Как определить активную мощность

Мощность цепи переменного тока

Понятие потенциала или разности потенциалов u позволяет определить работу, совершаемую электрическим полем при перемещении элементарного электрического заряда dq, как dA = udq. В то же время, электрический ток равен i = dq/dt. Отсюда dA = ui dt, следовательно, скорость совершения работы, т.е. мощность в данный момент времени или мгновенная мощность равна

, (1)

где u и i — мгновенные значения напряжения и тока.

Величины тока и напряжения, входящие в выражение (1), являются синусоидальными функциями времени, поэтому и мгновенная мощность является переменной величиной и для ее оценки используется понятие средней мощности за период. Ее можно получить, интегрируя за период T работу, совершаемую электрическим полем, а затем соотнося ее с величиной периода, т.е.

. (2)

Пусть u=Umsinw t и Imsin(wt-φ ), тогда средняя мощность будет равна

(3)

т.к. интеграл второго слагаемого равен нулю. Величина cosφ называется коэффициентом мощности.

Коэффициент мощности, проблема cosφ

Из этого выражения следует, что средняя мощность в цепи переменного тока зависит не только от действующих значений тока I и напряжения U, но и от разности фаз φ между ними. Максимальная мощность соответствует нулевому сдвигу фаз и равна произведению UI. При сдвиге фаз между током и напряжением в ± 90° средняя мощность равна нулю.

Максимальные значения напряжения и тока любой электрической машины определяются ее конструкцией, а максимальная мощность, которую они могут развивать — произведением этих величин. Если электрическая цепь построена нерационально, т.е. сдвиг фаз φ имеет значительную величину, то источник электрической энергии и нагрузка не могут работать на полную мощность. Поэтому в любой системе источник-нагрузка существует т.н.

«проблема cosφ» , которая заключается в требовании возможного приближения cosφ к единице.

Выражение (3) можно представить также с помощью понятий активных составляющих тока Iа и напряжения Uа в виде

P = UI cosφ = U(I cosφ) = UIа = I(U cosφ) = IUа . (4)

Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме

Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].

Выделим подинтегральную функцию выражения (3)

(6)

Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcosφ равной средней или активной мощности.

При cosφ = 1 (φ = 0) , т.е. для цепи, обладающей чисто резистивным сопротивлением

(7)

Временные диаграммы, соответствующие этому случаю приведены на рис. 1 а).

Положительные значения мгновенной мощности соответствуют поступлению энергии от источника в электрическую цепь

. Следовательно, при резистивной нагрузке вся энергия поступающая от источника преобразуется в ней в тепло.

При cosφ = 0 (φ = ± p/2) , т.е. для чисто реактивной цепи

(8)

Временные диаграммы, соответствующие чисто индуктивной и чисто емкостной нагрузке приведены на рис. 1 б) и г). Из выражений (8) и временных диаграмм следует, что мощность колеблется относительно оси абсцисс с двойной частотой, изменяя свой знак каждые четверть периода.

Это означает, что в течение четверти периода (p > 0) энергия поступает в электрическую цепь от источника и запасается в магнитном или электрическом поле, а в течение следующей четверти (p< 0) она целиком возвращается из цепи в источник.

Так как площади, ограниченные участками с положительной мощностью и с отрицательной одинаковы, то средняя мощность отдаваемая источником нагрузке равна нулю и в цепи не происходит преобразования энергии.

В общем случае произвольной нагрузки 1 > cosφ > 0 ( 1< |φ | < p/2) и

(8)

Как следует из временных диаграмм рис. 1 в), большую часть периода мощность потребляется нагрузкой (p > 0), но существуют также интервалы времени, когда энергия запасенная в магнитных и электрических полях нагрузки возвращается в источник.

Участки с положительным значением p независимо от характера реактивной составляющей нагрузки всегда больше участков с отрицательным значением, поэтому средняя мощность P положительна.

Это означает, что в электрической цепи преобладает процесс преобразования электрической энергии в тепло или механическую работу.

Энергия в последовательном соединении

Рассмотрим энергетические процессы в последовательном соединении rLC (рис. 2). Падение напряжения на входе цепи уравновешивается суммой падений напряжения на элементах u=ur+uL+uC . Мгновенная мощность в цепи равна

Пусть напряжение и ток на входе равны u=Umsinwt и Imsin(wt-φ ). Тогда падения напряжения на элементах будут ur= rImsin(wt-φ ), uL= w LImsin(wt-φ +p /2) = xLImsin(wt-φ +p /2), uC= Imsin(wt-φ -p /2)/(w C) = xCImsin(wt-φ -p /2). Подставляя эти выражения в (9), получим

(10)

Уравнение (10) в левой и правой частях имеет постоянную и переменную составляющие. Постоянная составляющая представляет собой активную или среднюю мощность. Второе слагаемое в правой части это переменная составляющая активной мощности с амплитудой равной P = UIcosφ.

