Как зависит сопротивление проводника от температуры

От каких параметров зависит электрическое сопротивление – lab_phis_3 / 06 / CTRL6

Сопротивление проводника (СП) – это одно из основных физических явлений в электричестве. Оно положено в основу многих электроприборов. Также это главная причина всех потерь в любых электросетях. Следует уточнить, что СП является весьма объемным понятием, которое неоднозначно для ряда ситуаций. Далее раскроем суть СП во всем его разнообразии. 

Что необходимо уточнить, затрагивая СП

Название статьи – это исходная точка рассказа о целой группе понятий, каждое из которых относится к СП. И вот почему. Само понятие «сопротивление» означает препятствование чему-либо. Следовательно, при упоминании проводника подразумевается то, как он препятствует прохождению электрического тока через него. Но, как известно, ток бывает переменный и постоянный. Поэтому сразу уточняем:

  • СП в целом зависит от свойств напряжения, воздействующего на него, материала и пространственно-геометрических характеристик проводника при определенной температуре окружающей среды, и силы, приложенной к нему.

Из этой общей формулировки вытекают следующие понятия:

  • активное сопротивление,
  • реактивное сопротивление,
  • импеданс,
  • волновое сопротивление.

Раскрытие перечисленных понятий дает общее представление того, от чего же зависит СП.

Зависимость от свойств материала

Материал проводника в основном определяет реакцию на приложенное напряжение. Наименьшим сопротивлением обладают металлы. Хотя среди них существует большая разница в этом свойстве. Современная теория объясняет это строением атомов металлов. Для любого проводника его свойство быть таковым объясняется наличием свободных заряженных частиц. В металлах это электроны, в жидкостях и газах – ионы. Приложенное к проводнику напряжение вызывает их движение.

Чем слабее воздействие, препятствующее перемещающимся зарядам, тем меньше СП. Для оценки материла проводника введено понятие удельного сопротивления. Оно применимо к тем веществам, из которых можно получить проводник длиной 1 м с поперечником в 1 кв. мм. Что получается в результате изготовления такого проводника из некоторых материалов, наглядно демонстрирует изображение далее.

Сопротивление различных металлов

Если длина проводника будет больше одного метра, его сопротивление увеличится, а при увеличении поперечника – уменьшится. Эти закономерности можно проверить опытным путем, используя, например, батарейку, отрезок проволоки из нихрома и мультиметр. В результате получаем формулу, которая подтверждена экспериментально. В ней обозначим:

  • R – сопротивление,
  • ρ – удельное сопротивление,
  • l – длина,
  • S – площадь поперечного сечения.

Формула получится такой:

R= ρ*l/S.

Поясняющее изображение для удельного сопротивления

Но эта формула не дает исчерпывающего представления обо всех ситуациях, для которых имеет значение сопротивление. Она будет применима лишь при определенных соответствиях удельного сопротивления температуре, а также постоянном напряжении. То есть это формула для расчета активного СП при заданной температуре. Если температура проводника увеличится, усилится так называемое броуновское движение в его материале. Как результат этого – более затрудненное перемещение электронов и увеличение СП.

Броуновское движение

И наоборот. Охлаждение проводника создает лучшие условия для беспрепятственного перемещения электронов, и при определенных температурах может привести к минимальным величинам сопротивления. Это явление получило название сверхпроводимости. Оно связано по температурным показателям с химическим составом материала проводника и существенно различается для разных металлов и прочих химических элементов, а также их соединений.

Зависимость сопротивления от температуры

Зависимость от свойств напряжения

Напряжение – это главная движущая сила электричества. Напряжение первично. Фактически это среда, в которой протекают разнообразные процессы, связанные с электрическим током. Важнейшей является связь электрического тока с электромагнитным полем. А его параметры, в свою очередь, определяются не только напряжением, но и пространственно-геометрическими характеристиками проводника.

Даже в том случае, когда проводник – это прямой отрезок проволоки в составе электрической цепи, его положение в пространстве при достаточно высоких частотах напряжения будет заметно влиять на величину его сопротивления. Это связано с тем, что в этих условиях проявляются его индуктивность и емкость, существующие лишь при переменном напряжении. Эти параметры проводника именуются реактивным сопротивлением, и также приводят к потерям электроэнергии.

