Что такое выпрямитель тока

Выпрямители тока

Вам необходим выпрямитель тока, но Вы плохо владеете информацией об этом устройстве, чтобы купить качественный, функциональный и практичный прибор? Что нужно о нём знать?

Выпрямитель электрического тока — это электрическая машина по преобразованию электрической энергии, которая позволяет контролировать и регулировать напряжение в сети.

Какие выпрямители тока существуют?

Классификаций выпрямителей тока существует много, но особенно ходовыми являются следующие виды выпрямителей.

1. Разные виды выпрямителей преобразуют разные виды тока:

  • выпрямитель переменного тока преобразовывает входной переменный электрический ток в выходной постоянный;
  • выпрямитель постоянного тока, соответственно, преобразует постоянный ток в переменный; если при покупке такого выпрямителя Вы услышите слово инвертор, не пугайтесь: это одно из его названий.

2. Различаются выпрямители по количеству используемых в работе фаз:

  • однофазный выпрямитель применяется для питания маломощных устройств;
  • двухфазный выпрямитель используется для правильной работы устройств, чья мощность не превышает определённой нагрузки: в телевизорах, к примеру, и радиоприёмниках;
  • выпрямитель трёхфазный считается наиболее функциональным; используется в основном для питания промышленных установок большой мощности, помогает избежать неравномерности нагрузки на электросеть;
  • многофазный.

3. Вид выпрямителя может зависеть от количества напряжения, которое подвергается преобразованию:

  • низковольтные (12 В, 24 В — до 100 В);
  • средневольтовые (220 В — от 100 до 1000 В);
  • самые мощные высоковольтные (преобразовывают свыше 1000 В).

Основные характеристики

На любой выпрямитель цена будет зависеть прежде всего от технических характеристик прибора. Какие из них нужно учесть при выборе выпрямителя? Основными характеристика этого устройства принято считать следующие показатели:

  • количество габаритной мощности трансформатора, которое использует выпрямитель тока;
  • показатель внутреннего комплексного сопротивления;
  • амплитудно-частотные характеристики допустимой выходной пульсации;
  • нагрузочные характеристики;
  • процент эффективного напряжения на входе;
  • процент эффективного напряжения на выходе.

Современные устройства снабжены внутренним микропроцессором, который контролирует состояние напряжения сети.

Источник: https://tszi.ru/articles/vypryamitel-toka/

Выпрямитель напряжения: классификация, применение, схема выпрямителя

Исторически сложилось, что электроэнергию выгоднее и дешевле получать в виде переменного тока, вырабатываемого генераторами силовых станций. Такое представление позволяло эффективно передавать ее на огромные расстояния.

На приемном конце она преобразовывалась в удобное для потребителей однофазное напряжение и в этом виде поступала в линию питания. Однако внутренние схемы большинства современных электроприемников нуждаются в постоянном питании, величина которого выбирается из стандартного ряда значений 5, 9, 12, 24, 36 или 48 Вольта.

Для их получения в схему электронных приборов пришлось вводить специальный выпрямитель напряжения (на 24 Вольта, например).

Принцип работы выпрямителя

Для ясного понимания принципа работы выпрямителя постоянного тока сначала придется учесть, что для выпрямления переменного напряжения применяют полупроводниковые элементы (диоды). Их отличительной особенностью является возможность проводить ток только в одну сторону.

Благодаря этому свойству, подаваемое на них переменное напряжение на выходе будет иметь вид положительных пульсаций со срезанными нижними половинками полупериода колебаний. При положительных полуволнах через диод будет протекать ток, являющийся основой для формирования постоянного питания.

Для его получения необходимы дополнительные электрические элементы.

Устройство выпрямительного диода

Любой выпрямитель тока имеет в своем составе следующие основные узлы:

  • Понижающий трансформатор, преобразующий 220 Вольт в нужную величину;
  • набор из диодов (мостик);
  • сглаживающий (фильтрующий) конденсатор;
  • стабилизатор, выполненный на основе транзисторных элементов.

Известно множество вариантов электронных выпрямителей, отличающихся числом и способом подсоединения диодов, а также своими рабочими параметрами. Особый интерес представляют различные подходы к включению в схему диодных элементов. Стабилизирующий каскад выпрямительного устройства собирается на транзисторных ключах, называемых электронными реле.

Виды выпрямителей

Схема однофазного выпрямителя

В зависимости от способа включения полупроводниковых диодов все выпрямители переменного тока подразделяются на следующие виды:

  • однополупериодные (полуволновые);
  • двухполупериодные (полноволновые со средней точкой или схемы Миткевича);
  • мостовые или выпрямители Гретца;
  • выпрямители с удвоением рабочего напряжения и другие, менее распространенные схемы.

График выходного напряжения

Однополупериодное включение – самые простой способ, используемый для выпрямления переменного тока. Другое название – нулевая выпрямительная схема.

С помощью устройств этого класса удается получить только пульсирующий (используемый лишь наполовину) выходной ток. Схемы, построенные на однополупериодном принципе, отличаются низкой эффективностью преобразования и применяются крайне редко. Их двухполупериодные аналоги имеют в своем составе два диода и обеспечивают выпрямление полуволн обеих полярностей. Они отличаются большей эффективностью и применяются в простейших блоках питания.

Однофазные мостовые выпрямители, так называемые схемы Гретца на 4-х диодах, характеризуются высоким КПД, под которым понимается эффективность использования полученной от трансформатора мощности.

Напряжение на выходе полупроводниковых выпрямительных мостов является хорошей основой для последующего сглаживания и стабилизации – получения постоянного тока.

