Применение полупроводников
Увеличение проводимости полупроводников происходит с повышением температуры, так как этому способствует рост количества носителей заряда. Зависимость проводимости полупроводников представляется как:
Где E является энергией активации, k – постоянной Больцмана. Около абсолютного нуля все полупроводники становятся изоляторами. Зависимость их сопротивления от температуры позволяет применять в различных областях техники.
Термисторы
Определение 1
Приборы, которые основываются на зависимости величины сопротивления от температуры, называются термисторами.
Для их производства применяют полупроводники, обладающие существенной величиной отрицательного сопротивления. Их изготавливают в форме цилиндрических стержней, бусин, нитей, располагаемых в баллончиках из стекла, керамики или металла с изоляцией.
Параметры, характеризующие термисторы:
- наличие сопротивления с t=20 °C;
- температурный коэффициент сопротивления при t=20 °C;
- время тепловой инерции – временной промежуток, за который сопротивление термистора изменяется до определенной величины;
- максимальная температура эксплуатации;
- теплоемкость.
По предназначению термисторы классифицируют на:
- Измерительные. Применяют для получения данных о температуре и влажности воздуха. Ток, пропускаемый через него, имеет малую величину, поэтому не способен вызвать заметный разогрев термистора. Температура меняется вместе с температурой окружающей среды.
- Прямого подогрева. Изменение сопротивления происходит за счет джоулева тепла. Его использование способствует стабилизировать напряжение при существенных колебаниях и небольших токах, как в телефонных линиях. Применение позволяет поддерживать постоянство сопротивления электросетей. (Термисторы обладают отрицательным температурным коэффициентом, а остальные металлические элементы – положительным). Они способны заменить движковые реостаты. Данный тип термисторов способен производить нарастание тока в цепи.
- Косвенного подогрева. Нагревание производится за счет внешнего источника. Применяются в качестве сигнализации о перегреве отдельных частей машины.
Фотосопротивления
Электроны в полупроводниках способны переходить в зону проводимости не только при повышении температуры, но и при поглощении фотона (внутренний фотоэффект). Существуют полупроводники, энергия перехода электронов у которых составляет десятые доли электрон-вольта, то есть на сопротивление подобных проводников оказывает влияние не только видимый свет, но и инфракрасное излучение.
Определение 2
Прибор, который основывается на изменении сопротивления полупроводников под действием освещенности, называют фотосопротивлением. Для видимой части спектра применяют полупроводники из селена, германия, сернистого кадмия, таллия. Для инфракрасной – сернистый, селенистый и теллуристый свинец.
Подобные фотосопротивления характеризуются зависимостью фототока I от величины светового потока Φ. В большинстве случаев ее изображают как:
Вольт-амперные характеристики фотосопротивлений обладают линейным характером. Фотосопротивления являются инерционными, то есть достижение максимума фототока происходит не мгновенно, спад – при прекращении подачи света.
Фотосопротивления применимы для автоматики, сортировке изделий по покраске или размерам.
Варисторы
Опытным путем было доказано, в небольших полях закон Ома для полупроводников считается применимым. У разных веществ величина критического поля имеет отличия. Она зависит от природы полупроводника, температуры, концентрации примесей.
Электропроводность полупроводника от напряженности поля определяется законом Пуля:
Где α является коэффициентом, зависящим от температуры, Ek – напряженность критического поля.
Определение 3
Полупроводники, проводимость которых растет с увеличением напряженности электрического поля, называют варисторами (ограничители перенапряжений).
Примерами полупроводников варисторов считаются такие, в состав которых входит карбид кремния, используемый в виде дисков в разрядниках, защищающих высоковольтные линии электропередач.
Полупроводниковые выпрямители
Некоторые проводники после контакта характеризуются явлением, при котором ток хорошо проходит в одном направлении и практически не идет в обратном. Существование такого эффекта обусловлено наличием разного типа проводимости полупроводников.
Односторонняя проводимость разнородных полупроводников используется в диодах, триодах. Чаще всего применяют германий и кремний. Такие триоды и диоды имеют большой срок работы с малыми габаритами, высоким коэффициентом выпрямления, экономят энергию.
Униполярная проводимость между проводником применяется в вентильных элементах.
Термоэлементы
Термоэлементы изготавливают из полупроводников. Из чего состоят полупроводники? Они включают в себя два полупроводника, соединенные металлической пластиной. Нагрев полупроводника происходит на месте соединения, на противоположных концах происходит охлаждение. К свободным концам присоединяют внешнюю цепь, так как они считаются полюсами термоэлемента. Термоэлектрические батареи создают из термоэлементов. Определение термоэлектрической ЭДС Ε возможно по формуле:
Где α1 и α2 – это термоэлектродвижущие силы каждого полупроводника с разностью температур на концах, равняющейся 1°С. КПД термобатарей составляет 6-7%.