Третье слагаемое правой части также является переменной составляющей мгновенной мощности, но эта составляющая находится в квадратуре с переменной составляющей активной мощности и имеет амплитуду Q = UIsinφ . Эту величину называют реактивной мощностью. Она равна среднему за четверть периода значению энергии, которой источник обменивается с магнитным и электрическим полями нагрузки.

Реактивная мощность не преобразуется в тепло или другие виды энергии, т.к. ее среднее значение за период равно нулю.

Реактивную мощность также можно представить через реактивные составляющие тока или напряжения

Q = UI sinφ = U(I sinφ ) = UIр = I(U sinφ ) = IUр. (11)

В отличие от всегда положительной активной мощности, реактивная мощность положительна при φ > 0 и отрицательна при φ < 0 .

Из условия равенства переменных составляющих левой и правой частей уравнения (10) можно найти связь между P, Q и S = UI в виде

(12)

Величина S называется полной или кажущейся мощностью. Из выражения (12) следует, что полную мощность можно представить гипотенузой прямоугольного треугольника с углом φ , катетами которого являются активная и реактивная мощности.

Таким образом, полная мощность это максимально возможная активная мощность, т.е. мощность, выделяющаяся в чисто резистивной нагрузке (cosφ = 0). Именно эта мощность указывается в паспортных данных электрических машин и аппаратов.

Реактивные составляющие токов и напряжений можно представить через активные и реактивные составляющие комплексного сопротивления, тогда для составляющих мощности

P = UIа = I2R = UаI = U2/R = U2G ;Q= UIр = I2X = UрI = U2/X = U2B

Источник: http://bourabai.ru/toe/ac_5.htm

Мгновенная мощность

В отличие от цепей постоянного тока, где мощность в течение определенного промежутка времени остается неизменной, в цепях переменного тока дело обстоит иначе. Так как ток и напряжение постоянно меняют своё значение, то и мощность соответственно будет меняться в каждый момент времени. Такая мощность называется мгновенной.

Мгновенной мощностью p(t) называют произведение приложенного к цепи мгновенного напряжения u(t) на мгновенное значение тока i(t) в этой цепи. 

График мгновенной мощности представлен на рисунке ниже

Мощность обозначена заштрихованной областью. Знак мощности зависит от сдвига фаз между током и напряжением. В данном случае в цепи присутствуют только активные сопротивления, которые не создают сдвига фаз, поэтому мощность имеет только положительные значения.

Рассмотрим другой график

На данном графике имеются области отрицательных значений мгновенной мощности. Такой график может соответствовать цепи, в которой присутствуют конденсатор или катушка, причем положительные участки — это мощность, которая пошла в цепь и рассеялась на сопротивлении, либо запаслась в качестве энергии полей конденсаторов или катушек, а отрицательные участки это мощность, которая была возвращена обратно источнику.

Активная мощность

Чтобы понять какое количество энергии потребляет источник, целесообразнее взять среднюю мощность за период. Для этого вернемся к первому графику.

На графике мгновенной мощности выделяют прямоугольник со сторонами T и Pm/2. Часть графика, которая находится выше линии Pm/2 точно укладывается в незаштрихованную часть прямоугольника. Таким образом, с помощью линии Pm/2 мы можем определить среднюю мощность за период, которая называется активной мощностью. Активная мощность – это полезная мощность, которая идет на преобразование в другие виды энергии. 

В нашем случае сдвиг фаз равен нулю, поэтому коэффициент мощности равен единице, но в случаях с реактивными элементами нужно этот момент учитывать.

Активная мощность измеряется в ваттах – Вт.

cosφ – коэффициент мощности, который показывает отношение активной мощности к полной мощности. 

Реактивная мощность

Реактивная мощность – это энергия, которая периодически циркулирует между источником и приемником. Реактивная мощность возникает потому, что конденсатор и катушка способны накапливать энергию, а затем снова отдавать её в сеть. На практике от реактивной мощности зачастую стараются избавиться.

Реактивная мощность измеряется в вольт амперах реактивных – ВАр.

Полная мощность

Полная мощность — это максимальное значение активной мощности.

Полная мощность измеряется в вольт-амперах — ВА.

Для наглядного представления существует треугольник мощностей, в котором гипотенузой является полная мощность, а катетами – активная и реактивная составляющие.

— Последовательная RL-цепь 

1 1 1 1 1 1 1 1 1 1 3.20 (5 Голоса)

Источник: https://electroandi.ru/toe/ac/mgnovennaya-moshchnost.html

Активная мощность

Активная мощность – это часть общей, потреблённой от источника. Пришедшая впрок потреблена нагрузкой. Пишут, что электрическая энергия обязана превратиться в другие виды, не это главное. Реактивная энергия отражается обратно к источнику. Прочее – тема сегодняшнего разговора.