Они широко применяются в устройствах повышенной энергоемкости типа генераторов с выходными напряжениями от десятков до сотен Вольт. К их достоинствам относят:

  • низкое обратное напряжение (доли Вольта);
  • небольшие габариты;
  • высокий КПД использования трансформатора (в сравнение со схемой Миткевича).

Существенный недостаток мостовых схем – в два раза большее падение напряжения на диодах, что вынуждает при их разработке выбирать выходные параметры трансформатора с запасом. Эта часть полезной мощности теряется затем на переходах четырех диодов.

Типы выпрямителей по функциональным возможностям

Мостовой трехфазный выпрямитель

По своему назначению и функциональным возможностям известные образцы выпрямителей делятся на однофазные и трехфазные устройства. Первые используются в электросетях многоквартирных и частных домов и предназначены для питания бытовой аппаратуры. Вторые представляют собой электронный модуль из 3-х однотипных узлов, изготавливаемых по одной из следующих схем:

  • однотактные выпрямители;
  • двухтактные системы;
  • комбинированные модули: с двумя трехфазными обмотками с параллельным и последовательным включением диодов.

Применение однотактных схем трансформации ограничено из-за малой эффективности выпрямленного напряжения.

Двухтактные их аналоги широко применяются в электродвигателях постоянного тока и других электрических машинах, содержащих в своей конструкции щеточные узлы.

Помимо классических выпрямителей, предназначенных для установки в коллекторные двигатели, существуют схемы, которые позволяют повысить напряжение на выходе в несколько раз. Частным случаем таких решений является выпрямитель с удвоением напряжения.

Схема выпрямителя с удвоением напряжения лишь деталями отличается от уже рассмотренных вариантов. Такие устройства принято называть умножителями, которые легко собираются своими руками.

Основные соотношения при расчете выпрямителя

Для расчета 2-хполупериодного выпрямителя, выбранного в качестве примера, потребуется знать следующие исходные данные:

  • входное напряжение, действующее во вторичной обмотке трансформатора;
  • ток в диодах, протекающий в цепи с учетом нагрузки;
  • емкость электролитического конденсатора, выбираемая, исходя из заданного коэффициента сглаживания пульсаций;
  • максимальное напряжение на нем.

Важно учитывать падение напряжения на твердотельных диодах, находящихся в открытом состоянии.

Расчетные соотношения для этого случая представляются в следующем виде.

  • Ток в обмотке трансформатора по величине равен максимальному его значению в нагрузке (Iобм= Iнагр).
  • Напряжение во вторичной обмотке в режиме холостого хода составляет U2≈ 0,75Uнагр.
  • Выпрямительные диоды рекомендуется брать со следующими параметрами: Uобр > 3,14Uнагр, а Iмакс > 1,57Iнагр.

Выпрямители широко применяются в самых различных областях электротехники и электроники, включая современные системы управления. Поэтому так важно разобраться с тем, что такое выпрямители тока и какие их разновидности используются при построении самых эффективных схем.

Источник: https://strojdvor.ru/elektrosnabzhenie/raznovidnosti-i-princip-raboty-vypryamitelej-napryazheniya/

Типы выпрямителей переменного тока

Радиоэлектроника для начинающих

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры.

Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц).

На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме.

К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы.

А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF).

Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2).

Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта).

Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора.

Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков).

Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер).

При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить.

Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат.

В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора.

Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

ЭТО ИНТЕРЕСНО:  Как сделать софтбокс своими руками

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой «Полупроводниковые выпрямители».

» Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Какие бывают припои?
  • Обзор термовоздушной паяльной станции.

Источник: https://go-radio.ru/vipramiteli.html

Выпрямители. Схемы выпрямления электрического тока

В данной статье расскажем что такое выпрямитель тока, принципы его работы и схемы выпрямления электрического тока.

Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора.

Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции.

Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А».

Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:

Uср = 2*Umax / π = 0,636 Umax

где: π — константа равная 3,14.

Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):

Трёхфазные выпрямители электрического тока (Схема Ларионова)

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».

При конструировании блоков питания

Для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

— максимальное обратное напряжение диода – Uобр ;

— максимальный ток диода – Imax ;

— прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей электрического тока предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Источник: https://meanders.ru/vypryamitely.shtml

Выпрямитель тока. Принцип работы и назначение

Большинство электроприборов, так или иначе, работают на постоянном токе. Но передавать на дальние расстояния – невыгодно, так как используются чаще всего низкие напряжения, а для них коэффициент потерь слишком высок.

Поэтому линии электропередач передают высокие напряжения переменного тока, которые затем понижаются на трансформаторных подстанциях (трансформатор постоянного тока невозможен технически) до более низких значений. Соответственно, переменный ток необходимо преобразовать в постоянный для нормальной работы бытовой техники.

Преобразователи переменного тока в постоянный называются выпрямителями (так как преобразуют «кривую» синусоидального тока в «прямую» постоянного).

Классификация и принцип работы

Выпрямители переменного тока классифицируются по нескольким признакам:

— по использованию периодов (однополупериодные, двухполупериодные, неполноволновые и полновоновые);

— по схеме работы (мостовые, умножающие, трансформаторные, бестрансформаторные и так далее);

— по фазности (одно-, двух-, трех- и более фазные);

— по типу электронного вентиля (диодные, тиристорные, неполупроводниковые, механические);

— по типу сигнала (импульсные, цифровые, аналоговые).

Принцип работы простейшего выпрямителя использует свойство диода пропускать ток только в одном направлении. Проходя через диод, синусоидальная волна обрезается (положительная полуволна идет в схему, а отрицательная гасится на диоде). Такой ток называется однополупериодным пульсирующим, так как диод пропускает ток только в половине случаев, а ток при этом пульсирует от нуля до максимума.

