармонический режим c резонансной частотой, в контуре происходит следующее: источник обеспечивает установившуюся амплитуду колебаний; мощность источника расходуется лишь на нагрев резистора.

Резонанс токов через реактивные элементы

Диаграмма параллельного контура на той же частоте. Поскольку все элементы соединены параллельно, то диаграмму лучше начать строить с общего напряжения.

  • U – вектор общего тока;
  • Ic – опережает U на 900;
  • IU – отстает от U на 900;
  • Ток в резисторе (IR) синфазен общему напряжению.

Поскольку сопротивления реактивности по модулю равны, то и амплитуды токов Icи Iu:

  • одинаковы;
  • достигают максимальной амплитуды.

Получается, что по первому закону Кирхгофа IR равен току источника. Другими словами, ток источника течет только через резистор.

Если рассматривать отдельно параллельный контур LC, то на резонансной частоте его сопротивление бесконечно большое:

ZL = ZC.

Когда установится гармонический режим cрезонансной частотой, в контуре происходит следующее:

  • источник обеспечивает установившуюся амплитуду колебаний;
  • мощность источника тока расходуется лишь на пополнение потерь в активном сопротивлении.

Двойственность RLC-контуров

Таким образом, можно сделать сравнительный вывод:

  1. У последовательной RLC цепи импеданс минимален на резонансной частоте и равен активному сопротивлению контура;
  2. У параллельной RLC цепи импеданс максимален на резонансной частоте и равен так называемому сопротивлению утечки, фактически тоже активному сопротивлению контура.

Для того чтобы предуготовить условия для резонанса тока или напряжения, требуется проверить электрическую цепь с целью предопределения ее комплексного сопротивления или проводимости. Помимо этого, её мнимую часть необходимо приравнять к нулю.

Для информации. Напряжения в последовательной цепи ведут себя очень похоже токам параллельной цепи на резонансной частоте, в этом проявляется двойственность RLC-контуров.

Резонанс в цепи переменного тока

Применение резонансного явления

Хорошим примером применения резонансного явления может служить электрический резонансный трансформатор, разработанный изобретателем Николой Тесла ещё в 1891 году. Тесла проводил эксперименты с различными конфигурациями, состоящими в сочетании из двух, а иногда трех резонансных электрических цепей.

Для информации. Термин «катушки Теслы» применяются к ряду высоковольтных резонансных трансформаторов. Устройства используются для получения высокого напряжения, низкого тока, высокой частоты переменного тока.

В то время как обычный трансформатор предназначен для эффективной передачи энергии с первичной на вторичную обмотку, резонансный трансформатор предназначен для временного хранения электрической энергии. Устройство управляет воздушным сердечником резонансно настроенного трансформатора для получения высоких напряжений при малых токах. Каждая обмотка имеет емкость и функционирует как резонансный контур.

Чтобы произвести наибольшее выходное напряжение, первичный и вторичный контуры настроены в резонанс друг с другом. Оригинальные схемы изобретателя применяются как простые разрядники для возбуждения колебаний с помощью настроенных трансформаторов. В более сложных конструкциях используют транзисторные или тиристорные выключатели.

Для информации. Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Своеобразный дизайн катушки продиктован необходимостью достигнуть низкого уровня резистивных потерь энергии (высокая добротность) на высоких частотах, что приводит к увеличению вторичных напряжений.

Резонанс в электрической цепи

Электрический резонанс – одно из самых распространенных в мире физических явлений, без которого не было бы TV, диагностических мед. аппаратов. Одни из самых полезных видов резонанса в электрической цепи – это резонанс токов и резонанс напряжений.

ЭТО ИНТЕРЕСНО:  Как обозначаются нулевые рабочие нейтральные проводники

Источник: https://elquanta.ru/teoriya/rezonans-v-ehlektricheskojj-cepi.html

Вопрос 3. В чем заключается явление резонанса напряжений и при каких условиях оно возникает?

Ответ3.1: В даннойцепи при равенстве индуктивного и емкостногосопротивлений полное сопротивление цепи будет минимальным и чисто активнымZ=R,а ток – максимальным .