Основные понятия

Когда на уроке физики учитель рассказывает про закон Ома, он оперирует с активными составляющими тока и напряжения. Значит, их сдвиг фаз равен нулю. И мощность выходит активная. Вычисляется как произведение тока на напряжение. На уроке физики мощность превращается в тепло на абстрактном сопротивлении. В жизни это, как правило, негативный эффект потери энергии на проводах. Полезными считаются:

  1. Превращение тока в движение ротора двигателя.
  2. Обогрев помещений.
  3. Иллюминация (освещение).
  4. Розжиг конфорки плиты.
  5. Формирование на выходе блока питания нормативных напряжений.

Примеров масса. К примеру, трансформатор подстанции считается нагрузкой для ГЭС. На ЛЭП теряются тепло и звук, часть мощности отражается. Последняя носит название реактивной, описывает реакцию цепи, содержащей индуктивности (в случае трансформатора) или ёмкости, на внешнее воздействие. Некоторое время элементами мощность накапливается, потом отдаётся в обратном направлении. Возникает вопрос – зачем использовать подобные “вредящие” реактивные элементы.

  1. Реактивные элементы преобразуют виды энергии, что часто требуется. К примеру, для гальванической развязки цепей разного вольтажа применяется трансформатор. Без катушек индуктивности собрать его нет возможности. Аналогичным образом конденсаторы нужны для фильтрации.
  2. Использование реактивных элементов не всегда во вред. Считается хорошим тоном, если предприятие потребляет отражённую собственным оборудованием мощность. За превышение лимита над разрешённым уровнем реактивной мощности возможен штраф за перегрузку ЛЭП и трансформаторов подстанции. Чтобы подобного избежать, индуктивное сопротивление двигателей уравнивают ёмкостным сопротивлением конденсаторных установок. Образуется колебательный контур, реактивная мощность циркулирует исключительно по цепям предприятия, нанося немалый урон, по большей части, осаждаясь теплом на проводке.

Всё, написанное выше, даёт понятие в простейшем виде о происходящих в сети процессах. Учащиеся не в силах объяснить рассматриваемые понятия. Допустим, процесс заряда конденсатора. Напряжение на нем отстаёт от тока. Реактивная ли мощность? Если после заряда конденсатор отключится, завод не оштрафуют. Но мощность все-таки реактивная – у тока и напряжения разная фаза:

P = IU cosφ, где φ – угол сдвига фаз между напряжением и током.

Что такое угол сдвига фаз

Никола Тесла видел мир, как эфир, заполненный колебаниями разных частот. Из гармоник образуется материя. Тесла напророчил, к примеру:

  • Появление сети интернет.
  • Центральные выпуски новостей по радио и телевидению.
  • Охват планеты энергетическими сетями.

Это сегодня кажется окружающий мир простым. Тесла предвидел мир спустя сотню лет. Колебание в физике и радиотехнике удобно представить в виде вектора (направленного отрезка), вращающегося вокруг начала координат со скоростью, равной собственной частоте. Круговая частота находится, как ω = 2 Пи f. Параметр применяется в ряде формул.

Когда источник тока формирует мощность, ток и напряжение вращаются синхронно с нулевым сдвигом фаз. Разумеется, реальность сильно отличается от идеала, но происходящее понятно. Для напряжения вторичной обмотки трансформатора записывается выражение:

E2 = I2R2 + U2 + I2 2 Пи L, где:

  • I2 – ток вторичной обмотки, чуть отстаёт от напряжения, но не на 90 градусов;
  • U2 – выходное напряжения на обмотке, вместе с I2 поставляется предприятиям и иным потребителям;
  • I2R2 – потери теплом на омическом сопротивлении вторичной обмотки (находится по закону Ома);
  • I2 2 Пи L – реактивная составляющая напряжения, как видно из рисунка, откладывается перпендикулярно току, становясь причиной наличия сдвига фаз.

Итак, индуктивное сопротивление приводит к тому, что потребителям отгружается некачественная энергия. Чтобы выправить ситуацию, ставят на подстанции блоки конденсаторов. Тогда реактивные сопротивления уравновесят друг друга, и реактивная мощность станет циркулировать лишь по территории подстанции. Это плохо, но таков принцип действия электромагнитной индукции. Потребителям поставщик отгрузит чистую активную мощность без сдвигов фаз.

Как уже говорилось выше, предприятия потребят часть мощности, но неизбежно влияние паразитных эффектов. Пора вспомнить определение, данное вначале. Отдельные источники утверждают, что активная мощность преобразуется в прочие виды энергии. Когда компенсаторная установка наберётся реактивной мощности, потом отдаёт её на индуктивности не до бесконечности. Реактивная мощность рассеивается постепенно в виде тепла на кабелях. Некорректно говорить о неких превращениях. Подытожим:

  1. В промышленности реактивной мощностью называют энергию, отдаваемую обратно по цепи питания. Эффект от начала и до конца сегодня негативный.
  2. В физике реактивная мощность появляется немедленно при возникновении сдвига фаз. Не всегда паразитный эффект.
ЭТО ИНТЕРЕСНО:  Что такое пусковой ток

Два определения тесно связаны, нераздельно присутствуют в литературе. Осталось добавить, что не всегда компенсаторные установки требуется ставить на подстанции. Сопротивление ЛЭП носит ярко выраженный ёмкостной оттенок. Негативный эффект уравновешивается при умелом проектировании. Присутствует иногда необходимость в установке реакторов, чтобы избежать ряда негативных моментов.