Двухполупериодный выпрямитель тока представляет собой схему их четырех диодов, соединенных таким образом, чтобы обе полуволны попадали в схему, но отрицательная полуволна при этом «переворачивается». Такой ток тоже будет пульсирующим, но в схему будет попадать двухполупериодный ток. Двухполупериодный выпрямитель представляет собой два однополупериодных, включенных встречно-параллельно друг другу.

Сглаживание пульсирующего тока

После простейших выпрямителей ток трудно назвать постоянным, так как напряжение постоянно изменяется от нуля до максимума (но никогда не уходит в отрицательные значения).

Поэтому к выпрямителю добавляется фильтр, который замедляет скорость нарастания напряжения и его угасания. Таким образом до максимального уровня сети напряжение не успевает подняться до начала спада, но и опуститься до нуля ему тоже не удается.

Напряжение на выходе выпрямителя со сглаживающими фильтрами примерно равно половине напряжения сети.

Из-за инерционности элементов и потерь абсолютно постоянного тока достичь практически невозможно, но колебания в 5-10% (в зависимости от требований схемы может быть и больше) не влияют на работоспособность электроприборов.

Применение выпрямителей

Выпрямители применяются повсеместно в устройствах самых различных назначений, от зарядных устройств для мобильных телефонов, до двигателей электропоездов.

Для мелкой бытовой техники (мобильные телефоны, ноутбуки, телевизоры и так далее) перед выпрямителем в схеме установлен понижающий трансформатор, который понижает напряжение до необходимого уровня, прежде чем подать его на выпрямитель.

Далее ток выпрямляется, и на устройство приходит низкое постоянное напряжение (чаще всего 5-12В), вместо 220В переменного тока из сети.

Силовые выпрямители для электропоездов работают несколько иначе, чем диодные для бытовой техники, но общий принцип работы сохраняется – нижняя полуволна «переворачивается», затем происходит сглаживание пульсаций. Разница лишь в размерах элементов и значениях силы тока и напряжения.

Источник: http://solo-project.com/articles/2/vypryamitel-toka-princip-raboty-i-naznachenie.html

Военно-техническая подготовка

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

1.7.1. Однополупериодный выпрямитель.

Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток.

На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами ёмкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя.

Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 кГц, широко применяющихся в современной бытовой и промышленной аппаратуре.

Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями ёмкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.

Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю. Среднее значение переменного тока по отношению к подведенному действующему составит:

.

Эта величина вдвое меньше, чем в полномостовом. Важно отметить, что среднеквадратичное значение напряжения на выходе однополупериодного выпрямителя будет в меньше подведенного действующего, а потребляемая нагрузкой мощность в 2 раза меньше (для синусоидальной формы сигнала).

1.7.2. Двухполупериодный выпрямитель.

Двухполупериодный выпрямитель может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов. Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора).

Рис 1. Двухполупериодный выпрямитель с сглаживающим ёмкостным фильтром.

При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствие нагрузки, будет всегда равно амплитудному.

Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствие нагрузки), будет напряжение до 17 вольт.

Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины средневыпрямленного напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.

Соответственно, выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора — должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой — на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.

Рис 2. Входное переменное напряжение (жёлтого цвета) и постоянное выходное напряжение однополупериодного выпрямителя с фильтрующей ёмкостью.

Следует отметить, что в выпрямителях с сглаживающим конденсатором диоды открываются не на весь полупериод напряжения, а на короткие промежутки времени, когда мгновенное значение переменного напряжения превышает постоянное напряжение на фильтрующем конденсаторе (т. е. в моменты вблизи максимумов синусоиды).

Поэтому протекающий через диоды (и обмотку трансформатора) ток представляет собой короткие мощные импульсы сложной формы, амплитуда которых значительно превышает средний ток, потребяемый нагрузкой выпрямителя.

Этот факт следует учитывать при расчёте трасформатора (вариант расчёта для работы не на активную нагрузку, а на выпрямитель с ёмкостным фильтром), и принимать меры для подавления возникающих импульсных помех.

1.7.3. Мостовая схема выпрямления переменного тока.

Диодный мост — электрическая схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий.

На вход (Input) схемы подаётся переменное напряжение (обычно, но не обязательно синусоидальное). В каждый из полупериодов ток проходит только через 2 диода, 2 других — заперты:

Рис 3. Выпрямление положительной полуволны Рис 4. Выпрямление отрицательной полуволны

Рис 5. Анимация принципа работы

В результате, на выходе (DC Output) получается напряжение, пульсирующее с частотой, вдвое большей частоты питающего напряжения:

Рис 6. Красным — исходное синусоидальное напряжение , зелёным — однополупериодное выпрямление (для сравнения), синим — рассматриваемое двухполупериодное

ЭТО ИНТЕРЕСНО:  Что такое авр в электрике

Преимущества

  • Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) позволяет:
  • Получить на выходе напряжение с повышенной частотой пульсаций, которое проще сгладить фильтром на конденсаторе.
  • Избежать постоянного тока подмагничивания в питающем мост трансформаторе.
  • Увеличить его КПД, что позволяет сделать его магнитопровод меньшего сечения.

Недостатки

  • Происходит двойное падение напряжения по сравнению с однополупериодным выпрямлением (прямое напряжение диода × 2 ≈ 1 В), это иногда нежелательно в низковольтных схемах. Частично этот недостаток может быть преодолен за счет использования диодов Шоттки с малым падением напряжения.
  • При перегорании одного из диодов схема превращается в однополупериодную, что может быть не замечено вовремя, и в устройстве появится скрытый дефект.