При пропускании электротока через термоэлемент, имеет место появление эффекта Пельтье, то есть один спай нагревается, другой охлаждается. Данное явление применимо в холодильной камере.
Пример 1
Происходит отступление от закона Ома в полупроводниках с сильными электрическими полями. С чем это связано?
Решение
Необходимо записать закон Ома в дифференциальной форме:
I=σE (1.1).
Значение I является силой тока, σ – коэффициентом проводимости, E – напряженностью электрического поля.
Определение силы тока происходит по формуле:
I=qenυ (1.2) с qe, являющимся зарядом электрона, n – концентрацией заряженных частиц, υ — скоростью движения электронов. Применим выражения (1.1), (1.2) для получения σ:
σ=qenυE=qenυ (1.3).
Из формулы υ обозначают в качестве неподвижности электронов. Если следовать из выражения (1.3), то происходит соблюдение закона Ома при неизменной подвижности и концентрации во время изменения самой напряженности поля.
При увеличении Е идет рост подвижности электронов и их концентрация, так как поле влияет на энергосостояние электронов в атомах.
В больших полях может быть получена энергия для свободного электрона, которой достаточно для прохождения процессов ионизации атома решетки или атома примеси, что влияет на увеличение концентрации электронов проводимости.
Ответ: отступление закона Ома связано с влиянием сильных полей на подвижность электронов и их концентрацию.
Пример 2
Произвести описание процесса появления термоэлектродвижущей силы в полупроводниках.
Решение
Рост кинетической энергии теплового движения электронов в полупроводниках возможен при увеличении абсолютной температуры. Если создается разность температур в полупроводнике, то можно получить рост концентрации электронов на конце при имеющейся там высокой температуре.
Отсюда следует, что будет наблюдаться диффузия свободных электронов по направлению от горячего конца к холодному. Холодный конец получит отрицательный зарядой, а горячий – положительный. Продолжение диффузии идет до тех пор, пока разность потенциалов не компенсирует диффузионный поток при помощи возникшего электрического тока обратного направления. Данное равновесие способно определить термо ЭДС.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Не получается написать работу самому?
Доверь это кандидату наук!
Источник: https://zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/primenenie-poluprovodnikov/
Сопротивление полупроводников: свойства и виды проводников
Полупроводниками считаются вещества, обладающие электрическими свойствами, которые ставят их в промежуточное положение между диэлектрическими материалами и проводниками. Электропроводность полупроводников зависит от многих факторов. Прежде всего, это температура, а также количество примесей, содержащихся в них. Свое влияние оказывает ионизирующее и световое излучение.
Виды и свойства полупроводников
Для того, чтобы появился электрический ток, необходимо наличие подвижных частиц, переносящих заряды. Электропроводность того или иного вещества зависит от количества таких носителей на единицу объема.
В диэлектриках они практически отсутствуют, а в полупроводниках свободные носители присутствуют лишь в небольшом количестве. Следовательно, удельное сопротивление полупроводников очень высокое, а в диэлектриках оно еще больше.
Существуют различные виды этих материалов, обладающих собственными специфическими свойствами.
Все полупроводники можно разделить на несколько основных видов. Среди них лидируют чистые или собственные материалы, в которых отсутствуют какие-либо примеси.
Для них характерна кристаллическая структура, где атомы расположены в периодическом порядке в ее узлах.
Здесь существует устойчивая взаимная связь каждого атома с четырьмя атомами, расположенными рядом. Это дает возможность образовывать постоянные электронные оболочки, в состав которых входит восемь электронов.
При температуре, равной абсолютному нулю, такой полупроводник становится диэлектриком, поскольку все электроны соединены ковалентными связями.
Когда температура повышается или происходит какое-либо облучение, электроны могут выйти из ковалентных связей и превратиться в свободных носителей зарядов. Свободные места при перемещении постепенно занимаются другими электронами, поэтому электрический ток протекает только в одном направлении.
В электронных полупроводниках, кроме четырех атомов, составляющих основу кристаллической решетки, имеются так называемые доноры. Они представляют собой примеси в виде пятивалентных атомов. Электрон, содержащийся в таком атоме, не может нормально вступить в ковалентную связь и поэтому отделяется от донора. Таким образом, он превращается в свободный носитель заряда. В свою очередь донор становится положительным ионом, это может произойти даже при комнатной температуре.
Сила тока при последовательном соединении
В дырочных полупроводниках имеется кристаллическая решетка с содержанием трехвалентных примесных атомов, называемых акцепторами. В такой решетке остается незаполненной одна ковалентная связь.