  • Следовательно, если проводник находится под воздействием переменного напряжения, его сопротивление также зависит как от частоты этого напряжения, так и от его индуктивно-емкостных параметров.

Активное СП при этом остается в силе. А сопротивление проводника в целом именуется импедансом. Его принято обозначать буквой Z и рассчитывать с использованием комплексных чисел. Это довольно-таки специфические расчеты, которыми не стоит утомлять читателя нашей статьи. Но чтобы читатель в этом утверждении не усомнился, далее приведем формулу, по которой в общем случае рассчитывается импеданс:

Формула

Зависимость от геометрии

Но и постоянный ток не так прост, как представляется по некоторым опытам. Все дело в его силе. Известно, что площадь поперечного сечения напрямую связана с силой тока. Но эта закономерность применима не всегда. С определенных значений силы ток все больше устремляется к поверхности проводника, что называется вытеснением тока. По этой причине сопротивление току большой силы меньше у плоских и трубчатых проводников.

Распределение тока по поперечнику проводника

Еще лучший результат получается при покрытии серебром. Аналогично проявляются и токи высокой частоты. Для них поверхностный эффект закономерен так же, как и для постоянного тока большой силы. Но и механическая сила, воздействующая на проводник, способна повлиять на его сопротивление. И это неудивительно, поскольку деформации влияют на распределение частиц, которые тормозят электроны.

Этот принцип заложен в основу тензометрии, без которой сегодня невозможно представить машиностроение и другие отрасли промышленности, где важна прочность материалов. Все перечисленные причины, от которых зависит СП, по-разному проявляются у различных материалов. Но для прикладного использования взаимосвязи сопротивления с теми или иными воздействиями разработаны специальные сплавы и химические соединения.

Распределение тока по поперечнику проводника

Но в любом случае сопротивление измеряется в Омах и долях Ома, в том числе и кратных 1000, то есть килоом, мегаом. Больше нескольких единиц мегаом сопротивление, как правило, не бывает. Мы постарались показать читателям несколько причин, обуславливающих СП. Надеемся, что полученные знания помогут успешно решить существующие задачи.

Источник: https://auto-virage.ru/raznoe-2/ot-kakix-parametrov-zavisit-elektricheskoe-soprotivlenie-lab_phis_3-06-ctrl6.html

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности R между напряжением U и силой постоянного тока I в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом (1 Ом) — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и поперечного сечения S и может быть определено по формуле:

,

где ρ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы следует, что

,

Величина, обратная ρ, называется удельной проводимостью σ:

.

Так как в СИ единицей сопротивления является 1 Ом. единицей площади 1 м2, а единицей длины 1 м, то единицей удельного сопротивления в СИ будет 1 Ом·м2/м, или 1 Ом·м. Единица удельной проводимости в СИ — Ом-1м-1.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм2). В этом случае более удобной единицей удельного сопротивления является Ом·мм2/м. Так как 1 мм2 = 0,000001 м2, то 1 Ом·мм2/м = 10-6 Ом·м. Металлы обладают очень малым удельным сопротивлением — порядка (1·10-2) Ом·мм2/м, диэлектрики — в 1015-1020 большим.

Зависимость сопротивлений от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на 1 °С к величине его сопротивления при 0 ºС:

.

Зависимость удельного сопротивления проводников от температуры выражается формулой:

.

В общем случае α зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов α = (1/273)К-1. Для растворов электролитов α < 0. Например, для 10% раствора поваренной соли α = -0,02 К-1. Для константана (сплава меди с никелем) α = 10-5 К-1.

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Источник: https://www.calc.ru/Elektricheskoye-Soprotivleniye.html

Зависимость сопротивления проводника от температуры

Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт.

Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр. Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.

Изменение сопротивления в зависимости от температуры

Пусть при температуре 0 градусов, сопротивление проводника равняется R0, а при температуре t  сопротивление равно R, тогда относительное изменение сопротивления будет прямо пропорционально изменению температуры t:

В данной формуле а – коэффициент пропорциональности, который называют еще температурным коэффициентом.  Он характеризует зависимость сопротивления, которым обладает вещество, от температуры. 

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.

Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.

Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.

Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.

Зависимость удельного сопротивления проводника от температуры

Попытаемся найти зависимость удельного сопротивления проводника от температуры.

Подставим в полученную выше формулу значения сопротивлений R=p*l/S R0=p0*l/S.