Источник: http://zrv.ivo.unn.ru/pages/vtp/1/1-7-vypryamiteli.htm

Выпрямители (источники тока) для процессов гальваноосаждения.Преобразователи/блоки питания для гальваники

 Компания разрабатывает и производит высокочастотные импульсные выпрямители (источники тока/напряжения) серии “UNIV”, различного диапазона выходной мощности от 0.

36 до 150 кВт и назначения, используемые для проведения различных процессов гальванического осаждения, работы установок очистки воды, электротермии и питания нагревателей, обеспечения работы электромагнитов, светового оборудования, при производстве печатных плат, для зарядки аккумуляторных батарей, функционирования различного промышленного оборудования и т.д.

 Выпрямители серии «UNIV», изготавливаются на высококачественной импортной элементной базе ведущих производителей электронных компонентов, с использованием высоковольтных IGBT-модулей (силовая часть), управляемых широтно-импульсной модуляцией (ШИМ), обеспечивающих высокий коэффициент мощности и высокий КПД преобразователя. Выпрямители обладают высокой надежностью, точностью подержания выходных параметров, имеют малую импульсную составляющую и оснащены защитой от перегрузки по току и напряжению, автоматической защитой от перегрева и защитой от внешнего и внутрисхемного короткого замыкания.

 Выпрямители позволяют проводить длительную, непрерывную работу в режиме максимальной нагрузки (при соблюдении рабочих условий эксплуатации).

 Все производимое оборудование сертифицировано.

☑  Использование импортной высококачественной элементной базы от ведущих европейских (”Infineon Tech”, ”АВВ”) и восточных (”Delixi-electric”, “Viking Tech Corp”, “TRinno Tech”) производителей электронных компонентов! ☑  В выпрямителях (источниках тока/напряжения), серии “UNIV”, не создаются и не закладываются аппаратные и программные “поломки” оборудования, через определенный период работы или времени! ☑  Регулировка тока и напряжения от 0 до номинального значения, и работа в режиме стабилизации, поддержании и регулировки тока (РТ), или режиме стабилизации, поддержании и регулировки напряжения (РН)! ☑  Изготовление выпрямителей (источников тока/напряжения) с различными интерфейсами управления (аналоговый «4-20 мА» «токовая петля», цифровой «RS-485», промышленный протокол «Profinet»)! ☑  Изготовление выпрямителей с различным оснащением (реверсивное управление, включение/отключение по внешнему контакту («сухой контакт»), сенсорная панель оператора HMI, выносной пульт д/у)! ☑  Возможность оснащения выпрямителей низкочастотным импульсным режимом работы (Low Frequency Pulse Plating — LFPP) с диапазоном работы LFP от 0 до 200 Гц (для процессов анодирования титана)! ☑  Возможность изготовления выпрямителей (источников тока/напряжения), мощностью более 10 кВт, в пылезащищенном корпусе (IP54) с встроенным жидкостным охлаждением силовой части! ☑  Выпрямители (источники тока/напряжения), серии UNIV позволяют проводить длительную, непрерывную работу в режиме максимальной нагрузки (при соблюдении рабочих условий эксплуатации). ☑  Высокая эффективность (КПД) во всем рабочем диапазоне! Высокий коэффициент мощности! Отлаженный гарантийный и пост-гарантийный сервис! Гарантия на оборудование 2 года!

Выпрямители (источники тока/напряжения) малой мощности

Выпрямители малой мощности (до 2 кВт) 30А/12В, 50А/12В, 70/12В, 100А/12В – высокочастотные импульсные источники постоянного тока (напряжения), обладающие широкими пределами регулировки. Выпрямители обладают высокой эффективностью (КПД), низким уровнем пульсаций (оснащены 2S емкостно-индуктивным LC-фильтр защиты от ЭМП), высокой стабильностью выходных параметров и имеют пониженное энергопотребление.

Выпрямители (источники тока/напряжения) 30А/12В, 50А/12В, 70/12В, 100А/12В изготовлены c использованием модульных электронных схем, работающих по технологии быстродействующего ключа (IGBT), имеют одинаковый конструктив, практически одинаковые массогабаритные параметры и могут работать с изолированным выходом, и при заземлении клеммы любой полярности («плавающая» земля). Корпуса выпрямителей выполнены в виде компактных моноблоков со съемным сетевым шнуром питания.

Выпрямители (источники тока/напряжения) 30А/12В, 50А/12В, 70А/12В, 100А/12В имеют принудительное воздушное охлаждение, защиту электронной цепи от перегрузки по току и напряжению, защиту по предельному выходному напряжению (УЗН), автоматическую защиту от перегрева и защиту от внутрисхемного короткого замыкания.

Выпрямители позволяют регулировать ток и напряжение от 0 до номинального значения, и работать в режиме стабилизации, поддержании и регулировки выходного тока (РТ), или режиме стабилизации, поддержании и регулировки выходного напряжения (РН), с автоматическим переключением при изменении характера нагрузки.

МОДЕЛЬ ВЫПРЯМИТЕЛЯ ДИАПАЗОН РЕГУЛИРОВКИ РАЗРЕШЕНИЕ ЭЛЕКТРОПИТАНИЕ РЕЖИМ НАГРУЗКИ ГАБАРИТЫ
ТОКА НАПРЯЖЕНИЯ АМПЕРМЕТРА ВОЛЬТМЕТРА
UNIV-30А/12В 0-150А 0-12В 0.1А 0.1В 220В+10%;50Гц 100% 240*150*340
UNIV-50А/12В 0-200А 0-12В 0.1А 0.1В 220В+10%;50Гц 100% 240*150*340
UNIV-70А/12В 0-300А 0-12В 0.1А 0.1В 220В+10%;50Гц 100% 240*150*360
UNIV-100А/12В 0-500А 0-12В 0.1А 0.1В 220В+10%;50Гц 100% 250*150*360

Выпрямители (источники тока/напряжения) средней мощности

Выпрямители средней мощности (до 10 кВт) 150А/12В, 200А/12В, 300А/12В, 500А/12В, серии UNIV – высокочастотные импульсные источники постоянного тока (напряжения), обладающие широкими пределами регулировки.