Падениянапряжения на индуктивном и емкостномэлементах рассчитываются по законуОма: , и т.к.величинанапряжения на идеальнойиндуктивности ULравна напряжениюна емкости UC. ,но фазы напряженийUL и UC противоположны(сдвинуты на 180°).

Режимработы цепи c последовательным соединением R,L,Cэлементов при котором и (или )называют резонансомнапряжений.

Сумма комплексов напряжений ŪL и ŪC равна нулю,следовательно и модуль суммы будетравен нулю. Вольтметр, измеряющий падениенапряжения (модулькомплекса напряжения)на участке цепи с идеальной индуктивностьюи емкостью, покажет значение =0. При этомток и напряжениеВХсовпадает по фазе (коэффициент мощности,φ0 =0). Активнаямощность имеет наибольшее значение, равное полноймощностиS,в то время как реактивная мощность цепиоказывается равной нулю: .

Прирезонансе напряжения на емкости и наиндуктивности могут значительнопревышать подводимое напряжение U,если изначительнопревышают R:

, .

Физическаяпричина возникновения повышенныхнапряжений – это колебания значительнойэнергии, запасаемой попеременно вэлектрическом поле емкостного имагнитном поле индуктивного элементов.

При резонансе напряжений малые количестваэнергии, поступающей от источника икомпенсирующие потери энергии в активномэлементе – сопротивлении R,достаточны для поддержания незатухающихколебаний в системе относительно большихколичеств энергии электрического имагнитного полей.

Причем в любой моментвремени суммарная энергия электрическогои магнитного полей остается постоянной.

Резонанснапряжений в промышленных электрическихустановках нежелательное и опасноеявление, так как оно может привести каварии вследствие недопустимогоперегрева отдельных элементовэлектрической цепи или пробою изоляции.

**)Для мощныхдвигателей отношение сопротивленийобмоток XL/Rна промышленной частоте составляетнесколько десятков. Напряжение питаниядвигателей обычно >3800В).

Втоже время резонанс напряжений вэлектрических цепях переменного токашироко используется в радиотехнике вразличных приборах и устройствах,основанных на резонансных явлениях.

Вопрос 4. Изменением каких параметров электрической цепи (см. Рис.1) можно получить резонанс напряжений ?

Ответ4: Прирезонансе напряжений выравниваютсяреактивные сопротивления ХL=XC.

Т.к.ХL=ω·L, а XC=1/ωС, то равенства сопротивлений можнодобиться тремя способами:

  1. при постоянных ω и L изменяя величину емкости С;

  2. при постоянных ω и С изменяя величину индуктивности L;

  3. при постоянных L и С изменяя частоту ω. При резонансе .

Вопрос 5. С помощью каких приборов и по какому признаку можно судить о возникновении резонанса напряжений в электрической цепи?

Ответ5: 1) В даннойлабораторной установке опыты проводятсяпри постоянных величинах ω и L.По мере увеличения емкости от минимальногодо резонансного значения С0=1/ωXL,полное сопротивление цепи будет уменьшаться, при этом ток в цепи согласно формуле для тока будет расти. При резонансе он достигнетмаксимального значения .

Вывод 1

1:Амперметр покажет максимальное значениетока.

2)Т.к. UL=I·XL,топадениенапряжения на индуктивности ULбудет расти пропорционально росту тока.При резонансе напряжений, это напряжениебудет максимальным. Однако вольтметрPVКизмеряет, согласно схеме замещения,падение напряжения на участке цепи из2-х последовательно соединенных элементов: сопротивлений катушки Rи индуктивности ХL.Падение напряжения на сопротивленииR равно UR=I·R=Uвх, следовательнопри резонансеэто напряжение также будет максимальным.

Вывод2:

1)ВольтметрPVКтакже покажет максимальное значение

2)Падениенапряжения на емкости С, измеряемоевольтметром PVC,равно: .