Получим следующую формулу:

Температурный коэффициент можно считать постоянным, следовательно, удельное сопротивление проводника будет прямо пропорционально температуре проводника.

Данная зависимость представлена на следующем рисунке.

Попробуем разобраться, почему увеличивается сопротивление

Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.  

Зависимость сопротивления проводника от температуры, широко используется в технике и физике. Например, в изготовлении термометров сопротивления.

Нужна помощь в учебе?

Предыдущая тема: Опыт Милликена и Иоффе: суть эксперимента и как это было
Следующая тема:   Сверхпроводимость: определение, история открытия, свойства и перспективы

Источник: http://www.nado5.ru/e-book/zavisimost-soprotivleniya-provodnika-ot-temperatury

От чего зависит сопротивление металлического проводника. Большая энциклопедия нефти и газа

Cтраница 1

Удельное сопротивление проводника зависит от температуры, давления, материала и др., вследствие чего от этих же факторов зависит и сопротивление проводника. Наибольшее практическое значение имеет зависимость удельного сопротивления, а следовательно, и сопротивления проводника, от температуры. В общем случае эта зависимость достаточно сложна. 

Удельное сопротивление проводников является величиной не постоянной, а зависящей от температуры. Для всех металлов сопротивление увеличивается с увеличением температуры.

При небольших колебаниях температуры зависимость удельного сопротивления от температуры следует линейному закону.

Для каждого металла существует определенный температурный коэффициент сопротивления а, который определяет собой изменение удельного сопротивления проводника, отнесенное к одному ому при повышении температуры на ГС. 

Удельное сопротивление проводников лежит в пределах от 10 — 6 до 10 — 2 ом-см, а технических диэлектриков от 109 до 1020 ом-см. Эти пределы в известной мере условны, но приближенно отражают установившиеся в технике представления. 

Удельное сопротивление проводника представляет собой сопротивление провода длиной I м и площадью поперечного сечения 1 мм2 при температуре 20 С. 

Удельное сопротивление проводников и непроводников зависит от температуры. 

Удельное сопротивление проводников первого рода зависит от температуры. Как правило, с ростом температуры оно повышается. Исключение составляют графит и уголь. 

Чем меньше удельное сопротивление проводника, тем меньшее количество тепла (при том же токе) в нем выделяется. При состоянии сверхпроводимости, когда удельное сопротивление становится неизмерим э малым, в проводнике при прохождении тока не выделяется сколько-нибудь заметного количества тепла. Так как при этом энергия тока никуда не тратится, то раз возбужденный в замкнутом сверхпроводнике то; поддерживается в нем неопределенно долго без затраты энергии извне. 

Изменение удельного сопротивления проводника под действием растягивающих или сжимающих усилий называют тензорезистивным эффектом. Он характеризуется тензочувст-вительностью, устанавливающей связь между относительным изменением сопротивления и относительной деформацией. 

ЭТО ИНТЕРЕСНО:  Как определить рабочую и пусковую обмотку

Здесь р — удельное сопротивление проводника, остальные обозначения расшифрованы в предыдущей задаче. 

От чего зависит удельное сопротивление проводника. 

Если бы величина удельного сопротивления проводника р не зависела от его температуры, соотношение между допустимой плотностью тока / 1ДОп и допустимым превышением температуры проводника при коротком замыкании было бы относительно простым. В действительности удельное сопротивление р изменяется с нагревом проводника, и соотношение между плотностью тока и превышением температуры получается более сложным. 

Чтобы повысить величину удельного сопротивления проводников, применяют сплавы нескольких металлов. Установлено, что только сплавы с неупорядоченной структурой обладают повышенными значениями удельного сопротивления и малыми значениями температурного коэффициента сопротивления.

Сплавами с неупорядоченной структурой называются такие, в кристаллической решетке которых нет правильного чередования атомов металлов, составляющих сплав. Эти сплавы составляют группу проводниковых материалов с большим удельным сопротивлением и малыми значениями температурного коэффициента удельного сопротивления.

Все перечисленные группы проводников обладают высокой пластичностью, позволяющей получать провода диаметром до 0 01 мм и ленты толщиной 0 05 — 0 1 мм. 

Сопротивлениепроводника зависит от его размеров иформы, а также от материала, из которогопроводник изготовлен.