Выпрямители обеспечены надежной индуктивной гальванической развязкой питающей цепи (первичные обмотки трансформаторов изготавливаются из провода с усиленной изоляцией — тестовое напряжение 3000В, в течение 1 мин) от вторичной (выходной) цепи, обладают высоким КПД, низким уровнем пульсаций и имеют систему “плавного пуска” (для предотвращения перегрузки питающей сети в первоначальный момент подачи напряжения на нагрузку).Выпрямители 150А/12В, 200А/12В, 300А/12В, 500А/12В изготавливаются в стоечном или горизонтальном исполнении, могут оснащаться различными интерфейсами управления («4-20 мА» “токовая петля”, «RS-232», «RS-485»), блоком реверса (с ручным механическим, электрическим или электрическим программируемым переключением), функцией включения/отключения по внешнему контакту («сухой контакт»), сенсорной панелью оператора HMI или выносным пультом дистанционного управления.Выпрямители 150А/12В, 200А/12В, 300А/12В, 500А/12В имеют принудительное воздушное охлаждение, защиту от перегрузки по току и напряжению, автоматическую защиту от перегрева и защиту от внешнего, или внутрисхемного короткого замыкания. Выпрямители позволяют регулировать ток и напряжение от 0 до номинального значения, и проводить длительную непрерывную работу в режиме максимальной нагрузки, и работать в режиме стабилизации, поддержании и регулировки выходного тока (РТ), или режиме стабилизации, поддержании и регулировки выходного напряжения (РН).

МОДЕЛЬ ИСТОЧНИКА ДИАПАЗОН РЕГУЛИРОВКИ РАЗРЕШЕНИЕ ЭЛЕКТРОПИТАНИЕ РЕЖИМ НАГРУЗКИ ГАБАРИТЫ
ТОКА НАПРЯЖЕНИЯ АМПЕРМЕТРА ВОЛЬТМЕТРА
UNIV-150А/12В 0-150А 0-12В 0.1В 220В+10%;50Гц 100% 480*250*450
UNIV-200А/12В 0-200А 0-12В 220В+10%;50Гц 100% 480*250*450
UNIV-300А/12В 0-300А 0-12В 220В+10%;50Гц* 100% 510*490*250
UNIV-500А/12В 0-500А 0-12В 380В+10%;50Гц 100% 510*490*250

Выпрямители (выпрямительные агрегаты) большой мощности

Выпрямители большой мощности (до 100 кВт) 1000А/12В, 1500А/12В, 2000А/12В, 3000А/12В, серии UNIV — высокочастотные импульсные источники постоянного тока (напряжения), обладающие широкими пределами регулировки.

Выпрямители обеспечены надежной индуктивной гальванической развязкой первичной (питающей) цепи (первичные обмотки трансформаторов изготавливаются из провода с усиленной изоляцией — тестовое напряжение 3000В, в течение 1 мин) от вторичной (выходной) цепи, обладают высоким КПД, низким уровнем пульсаций, имеют высокую адаптируемость к перепадам напряжения в сети и оснащены системой “плавного пуска” (для предотвращения перегрузки питающей сети в первоначальный момент подачи напряжения на нагрузку).Выпрямители 1000А/12В, 1500А/12В, 2000А/12В, 3000А/12В изготавливаются в стоечном или горизонтальном исполнении, могут оснащаться различными интерфейсами управления (аналоговый «4-20 мА» “токовая петля”, цифровые «RS-232», «RS-485», промышленный протокол «Profinet”), оснащаться блоком реверса (с ручным механическим, электронным или электронным программируемым переключением), функцией включения/отключения по внешнему контакту («сухой контакт»), сенсорной панелью оператора HMI (‘тач скрин дисплей’) и выносным пультом дистанционного управления.Выпрямители 1000А/12В, 1500А/12В, 2000А/12В, 3000А/12В имеют принудительное воздушное охлаждение, защиту от перегрузки по току и напряжению, автоматическую защиту от перегрева и защиту от внешнего, или внутрисхемного короткого замыкания. Выпрямители позволяют регулировать ток и напряжение от 0 до номинального значения, дают возможность проводить непрерывную длительную работу в режиме максимальной нагрузки и могут работать в режиме стабилизации, поддержании и регулировки выходного тока (РТ), или режиме стабилизации, поддержании и регулировки выходного напряжения (РН).

МОДЕЛЬ ИСТОЧНИКА ДИАПАЗОН РЕГУЛИРОВКИ РАЗРЕШЕНИЕ НАПРЯЖЕНИЕ ПИТАНИЯ РЕЖИМ НАГРУЗКИ ГАБАРИТЫ
ТОКА НАПРЯЖЕНИЯ АМПЕРМЕТРА ВОЛЬТМЕТРА
UNIV-1000А/12В 0-1000А 0-12В 380В+10%;50Гц 100% 510*490*280
UNIV-1500А/12В 0-1500А 0-12В 380В+10%;50Гц 100% 510*490*350
UNIV-2000А/12В 0-2000А 0-12В 380В+10%;50Гц 100% 510*490*430
UNIV-3000А/12В 3-3000А 1-12В 380В+10%;50Гц 100% 510*490*950

 

Источник: https://impgold.ru/electroplating/power_supplies/

Выпрямители (Часть 1). Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя.

Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей.

Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор. 2 — Диодный мост, состоящий из диодов. 3 — Устройство фильтрования.

4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста .

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iн одновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:

  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.

По количеству импульсов одного полюса выпрямленного напряжения U2 за один период:

  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).

По типу управления вентилями выпрямители делятся на:

  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.

Выпрямители разделяют для следующих видов нагрузки:

  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.

Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:

  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/vypriamiteli/

Выпрямитель тока

> Теория > Выпрямитель тока

При выработке электроэнергии получают переменный ток. Передача и потребление энергии тоже, в основном, осуществляются на переменном токе. Но есть приборы, аппараты и системы, работающие на постоянном токе. Возникает потребность преобразовывать переменный сигнал в постоянный. Для этого служат выпрямители.

Что такое выпрямитель

Выпрямители переменного тока – это схемы с использованием полупроводниковых элементов для преобразования питания переменного тока в однонаправленное питание постоянного тока. Этот преобразовательный процесс называется еще выпрямлением.

Область применения выпрямителей:

  • контактная сеть электрифицированного транспорта;
  • электроприводы, работающие на постоянном токе;
  • компьютерные блоки питания;
  • зарядные устройства для электронных приборов и т. д.

Обычно в качестве выпрямляющего элемента применяется диод. Вторая используемая деталь – тиристор. Выбор выпрямителя зависит от требований нагрузки. При этом учитываются характеристики компонентов схемы выпрямителя тока: напряжение пробоя, номинальный ток, мгновенный ток, диапазоны температур, требования к монтажу и т. д.

ЭТО ИНТЕРЕСНО:  Кофемашина не подает воду что делать

Выпрямляющие устройства классифицируются по разным признакам.

По числу фаз:

По управляемости:

  • неуправляемые на диодах;
  • управляемые на тиристорах (если требуется как выпрямление переменного тока, так и контроль напряжения);
  • частично управляемые с использованием в схеме диодов и тиристоров.

По значению мощности:

  • силовые;
  • выпрямители сигналов в устройствах малой мощности.

Принцип действия

Что представляет собой сварочный выпрямитель

Простейшая схема выпрямителя состоит из диода, подключаемого между источником питания и нагрузкой. Работа схемы основана на свойстве диода проводить ток в одном направлении и не пропускать его в обратном. На выходе получается напряжение, складывающееся только из положительных полуволн, и, соответственно, выпрямленный ток. Если диод подключить в обратном направлении, сигнал сложится из отрицательных полуволн.

Простейшая схема выпрямления

Полуволновое выпрямление

После выпрямления ток протекает в одном направлении, чередуя положительную полуволну с нулевыми значениями напряжения. Количественный показатель этого меняющегося напряжения будет равен эквивалентному постоянному напряжению 0,318 U, где U – максимальное значение входного синусоидального сигнала.

Недостатки схемы:

  1. Так как напряжение на нагрузке присутствует только в положительную половину цикла (50% входного сигнала), это приводит к низкому среднему значению постоянного тока, подаваемому на нагрузку;

Важно! Иногда эта особенность применяется в схемах ограничения мощности резистивной нагрузки, например, при двухуровневом регулировании освещения.

  1. Изменение выпрямляемого выходного сигнала создает форму волны, имеющую большое количество пульсаций, что является нежелательным.

Иногда для разглаживания пульсаций применяют конденсатор. Но существуют ограничения по стоимости и размерам используемых конденсаторов. На практике полуволновое выпрямление применяется редко и только для питания схем небольшой мощности.

Полноволновое выпрямление

Почти все схемы требуют устойчивого и плавного напряжения постоянного тока. Один из способов этого добиться – использовать каждый полупериод входного напряжения.

Полноволновые выпрямители имеют фундаментальные преимущества перед их полуволновыми аналогами:

  • среднее выходное напряжение выше, чем для полуволнового сигнала;
  • выход полноволнового выпрямителя имеет гораздо меньшую пульсацию.

Схема полноволнового выпрямления с трансформатором

В схеме используется два диода, по одному на каждую половину цикла. Другим главным компонентом является трансформатор, вторичная обмотка которого разделена на две половины с общим центральным соединением. Такая конфигурация приводит к тому, что каждый диод проводит ток в свою полуволну, когда его анодный вывод положителен относительно центральной точки трансформатора, и на нагрузке создается выход в течение обоих полупериодов.

В результате протекающий через нагрузку ток проходит в одном направлении для обоих полупериодов, а выходное напряжение представляет суммарную частоту двух сигналов. Этот тип схемы известен, как двухфазная.

Среднее выходное напряжение через резистор нагрузки теперь вдвое больше и равно 0,637 U, где U – максимальное входное напряжение, или 0,9 U от среднеквадратичного значения.

Важно! Для получения другого выходного напряжения можно использовать различные коэффициенты трансформации.

Главный недостаток схемы – необходимость применения большого трансформатора для заданной выходной мощности с двумя отдельными, но идентичными вторичными обмотками, что делает ее дорогостоящей по сравнению с полноволновым мостом.

Мостовая схема

Этот тип однофазного выпрямителя использует четыре отдельных диода, соединенных в конфигурацию «мост» с замкнутым контуром, для получения желаемого выхода.

Основное достоинство мостовой схемы – не требуется специальный главный запорный трансформатор. Одинарная вторичная обмотка подключается к одной стороне диодного моста, а нагрузка – к другой.