Т.к. ток в цепи один , а величины сопротивленийХL,XCпри резонансе одинаковы, то и напряженияодинаковы UL=UС.При этом Uвх= UR.При резонансе =.Следовательнопоказания вольтметров PVК и PVCбудутразными. Очевидно, что UК > UC.

Вывод3: прирезонансе показания вольтметра PVК больше показания вольтметра PVC.

4)Ваттметр PWизмеряет активную мощность потребляемую цепью. Т.к. при резонансе ток максимальный,а активная мощность Р = I2·R,то и мощность Pбудет максимальной.

Вывод4: Ваттметрпокажет максимальное значение Рмакс = I2·R=U2вх/ R.

Источник: https://studfile.net/preview/6179866/page:3/

Резонанс напряжений, условие возникновения — Ремонт220

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления).

Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е.

Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:

(L – 1/WС) = 0 (1),

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

WL = 1/WС.

В этом выражении W – является резонансной частотой контура.

Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:

UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Q = WL/R

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Применение резонанса напряжений

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями.

Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии.

В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

83046 Нагревание проводников электрическим током

Источник: https://remont220.ru/stati/728-rezonans-napryazheniy-uslovie-vozniknoveniya/

Резонанс напряжений и резонанс токов

В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.

Где применяется резонанс напряжений

уменьшается, становится чисто активным и равным R (сумма активного сопротивления катушки и соединительных проводов). В результате, согласно закону Ома: I = U R , ток в цепи достигает своего максимального значения.

Следовательно, напряжения как на катушке U L = I X L , так и на конденсаторе U C = I X C окажутся равными и будут максимально большой величины [1] . При малом активном сопротивлении цепи R эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи, которое создаёт генератор. Это явление и называется в электротехнике резонансом напряжений.

Колебательный контур, работающий в режиме резонанса напряжений, сам по себе не является усилителем мощности. Повышенные напряжения на его элементах возникают за счёт увеличения тока в цепи и следовательно потребляемой мощности от источника переменного напряжения.

Явление резонанса напряжений необходимо учитывать при разработке аппаратуры. Повышенное напряжение может повредить не рассчитанные на него элементы.

Если нужно повысить напряжение до безопасного уровня путем резонанса, то следует использовать комбинированный или параллельно-последовательный резонанс (описание в статье Резонанс токов).

При совпадении частоты генератора и собственных колебаний контура на катушке появляется напряжение, более высокое, чем на клеммах генератора. Это можно использовать для питания высокоомной нагрузки повышенным напряжением, или в полосовых фильтрах.

Если напряжение источника питания слишком маленькое, то можно его повысить если устроить последовательный резонанс на основе трансформатора. Если при этом полученное напряжение окажется больше расчетного для трансформатора, то первичная и вторичная обмотки соединяются последовательно чтобы трансформатор не вышел из строя.

Видно, что с увеличением добротности контура, часто́ты ω C и ω L сближаются с резонансной частотой ω 0 .

Резонанс напряжений — резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Явление резонанса напряжений возникает на частоте ω 0 , при которой индуктивное сопротивление катушки X L = ω 0 L и ёмкостное сопротивление конденсатора X C = 1 ω 0 C равны между собой. При этом Электрический импеданс (полное сопротивление) цепи

z ( j ω 0 ) = R + 1 j ω 0 C + j ω 0 L +jomega _L>

уменьшается, становится чисто активным и равным R (сумма активного сопротивления катушки и соединительных проводов). В результате, согласно закону Ома: I = U R , ток в цепи достигает своего максимального значения.

Следовательно, напряжения как на катушке U L = I X L , так и на конденсаторе U C = I X C окажутся равными и будут максимально большой величины [1] . При малом активном сопротивлении цепи R эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи, которое создаёт генератор. Это явление и называется в электротехнике резонансом напряжений.

Замечания [ править | править код ]

Колебательный контур, работающий в режиме резонанса напряжений, сам по себе не является усилителем мощности. Повышенные напряжения на его элементах возникают за счёт увеличения тока в цепи и следовательно потребляемой мощности от источника переменного напряжения.

Явление резонанса напряжений необходимо учитывать при разработке аппаратуры. Повышенное напряжение может повредить не рассчитанные на него элементы.