Активная мощность трёхфазного тока

Активная мощность трёхфазной сети равна сумме по каждой из фаз. Величина выражается через линейные величины. При симметричном потреблении ток через нейтраль не наблюдается, мощность выражается соотношениями, представленными на скрине. Формулы простые для понимания. В симметричной системе токи по фазам равны, как и напряжения, прямо суммируются. Возникает коэффициент 3.

В свою очередь линейное напряжение при включении треугольником, составляющее в обычном случае 380 В, больше фазного в корень из трёх раз. Для токов отличий нет, они равны фазным. Схема звезда обусловливает равенство линейного напряжения фазному, когда токи больше фазных. Поэтому в последней формуле коэффициент равен корню из трёх.

Знатоки заметят, что схема звезда работает при пониженных напряжениях, следовательно, потребляемый ток уменьшится. Но речь здесь идёт о выводе соотношений для одинаковой мощности. В этих условиях, если уменьшилось напряжение, повышается ток.

Для вычисления реактивной мощности представленное выражение нужно умножить на синус угла, а не на косинус. Полная мощность равна гипотенузе треугольника, ограниченного указанными величинами.

Вычисляется простым перемножением напряжения и тока на корень из трёх без участия угла.

Единицы измерения

Сказанное выше прямо показывает, что активная мощность в реальных системах неотделима от реактивной. Сообразно этому находится множество применений описанной особенности. Первым шагом считается введение отдельных величин для отображения обоих показателей:

  1. Активная мощность измеряется в ваттах. Так преподаётся на уроках физики. Мощность показывает, как правило, счётчик, установленный в электрическом щитке на лестничной клетке.
  2. Полная мощность выражается в вольт-амперах. Это геометрическая сумма активной и реактивной составляющей. Полная мощность демонстрирует, за что платит предприятие. Отражённая энергия не несёт пользы, исключительно экономические потери.
  3. Реактивная мощность выражается в варах. Иногда буквы пишут заглавными, получается: кВАР, ВАР и пр. Реактивная мощность измеряется счётчиками предприятий для разных целей: особенности тарификации поставщика, настройка системы компенсации индуктивного сопротивления оборудования конденсаторными установками.

Из формул, приведённых выше, заключаем, что косинус угла сдвига фаз напряжения и тока численно равен отношению активной мощности к полной, а синус – реактивной к полной.

Измерение мощности

Для каждого вида мощности собственный измеритель. Добавим, что принцип физический используется одинаковый, но устройство приборов отличается. К примеру, аналоговые модели работают на принципе, открытом зимой 1819-1820 гг. Гансом Эрстедом. Точнее говоря, влияние проводника на стрелку компаса замечали прежде, но не привлекали столько внимания, как случилось осенью 1820 года. Когда научный мир узрел, что электричество и магнетизм связаны.

Итак, в основе аналоговых измерительных приборов лежал мульпликатор Иоганна Швейггера (сентябрь 1820 года): ток проходил через катушку из проволоки и отклонял стрелку в установленном направлении. Показания считывались по циферблату и заносились в таблицы вручную.

Современные приборы работают иначе. В перспективе измеритель упростится до единственного процессора, выполняющего дискретные преобразования Фурье и вычисляющего необходимые величины. Понятно, что важно найти сдвиг фаз и ток, напряжение априорно задано. Создатели измерителей знают, что по ГОСТ вольтаж способен гулять на 10% в обе стороны. Следовательно, нельзя считать напряжение априорно заданным, величина также измеряется.

Потом остаётся лишь перемножить по формулам, приведённым выше. В аналоговых приборах коэффициенты задаются передаточными числами механизмов, числом витков и пр. В цифровых обходится без затруднений, в наличии масса алгоритмов для расчёта. Использованные формулы появились гораздо раньше, нежели создали первую ЭВМ. И мир находился в ожидании сообразных приложению вычислительных мощностей.