Особенности работы диодного моста:

  1. В продолжение положительного полуцикла одна пара диодов в противоположных плечах моста открыта, другая – заперта. Токовый сигнал проходит по нагрузке однонаправленно;
  2. Когда наступает отрицательный полуцикл, другая пара диодов открывается, а первая – запирается. На выходе ток идет в аналогичном направлении;
  3. Напряжение выхода постоянное и составляет 0,637 от максимального амплитудного значения;

Важно! В действительности на самих диодах также происходит некоторое падение напряжения (2 х 0,7 = 1,4В для кремния). Но этот недостаток имеет значение только в схемах малых напряжений.

  1. Частота пульсаций выпрямленного сигнала в два раза превышает частоту питания. Для 50 Гц на выходе получается 100 Гц.

При практической реализации данных схем можно использовать четыре отдельных диода, но также в продаже доступны готовые мостовые выпрямительные компоненты в разных значениях напряжения и тока. Скошенный уголок указывает, что ближайший выходной контакт является положительным (+), противоположный от него – отрицательный (-), а два других вывода предназначены для входного переменного напряжения от вторичной обмотки трансформатора.

Сглаживающий конденсатор

Можно улучшить среднее выходное напряжение постоянного тока выпрямителя, одновременно добавив плавности сигналу, с помощью сглаживающих конденсаторов, которые соединяются параллельно с нагрузкой.

Конденсатор заряжается до пикового напряжения выходного импульса. Но когда напряжение падает до нуля, он не может разряжаться мгновенно из-за постоянной времени RC схемы. Конденсатор разряжается только до некоторого значения, поддерживая напряжение на нагрузке до тех пор, пока он снова не зарядится при следующем пике. Таким образом, изменения напряжения невелики, но можно еще увеличить сглаживание путем увеличения емкости конденсатора.

Схема диодного моста с конденсатором

Обычно для цепей питания постоянного тока применяют конденсатор алюминиевого или электролитического типа емкостью 100 мкФ и более.

При выборе сглаживающего конденсатора учитываются:

  1. Рабочее напряжение элемента, которое должно быть выше выходного значения выпрямителя без нагрузки;
  2. Емкость, определяющая величину пульсации. Если она слишком низкая, то мало будет влиять на выходной сигнал.

Важно! При большой емкости и маленьком токе нагрузки можно получить почти чистый постоянный сигнал.

Максимальное напряжение пульсации при наличии сглаживающего конденсатора зависит от частоты и тока нагрузки и определяется по формуле:

U = I / f x C, где f – частота входного напряжения.

Трехфазная схема выпрямления

Достоинством мостового выпрямительного устройства является его легкая трансформация в трехфазную версию. Провод каждой фазы присоединяется между двумя диодами.

После выпрямления полнофазного токового сигнала импульсы с фазовым сдвигом перекрываются друг с другом, и получается намного более плавный выходной показатель постоянного тока.

Это решающее достоинство в мощных выпрямительных электроцепях, в которых физические габариты фильтрующих компонентов будут непомерно большими с такими параметрами, но оборудование требует постоянного токового сигнала с максимально сглаженной пульсацией.

Трехфазная схема выпрямления

Однофазные управляемые выпрямители

В частично управляемых схемах в плечи моста устанавливаются два диода и два тиристора. В полностью управляемой схеме все диоды заменяются тиристорами. Когда на тиристоры подается ток управления немедленно, как только анод оказывается под напряжением положительной полуволны, он работает аналогично диоду. Если открывающий сигнал задерживается, то тиристор начинает пропускать ток позже. Соответственно, снижается средний показатель напряжения.

Схема тиристорного выпрямителя

Такой тип выпрямительной цепи широко используется для управления скоростью двигателей постоянного тока.

Это только основные схемы выпрямителей разного предназначения: от блоков питания ПК и радиоэлектронных схем до снабжения постоянным током контактной сети электротранспорта, электролизных установок и сварочных аппаратов.

Источник: https://elquanta.ru/teoriya/vypryamitel-toka.html

Какие бывают выпрямители

Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.

При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.

N-фазные выпрямители

В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.

Принцип работы выпрямителей сигналов

Блок питания для шуруповерта 12в своими руками

Что такое выпрямитель? Устройство работает за счет свойств полупроводниковых радиоэлементов по пропусканию тока исключительно от анода к катоду.

Поэтому при прохождении через устройство синусоиды переменного тока происходит обрезка отрицательной части волны. Таким образом на выходе радиоэлемента остается только положительная полуволна. Электрический ток подобного типа называется однополупериодным с пульсациями.

От анода к катоду проходит сигнал только ½ всего времени. Колебания происходят от нуля до максимального значения.

Строение двухполупериодных устройств базируется на мосту из четырех вентилей, которые приводят к попаданию всех полуволн. При этом отрицательная полуволна инвертируется. Фактически строение двухполупериодных выпрямителей аналогично двум или более однополупериодным с катодами, направленными один на другой.

Классификация по назначению и устройству

Разбираемся с электроизмерительными приборами

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Однополупериодный выпрямитель (четвертьмост)

Представляет собой простейшее устройство, преобразовывающее сигнал из переменного электрического тока в постоянный. Таким образом происходит сглаживание уровня сигнала. Схема построена на одном полупроводниковом вентиле (диоде).

Редко применяется в промышленности, так как для питания автоматики и аппаратуры требуется добавление в цепь питания фильтров, которые бы сглаживали полуволну. Поэтому размеры и масса устройств на базе данного выпрямителя выходят слишком значительными.

Не подходит к электрическому току с промышленной частотой сигнала в 50-60 Герц.

Такая схема выпрямителя используется в импульсных БП. Требуется для компьютерной техники и с высокой частотой сигнала – около 10 Герц. Также применяется в промышленности для выпрямления высокочастотного тока.

Устройство отличается следующими достоинствами:

  • Высокая частота пульсация;
  • Повышенная нагрузка на выпрямляющее устройство;
  • Ухудшение работы трансформатора вследствие намагничивания;
  • Невысокий показатель соотношения габаритов к мощности.