Она может быть заполнена электроном, оторвавшимся от соседней связи. Происходит превращение примесного атома в отрицательный ион, а на месте ушедшего электрона появляется дырка.
То есть, в этом случае также начинается одностороннее движение электрического тока.
Факторы, влияющие на сопротивление полупроводников
Опытным путем было установлено, что при повышении температуры происходит уменьшение электрического сопротивления в полупроводниковых кристаллах. Это связано с тем, что при нагревании кристалла увеличивается количество свободных электронов, соответственно, возрастает их концентрация. Изменяющееся сопротивление полупроводников под воздействием температуры, применяется для создания специальных приборов, называемых терморезисторами.
Для того, чтобы изготовить терморезистор используются полупроводники, представляющие собой оксиды отдельных металлов в смешанном состоянии. Готовое вещество размещается в защитном металлическом корпусе с изолированными выводами. С их помощью происходит подключение прибора к электрической цепи.
Терморезисторы используются для измерения температуры или для ее поддержания в заданном режиме в каких-либо устройствах. Основным принципом их работы является изменяющееся сопротивление при перепадах температур. Тот же принцип используется и в фоторезисторах. Здесь величина сопротивления изменяется в зависимости от уровня освещения.
Влияние температуры на сопротивление полупроводника
Источник: https://electric-220.ru/news/soprotivlenie_poluprovodnikov/2015-05-07-878
Зависимость сопротивления проводника от температуры
Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт.
Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр. Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.
Изменение сопротивления в зависимости от температуры
Пусть при температуре 0 градусов, сопротивление проводника равняется R0, а при температуре t сопротивление равно R, тогда относительное изменение сопротивления будет прямо пропорционально изменению температуры t:
В данной формуле а – коэффициент пропорциональности, который называют еще температурным коэффициентом. Он характеризует зависимость сопротивления, которым обладает вещество, от температуры.
Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.
Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.
Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.
Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.
Зависимость удельного сопротивления проводника от температуры
Попытаемся найти зависимость удельного сопротивления проводника от температуры.
Подставим в полученную выше формулу значения сопротивлений R=p*l/S R0=p0*l/S.
Получим следующую формулу:
Температурный коэффициент можно считать постоянным, следовательно, удельное сопротивление проводника будет прямо пропорционально температуре проводника.
Данная зависимость представлена на следующем рисунке.
Попробуем разобраться, почему увеличивается сопротивление
Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.
Зависимость сопротивления проводника от температуры, широко используется в технике и физике. Например, в изготовлении термометров сопротивления.
Нужна помощь в учебе?
Предыдущая тема: Опыт Милликена и Иоффе: суть эксперимента и как это было
Следующая тема: Сверхпроводимость: определение, история открытия, свойства и перспективы
Источник: http://www.nado5.ru/e-book/zavisimost-soprotivleniya-provodnika-ot-temperatury
Как зависит сопротивление проводника от температуры?
Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.
Металлы
Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.
где:
- Металлическая проволока
- Батарея
- Амперметр
Зависимость указывается и обосновывается формулами:
Из этих формул следует, что R проводника определяется по формуле:
Пример зависимости сопротивления металлов от температуры предоставлен на видео:
Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.
Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.
Газы
Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.
Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.
Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.
Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ.
Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим.
Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.
Если приложить напряжение между катодом и анодом, то возникает проводимость газов.
Жидкости
Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.
где:
- Электролит
- Батарея
- Амперметр
Зависимость воздействия электролитов от нагревания прописывает формула:
Где а – отрицательный температурный коэффициент.
Как зависит R от нагрева (t) показано на графике ниже:
Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.
Полупроводники
А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.
Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.
Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:
- если температура элемента меньше нуля, то такие проводники используются в качестве реле;
- чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.
Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.
Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том, как сделать термоэлектрический генератор своими руками.
Такое устройство носит название термопары. Термоэлементы применяются как источники тока малой мощности, а также для измерения температур цифрового вычислительного прибора, у которых размеры должны быть маленькие, а показания точные.
Подробнее о полупроводниках, и влияние нагрева на их сопротивление рассказывается на видео:
Ну и последнее, о чем хотелось бы рассказать — холодильники и полупроводниковые нагреватели. Полупроводниковые спаи обеспечивают в конструкции разность температур до шестидесяти градусов. Благодаря этому и был сконструирован холодильный шкаф. Температура охлаждения в такой камере достигает – 16 градусов. В основу работы элементов лежит применение термоэлементов, через которые проходит электрический ток.
Вот мы и рассмотрели зависимость сопротивления проводника от температуры. Надеемся, предоставленная информация была для вас понятной и полезной!
Наверняка вы не знаете:
Источник: https://samelectrik.ru/kak-zavisit-soprotivlenie-provodnika-ot-temperatury.html