Аналоговый ваттметр включает основные части:

  1. Неподвижная катушка напряжения. Для Эрстеда это звучало бы странно, любая катушка создаёт магнитный поток при помощи тока. Напряжение ни при чём. Для измерительных цепей тщательно рассчитываются коэффициенты, параллельно участку цепи ставится высокоомное сопротивление (конструктивно входит в ваттметр), которым ограничивается ток. Не напряжение! Малый ток управляет магнитным потоком. Отклонение стрелки пропорционально напряжению. Это принцип измерения обоснован законом Ома для участка цепи.
  2. Неподвижная катушка тока включена прямо в цепь. Поэтому сопротивление предвидится минимальным. На высоких напряжениях сигнал снимается измерительным трансформатором. Передаточный коэффициент его рассчитан не по напряжению, как случается, а по току. Зная коэффициент пропорциональности, легко найти искомую величину. Следовательно, ваттметр настраивается на используемый трансформатор, либо априорно задано единственное значение. Тогда настройка не требуется, но приходится выбрать тот трансформатор, передаточный коэффициент которого соответствует требованиям.

Подвижная рамка со стрелкой показывает результат на циферблате. Неподвижные катушки расположены в перпендикулярных плоскостях. Рамка выполняется из металлического сплава, либо берется катушка индуктивности. Конструкция просчитана так, что отклонение стрелки приобретает нужный коэффициент пропорциональности и показывает либо синус угла сдвига фаз (для реактивной мощности), либо косинус (для активной мощности).

Источник: https://vashtehnik.ru/enciklopediya/aktivnaya-moshhnost.html

Что такое активная и реактивная мощность переменного электрического тока?

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Источник: https://odinelectric.ru/knowledgebase/aktivnaja-i-reaktivnaja-moshhnost-peremennogo-toka

Теория реактивной мощности

Теория реактивной мощности

Появление термина «реактивная» мощность связано с необходимостью выделения мощности, потребляемой нагрузкой, составляющей, которая формирует электромагнитные поля и обеспечивает вращающий момент двигателя. Эта составляющая имеет место при индуктивном характере нагрузки. Например, при подключении электродвигателей. Практически вся бытовая нагрузка, не говоря о промышленном производстве, в той или иной степени имеет индуктивный характер.

В электрических цепях, когда нагрузка имеет активный (резистивный) характер, протекающий ток синфазен (не опережает и не запаздывает) от напряжения. Если нагрузка имеет индуктивный характер (двигатели, трансформаторы на холостом ходу), ток отстает от напряжения. Когда нагрузка имеет емкостной характер (конденсаторы), ток опережает напряжение.

Суммарный ток, потребляемый двигателем, определяется векторной суммой:

  1. — активный ток
  2. Iри — реактивный ток индуктивного характера

К этим токам привязаны мощности потребляемые двигателем.

  1. Р – активная мощность привязана к Iа (по всем гармоникам суммарно)
  2. Q – реактивная мощность привязана к Iри (по всем гармоникам суммарно)
  3. A – полная мощность потребляемая двигателем. (по всем гармоникам суммарно)

Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.

Параметр определяющий потребление реактивной мощности называется Cos (φ)

Cos (φ) = P1гарм / A1гарм

где:

  • P1гарм — активная мощность первой гармоники 50 Гц
  • A1гарм — полная мощность первой гармоники 50 Гц

где:

A = √P² + Q²

Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:

  1. Высокие потери мощности в электрических линиях (протекание тока реактивной мощности);
  2. Высокие перепады напряжения в электрических линиях (например 330370 В, вместо 380 В);
  3. Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.

Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Чего легко можно достичь применением активных компенсирующих установок. Конденсаторы в которых будут компенсировать реактивную мощность двигателей.

Потребители реактивной мощности

Потребителями реактивной мощности, необходимой для создания магнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и такие электроприёмники, преобразующие электроэнергию в другой вид энергии которые по принципу своего действия используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80-85% всей реактивной мощности, связанной с образованием магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем балансе реактивной мощности приходится на долю прочих её потребителей, например на индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п.

Трансформатор как потребитель реактивной мощности. Трансформатор является одним из основных звеньев в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем и от схемы передачи электроэнергии число ступеней трансформации лежит в пределах от двух до шести.

Поэтому установленная трансформаторная мощность обычно в несколько раз превышает суммарную мощность генераторов энергосистемы. Каждый трансформатор сам является потребителем реактивной мощности.

Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.

Асинхронный двигатель как потребитель реактивной мощности. Асинхронные двигатели наряду с активной мощностью потребляют до 60-65% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя – статора передаётся во вторичную – ротор посредствам магнитного поля.

Индукционные печи как потребители реактивной мощности. К крупным электроприемникам, требующим для своего действия большой реактивной мощности, прежде всего, относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл (садка), расплавляемый индуктированными в нём токами.

Преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, также относятся к крупным потребителям реактивной мощности. Выпрямительные установки нашли широкое применение в промышленности и на транспорте.

Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия, каустической соды и др.

Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.

ЭТО ИНТЕРЕСНО:  Что такое инструктаж по охране труда

Компенсация реактивной мощности в электрических сетях

С другой стороны, элементы распределительной сети (линии электропередачи, повышающие и понижающие трансформаторы) в силу особенностей конструктивного исполнения имеют продольное индуктивное сопротивление.