Для однородноголинейного проводника сопротивление Rпрямо пропорционально его длине ℓ иобратно пропорционально площади егопоперечного сечения S:

где ρ — удельноеэлектрическое сопротивление,характеризующее материал проводника.

§ 13.4 Параллельное и последовательное соединение проводников

При последовательномсоединении проводников

а)сила тока на всех участках цепи одинакова,т.е.

б) общее напряжениев цепи равно сумме напряжений на отдельныхеё участках:

в) общее сопротивлениецепи равно сумме сопротивлений отдельныхпроводников:

или

(13.23)

При параллельномсоединении проводниковвыполняются следующие три закона:

а) общая сила токав цепи равно сумме сил токов в отдельныхпроводниках:

б) напряжение навсех параллельно соединённых участкахцепи одно и то же:

в) величина, обратнаяобщему сопротивлению цепи, равна суммевеличин, обратных сопротивлению каждогоиз проводников в отдельности:

или

(13.24)

§ 13.5 Разветвленные электрические цепи. Правила Кирхгофа

При решении задач,наряду с законом Ома, удобно использоватьдва правила Кирхгофа. При сборке сложныхэлектрических цепей в некоторых точкахсходятся несколько проводников. Такиеточки называют узлами.

Первоеправило Кирхгофа основано на следующихсоображениях. Токи, втекающие в данныйузел, приносят в него заряд. Токи,вытекающие из узла, уносят заряд. Зарядв узле накапливаться не может, поэтомувеличина заряда, поступающего в данныйузел за некоторое время, в точностиравна величине уносимого из узла зарядаза то же самое время. Токи, втекающие вданный узел, считаются положительными,токи, вытекающие из узла, считаютсяотрицательными.

Согласнопервомуправилу Кирхгофа,алгебраическаясумма сил токов в проводниках, соединяющихсяв узле, равна нулю.

(13.25)

I 1 +I 2 +I 3 +.+I n =0

I 1 +I 2 =I 3 +I 4

I 1 +I 2 -I 3 -I 4 =0

Второе правилоКирхгофа:алгебраическаясумма произведений сопротивлениякаждого из участков любого замкнутогоконтура разветвленной цепи постоянноготока на силу тока на этом участке равнаалгебраической сумме ЭДС вдоль этогоконтура.

(13.26)

Этоправило особенно удобно применять втом случае, когда проводящем контуресодержится не один, а несколько источниковтока (рис.13.8).

При использованииэтого правила направления токов и обходавыбираются произвольно. Токи, текущиевдоль выбранного направления обходаконтура, считаются положительными, аидущие против направления обхода–отрицательными. Соответственноположительными считаются ЭДС техисточников, которые вызывают ток,совпадающий по направлению с обходомконтура.

ε 2–ε 1 =Ir 1 +Ir 2 +IR (13.27)

Cтраница 2

Температурная зависимость сопротивления металлических проводников широко используется в технике для создания термометров сопротивления. Помещая в печь спираль известного сопротивления 7.0 и измеряя ее сопротивление Rt, можно согласно (15.10) определить температуру i печи. С другой стороны, эта температурная зависимость оказывает вредное влияние на работу точных электроизмерительных приборов, меняя сопротивление последних при изменении внешних условий. 

Согласно электронной теории сопротивление металлических проводников электрическому току возникает вследствие того, что носители тока — электроны проводимости при своем движении испытывают соударения с ионами кристаллической решетки.

При этом движущиеся электроны передают ионам часть своей энергии, приобретенной ими при свободном пробеге в электрическом поле.

Различие в сопротивлении различных металлов объясняется различием величины среднего свободного пробега электронов и количества свободных электронов в единице объема металла. 

С повышением температуры сопротивление металлических проводников увеличивается, а с понижением — уменьшается. 

При изменении температуры сопротивление металлических проводников меняется (при обычных температурах) по закону R Ro (1 — f — 0 004&), где / 4 — сопротивление при 0 С и & — температура по Цельсию. Этот закон справедлив для большинства чистых металлов. Проводник, сопротивление которого при 0 С равно 10 ом, равномерно нагревается от 8j 20 до 02 200 в течение 10 мин. В это время по нему идет ток под напряжением в 120 в. 

Согласно электронной теории сопротивление металлических проводников электрическому току возникает вследствие того, что носители тока — электроны проводимости при своем движений испытывают соударения с ионами кристаллической решетки.