Достоинство – дешевизна.

Однополупериодный выпрямитель

Два четвертьмоста параллельно

Данная схема состоит из двух четвертьмостов с одним периодом, которые работают независимо один от одного, на одну мощность. Принцип работы заключается в распараллеливании полуволны на 2 части. При первом временном промежутке происходит на одну половину, затем через часть схемы.

Два полных моста последовательно

Это двухфазная схема, которая включает два последовательных диодных моста. При этом электродвижущая сила равняется удвоенной относительно полного моста с одной фазой. Относительно сопротивление увеличивается в 4 раза.

Двухполупериодный выпрямитель, мостовая схема

В таком устройстве диодные мосты подключается ко вторичной обмотке трансформирующего прибора. Полупроводниковые элементы работают попарно, каждый со своей очередностью, пропуская только положительную или отрицательную полуволну. Таким образом частота колебания мощности, которая была выпрямлена, вдвое выше частоты тока в сети.

Три полных моста параллельно (12 диодов)

Это менее распространенная схема, состоящая из 12 параллельно соединенных диодов. По большинству характеристик значительно превосходит другие выпрямители напряжения. При прохождении электрического тока через всю схему исходящее напряжение выходит без пульсаций.

Три полных моста последовательно

Последовательная схема с двенадцатью диодами представляет собой трехфазный выпрямитель тока. Сопротивление в ней эквивалентно трем диодным мостам, в каждом из которых уровень сопротивления равен 3R.

Таким образом, общий уровень препятствия движению заряженных частиц приблизительно равен 9R. В то время как частота колебаний в 6 раз выше, чем такая же от поступающего сигнала.

Достоинством такого выпрямителя является наибольшая средняя электродвижущая сила, поэтому он часто используется в источниках мощности с большим выходным напряжением.

Трехфазная схема выпрямления

Устройства с тремя входящими фазами являются достаточно распространенными. Они обрезают часть волны, за счет чего значительно снижают колебания. Наиболее популярна трехдиодная схема Миткевича и шестидиодная схема Ларионова.

Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)

Такая схема нередко называется шестифазной. По свойствам похожа на выпрямитель, состоящий из трех полных диодных блоков, соединенных последовательно. Однако в данной схеме значительно повышается уровень эквивалентного сопротивления. Последовательная схема состоит из 6 диодов и резистора, поэтому относительный ток через каждый из проводящих элементов вдвое выше.

Модификации с гальванической развязкой

Накопительные элементы могут быть добавлены в схему для улучшения выходных характеристик. Применение конденсаторов и батарей позволит однопериодному выпрямителю во время отрицательной полуволны продолжать подавать на выход напряжение, которое накопилось во время положительной. Кроме того, накопление мощности на конденсаторе приводит к снижению максимального напряжения полуволны на выходе. Подобные схемы часто используются в усилителях.

Как происходит выпрямление переменного тока

Действие над полуволнами осуществляется за счет использования свойств полупроводниковых либо механических вентилей. За счет PN перехода диод пропускает ток только в том случае, если на аноде напряжение выше, чем на катоде. Поэтому при прохождении через полупроводниковый элемент остается только положительная полуволна. При использовании диодных мостов каждый элемент работает попарно, выдавая на выход положительное и отрицательное напряжение раздельно.

Среднее значение выпрямленного напряжения

Усредненный показатель сглаженного напряжения для выпрямителя рассчитывается по формуле:

В однополупериодных простейших схемах, которые построены на одном диоде (четверть моста), значение приблизительно равно 0.45 от входящего напряжения в вольтах.

Для чего постоянный ток

Переменный ток не подходит для некоторых задач. Аккумуляторные батареи возможно заряжать только постоянным током. То же самое касается электролизных установок. Также это требуется для работы осветительных приборов и большинства компактных устройств: компьютеров и телефонов.

Основные соотношения для выпрямителя

Главные параметры для выпрямителя выбираются в момент времени. Расчет величин происходит по образной формуле:

Соотношения для выпрямителя

Где:

  • Um – параметр, соответствующий колебаниям синусоиды переменного тока;
  • U – текущее значение напряжения на синусоиде;
  • U2 – текущая величина мощности в обмотке трансформатора;
  • Ud – усредненный показатель выпрямленной мощности;
  • Udo – константа, которая отвечает за постоянное сглаженное напряжение без подачи питания.

Средний ток диодов

Полупроводниковые радиоэлементы обладают выпрямляющими свойствами. Поэтому их важнейшей характеристикой считается средний ток. Данная величина представляет собой усредненную за время работы сглаженного постоянного тока через полупроводниковый период. В вентилях выпрямительного типа значение может достигать от сотых частей до 100 и выше Ампер.

Мостовой удвоитель напряжения

Схема сходна по структуре с мостом Гретца, однако дополнительно устанавливаются накопительные элементы. Это позволяет суммировать напряжение на выходе из мощности, накопленной конденсаторами за время прохождения тока. Удвоение представляет собой преобразование низкочастотного переменного напряжения в высокочастотное постоянное.

Выпрямитель – это устройство, которое превращают переменный ток, полученный из сети, в нужный постоянный. При этом электрический ток на выходе может обладать сниженной амплитудой колебаний либо быть полностью сглаженным.

Таким образом, устройства, требующие для работы постоянного напряжения, получают питание. Используется для зарядки большинства аккумуляторов, например, в зарядном устройстве Рассвет, сварочных аппаратах и электросиловых установках.

Класс устройства определяется количеством диодов.

Источник: https://amperof.ru/elektropribory/vypryamitel-toka.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]