Поэтому, даже для нагрузки потребляющей только активную мощность, в начале распределительной сети будет иметь место индуктивная составляющая – реактивная мощность.

Величина этой реактивной мощности зависит от индуктивного сопротивления распределительной сети и полностью расходуется на потери в элементах этой распределительной сети.

Действительно, для простейшей схемы:

  • Р – активная мощность в центре питания,
  • Рн – активная мощность на шинах потребителя,
  • R – активное сопротивление распределительной сети,
  • Q – реактивная мощность в центре питания,
  • – реактивная мощность на шинах потребителя.
  • U – напряжение в центре питания,
  • – напряжение на шинах потребителя,
  • Х – индуктивное сопротивление распределительной сети.

В результате, независимо от характера нагрузки, по распределительной сети от источника питания будет передаваться реактивная мощность Q. При двигательном характере нагрузки ситуация ухудшается – значения мощности в центре питания увеличивается и становится равными:

Р = Рн + ( Рн² + Qн² ) * R / Uн²;

Q = Qн + ( Рн² + Qн² ) * X / Uн².

Передаваемая от источника питания к потребителю реактивная мощность имеет следующие недостатки:

  1. В распределительной сети возникают дополнительные потери активной мощности – потери при транспорте электрической энергии:

    δР = ( Рн² + Qн² ) * R ,

    часть которых (а иногда и значительную) составляют потери от транспорта реактивной мощности.

  2. Величина напряжения у потребителя, а, следовательно, и качество электрической энергии, снижается:

    Uн = U – ( P * R + Q * X ) / U.

  3. Увеличивается распределительной сети током, что лишает потребителя возможности перспективного развития.

Таким образом, транспортировка реактивной мощности по распределительным сетям от центров питания к потребителям превращается в сложную технико-экономическую проблему, затрагивающую как вопросы экономичности так и вопросы надежности систем электроснабжения.

Классическим решением данной проблемы в распределительных сетях является компенсация реактивной мощности у потребителя путём установки у него дополнительных источников реактивной мощности – потребительских статических конденсаторов.

Компенсация реактивной мощности применяется:

  • по условию баланса реактивной мощности;
  • как важное мероприятие для снижения потерь электрической энергии в сетях;
  • для регулирования напряжения.

Источник: https://www.nucon.ru/reactive-power/theory-of-reactive-power.php

Активная, реактивная и полная (кажущаяся) мощности

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

P = U I

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

P = U I Cosθ

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I — в цепях постоянного тока

P = U I cosθ — в однофазных цепях переменного тока

P = √3 UL IL cosθ — в трёхфазных цепях переменного тока

P = 3 UPh IPh cosθ

P = √ (S2 – Q2) или

P =√ (ВА2 – вар2) или

Активная мощность = √ (Полная мощность2 – Реактивная мощность2) или

кВт = √ (кВА2 – квар2)

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

Q = U I sinθ

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Q = U I sinθ

Реактивная мощность = √ (Полная мощность2 – Активная мощность2)

вар =√ (ВА2 – P2)

квар = √ (кВА2 – кВт2)

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Источник: https://khomovelectro.ru/articles/aktivnaya-reaktivnaya-i-polnaya-kazhushchayasya-moshchnosti.html

Активная мощность электрического тока

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность: цепи переменного и постоянного тока коэффициент мощности

В статье мы расскажем про мощность в цепи переменного и постоянного тока, а также мгновенную, активную, реактивную и полную мощность, а также что такое коэффициент мощности. Всех их формулы и примеры на нахождение мощности.

Мощность, генерируемая потоком через проводник тока I с напряжением U на его концах, выражается следующей формулой: 

Используя закон Ома, можно определить формулу для мощности с известными сопротивлением и напряжением: 

Аналогично, формула мощности может быть определена в зависимости от сопротивления и тока:

Задачи на нахождение мощности

Задача 1

Напряжение 5 В было измерено на концах резистора 10 Ом. Какая будет мощность? 

Решение:

Применить второе уравнение: Р = 5 2 /10 = 25/10 = 2,5 Вт 

Задача 2

Держатель лампы, несущий опорной мощности P = 21Вт при напряжении U = 12 В для подачи питания накала питания может быть использован со следующим параметры: U = 12В I max= 1А. Какой ток протекает при нормальной работе лампы? 

Решение:

Давайте посчитаем, какой ток протекает при нормальной работе лампы: 

P = U * I I = P / U I = 21 Вт / 12 В 

I = 1,75 A 

Это означает, что источник питания с заданными параметрами не подходит для питания этой лампы.

Мощность в цепи переменного тока

Мощность в цепи переменного тока в физики и обычной жизни одно из базовых понятий, которое нужно понимать перед началом работы с электроприборами. Далее вы увидите основные формулы мощности и их применение в задачах.