При этом движущиеся электроны передают ионам часть своей энергии, приобретенной ими при свободном пробеге в электрическом поле.

Различие в сопротивлении различных металлов объясняется различием величины среднего свободного пробега электронов и количества свободных электронов в единице объема металла. 

От чего зависит сопротивление металлического проводника. 

При изменении температуры сопротивление металлических проводников меняется (при обычных температурах) по закону R RQ (l 0 0040), где Д0 — сопротивление при 0 С и 9 — температура по Цельсию. Этот закон справедлив для большинства чистых металлов. Проводник, сопротивление которого при 0 С равно 100м, равномерно нагревается от 0г 20 до 02 200 в течение 10 мин. 

С увеличением температуры сопротивление металлических проводников увеличивается, а при уменьшении — уменьшается. 

При изменении температуры сопротивление металлических проводников меняется (при обычных температурах) по закону R — R0 (l — f 0 0046), где Ro — сопротивление при О GC и 6 — температура по Цельсию. Этот закон справедлив для большинства чистых металлов. Проводник, сопротивление которого при 0 С равно 10 Ом, равномерно нагревается от 8i 20 до 62 200Э в течение 10 мин. В это время по нему идет ток под напряжением в 120 В. 

Опыты показывают, что сопротивление металлических проводников зависит от размеров проводника и материала, из которого изготовлен проводник. 

Какое явление приводит к увеличению сопротивления данного металлического проводника. 

АР и КР, определяется соотношением сопротивлений металлических проводников между рамой и катодом, с одной стороны, и между рамой и анодом, с другой стороны.

Если подобрать сопротивление проводника, соединяющего раму с анодом, так, чтобы каждое из значений АР и КР находилось в пределах 0 8 — 1 5 в (при напряжении на ячейке 2 3 в), то рама не сможет участвовать в электрохимическом процессе и на ее поверхности не будут выделяться газообразные водород или кислород.

Если же соединить раму с анодом при помощи проводника малого сопротивления, потенциал рамы может настолько сдвинуться в анодную сторону, что поверхность рамы включится в электрохимическую работу в качестве анода с выделением кислорода в катодное пространство и загрязнением водорода кислородом. 

Метод сопротивления основан на учете изменения сопротивления металлического проводника от его температуры. 

Общее сопротивление заземляющего устройства складывается из сопротивлений металлических проводников, заземляющих спусков и сопротивления, которое земля оказывает растеканию электрического тока. Активное сопротивление металлических проводников и заземляющих спусков настолько мало по сравнению с сопротивлением растеканию, что им, как правило, пренебрегают.

Поэтому термин сопротивление заземляющего устройства означает не что иное, как сопротивление, которое оказывает прохождению электрического тока земля, окружающая металлические проводники.

В процессе стекания тока в землю за-землитель приобретает по отношению к удаленным точкам земли потенциал, равный по своей величине падению напряжения, которое вызывается проходящим в земле током. 

Источник: https://sibay-rb.ru/electricity/what-determines-the-resistance-of-the-metal-conductor-the-great-encyclopedia-of-oil-and-gas.html

Удельное сопротивлене меди и ее влияние на свойства металла

Термин «удельное сопротивление» обозначает параметр, которым обладает медь или любой другой металл, и довольно часто встречается в специальной литературе. Стоит разобраться, что понимается под этим.

Одна из разновидностей медного кабеля

Общие сведения об электрическом сопротивлении

Для начала следует рассмотреть понятие электрического сопротивления.

Как известно, под действием электрического тока на проводник (а медь является одним из лучших металлов-проводников) часть электронов в нем покидают свое место в кристаллической решетке и устремляются по направлению к положительному полюсу проводника.

Однако не все электроны покидают кристаллическую решетку, часть из них остаются в ней и продолжают совершать вращательное движение вокруг ядра атома. Вот эти электроны, а также атомы, расположенные в узлах кристаллической решетки, и создают электрическое сопротивление, препятствующее продвижению высвободившихся частиц.

Данный процесс, который мы вкратце обрисовали, характерен для любого металла, для меди в том числе. Естественно, что различные металлы, у каждого из которых особая форма и размеры кристаллической решетки, сопротивляются продвижению по ним электрического тока по-разному. Как раз эти различия и характеризует удельное сопротивление – показатель, индивидуальный для каждого металла.