Если нужно повысить напряжение до безопасного уровня путем резонанса, то следует использовать комбинированный или параллельно-последовательный резонанс (описание в статье Резонанс токов).

Применение [ править | править код ]

При совпадении частоты генератора и собственных колебаний контура на катушке появляется напряжение, более высокое, чем на клеммах генератора. Это можно использовать для питания высокоомной нагрузки повышенным напряжением, или в полосовых фильтрах.

ЭТО ИНТЕРЕСНО:  Что такое лазерный луч

Если напряжение источника питания слишком маленькое, то можно его повысить если устроить последовательный резонанс на основе трансформатора. Если при этом полученное напряжение окажется больше расчетного для трансформатора, то первичная и вторичная обмотки соединяются последовательно чтобы трансформатор не вышел из строя.

Литература [ править | править код ]

  • Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 52.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

Примечания [ править | править код ]

  1. Однако, точное решение задачи о максимуме напряжения на катушке и конденсаторе с учётом величины добротности Q , даёт несколько другой результат. Часто́ты ω C и ω L , на которых напряжение на катушке и конденсаторе достигает максимума, не равны между собой, и не совпадают с частотой резонанса ω 0 : ω C = ω 0 2 Q 2 — 1 2 Q 2 ω L = ω 0 2 Q 2 2 Q 2 — 1

Видно, что с увеличением добротности контура, часто́ты ω C и ω L сближаются с резонансной частотой ω 0 .

В колебательном контуре, обладающем индуктивностью L, емкостью C и сопротивлением R, свободные электрические колебания имеют тенденцию к затуханию. Чтобы колебания не затухали, необходимо периодически пополнять контур энергией, тогда возникнут вынужденные колебания, которые не будут затухать, ведь внешняя переменная ЭДС станет теперь поддерживать колебания в контуре.

Если колебания поддерживать источником внешней гармонической ЭДС, частота которой f очень близка к резонансной частоте колебательного контура F, то амплитуда электрических колебаний U в контуре станет резко возрастать, то есть наступит явление электрического резонанса .

Емкость в цепи переменного тока

Рассмотрим сначала поведение конденсатора C в цепи переменного тока. Если к генератору, напряжение U на выводах которого меняется по гармоническому закону, присоединить конденсатор C, то заряд q на обкладках конденсатора станет меняться также по гармоническому закону, как и ток I в цепи. Чем больше емкость конденсатора, и чем выше частота f, прикладываемой к нему гармонической ЭДС, тем больше окажется ток I.

С этим фактом связано представление о так называемом емкостном сопротивлении конденсатора XC, которое он вносит в цепь переменного тока, ограничивая ток подобно активному сопротивлению R, но в сравнении с активным сопротивлением, конденсатор не рассеивает энергию в виде тепла.

Источник: https://gadget-apple.ru/gde-primenjaetsja-rezonans-naprjazhenij.html

Резонанс напряжений: формулировка, условие наступления, применение

Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов.

Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока.

Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.

Описание явления

Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.

Рис. 1. Резонанс в электрической цепи

Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.

Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.

Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.

Формула

Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.

На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).

Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивления

Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).

Рис. 3. Последовательный колебательный контур Рис. 4. Параллельный колебательный контур

В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:

Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:

K = Uвых / Uвх = UC0 / U = Q

Формулировка

На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений».

Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.

Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса.

Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].

В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:

Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):

где R – общее активное сопротивление.

Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.

Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.

Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.

Условия наступления

Резонансные явления наступают только при наличии следующих условий:

  1. Наличие минимального активного сопротивления на участке электрической цепи.
  2. Равенство реактивных сопротивлений, возникших на цепочке LC.
  3. Совпадение входной частоты источника питания с резонансной частотой колебательного контура.

При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.

Примеры применения на практике

Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.

В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.

Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.

Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.

Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.

Катушки индуктивности

Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.

Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.

Источник: https://www.asutpp.ru/rezonans-napryazheniy.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Конвектор что это такое

Закрыть
Для любых предложений по сайту: [email protected]