Мгновенная мощность

При рассмотрении энергетических процессов в цепях переменного тока удобно использовать разные типы энергии. Мгновенная мощность равна произведению мгновенных значений тока и напряжения на части цепи:

где: U и I — эффективные значения напряжения и тока, а φ и ω — соответственно разность фаз между током и напряжением и угловой частотой (пульсация).

Что такое активная, реактивная и полная мощность

В отличии от сетей постоянного тока, где мощность имеет выражение    и не изменяется во времени, в сетях переменного тока это не так.

Мощность в цепи переменного тока также есть переменной величиной. На любом участке цепи в любой момент времени t она определяется  как  произведение мгновенных значений напряжения и тока.

Рассмотрим, что представляет активная мощность

В цепи с чисто активным сопротивлением она равна:

Если принять  и  тогда выйдет:

Где 

Исходя из выражений выше — активная энергия состоит из двух частей — постоянной  и переменной  , которая меняется с двойной частотой. Среднее ее значение 

График Р(ωt)

Отличие реактивной мощности от активной

В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:

Соответственно  и  в итоге получим:

Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю

График q(ωt)

Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.

В таком случае полная мощность сети будет равна сумме:

Что такое полная мощность на примере простой R-L цепи

Графики изменения мгновенных значений u,i:

Графики изменения мгновенных значений u,i:

φ — фазовый сдвиг между током и напряжением

Уравнение для S примет следующий вид 

Подставим вместо  и заменим амплитудные значения на действующие:

Значение S рассматривается как сумма двух величин , где

 и  — мгновенные активные и реактивные мощности на участках R-L.

Графики p,q,s:

Как видим из графика, наличие индуктивной составляющей повлекло за собой появление отрицательной части в полной мощности (заштрихованная часть графика), что снижает ее среднее значение. Это происходит из-за фазового сдвига, в какой-то момент времени ток и напряжение находятся в противофазе, поэтому появляется отрицательное значение S.

Итоговые выражения для действующих значений:

Активная составляющая сети выражается в ваттах (Вт), а реактивная в вольт-амперах реактивных (вар).

Полная мощность сети S, обусловлена номинальными данными генератора. Для генератора она обусловлена выражением:

Для нормальной работы генератора ток в обмотках и напряжение на зажимах не должны превышать номинальные значения Iн, Uн.  Для генератора значения P и S одинаковы, однако все-таки на практике условились S выражать в вольт-амперах (ВА).

Также энергию сети можно выразить через каждую составляющую отдельно:

Где S, P, Q – соответственно активное, реактивное и полное сопротивление сети. Они образуют треугольник мощностей:

Треугольник мощностей с преобладающей индуктивной нагрузкой

Если вспомнить теорему Пифагора, то из прямоугольного треугольника можно получить такое выражение:

Реактивная составляющая в треугольнике является положительной (QL), когда ток отстает от напряжения, и отрицательной (QC), когда опережает:

Треугольник мощностей с преобладающей емкостной нагрузкой

Для реактивной составляющей сети справедливо алгебраическое выражение:

Из чего следует что индуктивная и емкостная энергия взаимозаменяемы. То есть если вы хотите уменьшить влияние индуктивной части цепи, вам необходимо добавить емкость, и наоборот. Ниже пример данной схемы :

Схема компенсации реактивной составляющей

Векторная диаграмма показывает влияние конденсатора на cosφ. Как видно, что при включении конденсатора cosφ2> cosφ1 и  Iл

Источник: https://elenergi.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html

Активная и реактивная мощность. За что платим и работа

Активная и реактивная мощность — потребители электрической энергии на то и потребители, чтобы эту энергию потреблять. Потребителя интересует та энергия, потребление которой идет ему на пользу, эту энергию можно назвать полезной, но в электротехнике ее принято называть активной. Это энергия, которая идет на нагрев помещений, готовку пищи, выработку холода, и превращаемая в механическую энергию (работа электродрелей, перфораторов, электронасосов и пр.).

Кроме активной электроэнергии существует еще и реактивная. Это та часть полной энергии, которая не расходуется на полезную работу. Как понятно из вышесказанного, полная мощность – это активная и реактивная мощность в целом.

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю. Рассмотрим, возможно ли подобное, и насколько можно приблизиться к идеалу.

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности.

В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет.

Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке.

Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения.

Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному).

Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга.

Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи.

Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники.

Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности.

Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем.

Но бес, как известно, кроется в деталях.

Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку.

За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/aktivnaia-i-reaktivnaia-moshchnost/

Определение

Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:

P=U*I

P=I2*R

P=U2/R

По этой же формуле определяется полная мощность в цепи переменного тока.

Нагрузку разделяют на два основных типа:

  • Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
  • Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).

Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.

Смысл реактивной нагрузки

В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости).

Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока).

Давайте рассмотрим каждый из них.

В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».

В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.

В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.

Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.

Треугольник мощностей и косинус Фи

Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.

Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:

Буквой P – обозначена активная мощность, Q – реактивная, S – полная.

Формула полной мощности имеет вид:

Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.

Единицы измерения:

  • P – Вт, кВт (Ватты);
  • Q – ВАр, кВАр (Вольт-амперы реактивные);
  • S – ВА (Вольт-амперы);

Расчёты

Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:

А для потребителя:

Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:

Источник: https://chipstock.ru/remont/aktivnaya-moshhnost.html

Что такое активная, реактивная и полная мощность — простое объяснение

В цепях постоянного тока не разделяют мощность на разные составляющие, такие как активная и реактивная, поэтому используют простое выражение P=U*I. Но с переменным током дело обстоит иначе. В этой статье мы рассмотрим, что такое активная, реактивная и полная мощность электрической цепи.

6.1 Определение реактивной мощности, вырабатываемой синхронными двигателями

Каждыйустановленный синхронный двигательявляется источником реактивной мощности,минимальную величину которой по условиюустойчивой работы СД определяют поформуле

, (6.1)

где-коэффициент загрузки СД по активноймощности.

Синхронныедвигатели имеют значительно большиеотносительные потери на 1 кварвырабатываемой реактивной мощности посравнению с конденсаторными установками.В то же время, если СД уже установленына предприятии по условиям технологии,их следует в первую очередь полностьюиспользовать для компенсации реактивноймощности.

Коэффициентзагрузки СД по активной мощностиопределяется по формуле

, (6.2)

где-заданная активная мощность, кВт;

-количество синхронных двигателей;

-номинальная мощность выбранныхдвигателей, кВт.

Экономическицелесообразная реактивная мощность,получаемая от СД, рассчитывается поформуле

, (6.3)

где -удельная стоимость 1 квар реактивноймощности БСК;

-стоимость1 кВт генерирующей мощности (принимаетсяпо двух-ставочному тарифу на электрическуюэнергию напряжением 10 кВ на моментрасчетов), р./кВтгод(2006 г.);

-коэффициенты потерь в СД.

Удельная стоимостьодного квар БСК рассчитывается поформуле

(6.4)

где-стоимость ячейки КРУ, тыс. р.,

-стоимость БСК, определяется по формуле

(6.5)

где- стоимость БСК в старых ценах, тыс. р.,принимается по табл. П.Д.3;

-коэффициент удорожания, ;

-нормативные коэффициенты отчислений:эффективности, амортизации и текущегоремонта соответственно, принимаютсяпо табл. П.И.1;

=0,003 кВт/квар – количество активноймощности, затраченной на выработку 1квар реактивной мощности (для высоковольтнойБСК);

-мощность БСК, принимается

Еслив результате расчётов окажется, чтоQСД.Э>QСД,принимают .

Суммарнаяэкономически целесообразная реактивнаямощность, получаемая от СД, рассчитываетсяпо формуле:

(6.6)

6.2 Определение расчётной активной мощности предприятия

Суммарнаяактивная нагрузка предприятия складываетсяиз нагрузки потребителей на напряжение0,4 и 10 кВ и потерь мощности в трансформаторахцеховых ТП.

Суммарная активнаянагрузка предприятия

(6.7)

где-суммарная активная мощность на напряжение0,4 кВ, кВт;

-расчетныепотери в трансформаторах цеховых ТП,кВт;

-суммарная активная мощность высоковольтныхпотребителей на напряжении 6-10 кВ,кВт.

6.3 Определение реактивной мощности, получаемой от энергосистемы

Рассмотрим дваварианта внешнего электроснабженияпроектируемого предприятия:

1.Электроэнергия передается от районнойподстанции до ГПП напряжением 35 кВ ираспределяется по территории предприятиянапряжением 10 кВ.

2.Электроэнергия передается от районнойподстанции до ГПП напряжением 110 кВ ираспределяется по территории предприятиянапряжением 10 кВ.

Расчёт ведётсядля двух напряжений.

Оптимальнаяреактивная мощность, получаемая отэнергосистемы в период максимуманагрузок QЭ1,определяется двумя способами.

1) (6.8)

где-коэффициент, зависящий от максимальнойактивной расчетной нагрузки предприятия,напряжения сети внешнего электроснабженияи района страны, в котором расположенопроектируемое предприятие:

-для напряжения 35 кВ ;

-для напряжения 110 кВ .

2) (6.9)

где-суммарная реактивная мощность,потребляемая предприя-тием, квар;

-суммарная экономически целесообразнаяреактивная мощность, получаемая от СД,квар.

Суммарнаяреактивная мощность, потребляемаяпредприятием, рассчитывается по формуле:

, (6.10)

где-суммарная реактивнаямощность, проходящая через трансформаторыТП с учетом приведенных потерь в ТП,квар;

-суммарная реактивная мощность нагрузки10 кВ, квар.

Источник: https://studfile.net/preview/5395112/page:16/

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]