Удельное электрическое сопротивление некоторых веществ

Применение меди в электрических и электронных системах

Для того чтобы понять, причину популярности меди как материала для изготовления элементов электрических и электронных систем, достаточно посмотреть в таблице значение ее удельного сопротивления. У меди данный параметр равен 0,0175 Ом*мм2/метр. В этом отношении медь уступает только серебру.

Именно низкое удельное сопротивление, измеряемое при температуре 20 градусов Цельсия, является основной причиной того, что без меди сегодня не обходится практически ни одно электронное и электротехническое устройство. Медь – это основной материал для производства проводов и кабелей, печатных плат, электродвигателей и деталей силовых трансформаторов.

Низкое удельное сопротивление, которым характеризуется медь, позволяет использовать ее для изготовления электротехнических устройств, отличающихся высокими энергосберегающими свойствами. Кроме того, температура проводников из меди повышается очень незначительно при прохождении через них электрического тока.

Зависимость сопротивления меди от температуры

Что влияет на величину удельного сопротивления?

Важно знать, что существует зависимость величины удельного сопротивления от химической чистоты металла. При содержании в меди даже незначительного количества алюминия (0,02%) величина этого ее параметра может значительно возрасти (до 10%).

Влияет на этот коэффициент и температура проводника. Объясняется это тем, что при повышении температуры усиливаются колебания атомов металла в узлах его кристаллической решетки, что и приводит к тому, что коэффициент удельного сопротивления возрастает.

Именно поэтому во всех справочных таблицах значение данного параметра приведено с учетом температуры 20 градусов.

Как рассчитать общее сопротивление проводника?

Знать, чему равно удельное сопротивление, важно для того, чтобы проводить предварительные расчеты параметров электротехнического оборудования при его проектировании.

В таких случаях определяют общее сопротивление проводников проектируемого устройства, обладающих определенными размерами и формой.

Посмотрев значение удельного сопротивления проводника по справочной таблице, определив его размеры и площадь поперечного сечения, можно рассчитать величину его общего сопротивления по формуле:

R = p*l/S

В данной формуле используются следующие обозначения:

  • R — общее сопротивление проводника, которое и необходимо определить;
  • p — удельное сопротивление металла, из которого изготовлен проводник (определяют по таблице);
  • l — длина проводника;
  • S — площадь его поперечного сечения.

Влияние примесей на удельное сопротивление меди

Источник: http://met-all.org/cvetmet-splavy/med/udelnoe-soprotivlenie-medi.html

Как изменяется сопротивление проводника при повышении температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

ho_t =
ho_0 (1 + alpha t) ,) (

R_t = R_0 (1 + alpha t) ,)

где ρ, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1 ). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

mathcal h alpha mathcal i) — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Для растворов электролитов α -1 . Сопротивление электролитов с ростом температуры уменьшается, так как увеличение числа свободных ионов из-за диссоциации молекул превышает рост рассеивания ионов при столкновениях с молекулами растворителя.

ЭТО ИНТЕРЕСНО:  Что такое обмотка возбуждения

Формулы зависимости ρ и R от температуры для электролитов аналогичны приведенным выше формулам для металлических проводников. Необходимо отметить, что эта линейная зависимость сохраняется лишь в небольшом диапазоне изменения температур, в котором α = const. При больших же интервалах изменения температур зависимость сопротивления электролитов от температуры становится нелинейной.

Графически зависимости сопротивления металлических проводников и электролитов от температуры изображены на рисунках 1, а, б.

При очень низких температурах, близких к абсолютному нулю (-273 °С), сопротивление многих металлов скачком падает до нуля. Это явление получило название сверхпроводимости. Металл переходит в сверхпроводящее состояние.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.

Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 256-257.

Зависимость сопротивления проводника от температуры

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
  2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

ho_t =
ho_0 (1 + alpha t) ,) (

R_t = R_0 (1 + alpha t) ,)

где ρ, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1 ). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.

mathcal h alpha mathcal i) — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К -1 . У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.

Источник: https://hd01.ru/info/kak-izmenjaetsja-soprotivlenie-provodnika-pri/

Как зависит сопротивление проводника от температуры?

Существуют различные условия, при которых носители заряда проходят через определенные материалы. И на заряд электрического тока прямое влияние имеет сопротивление, у которого есть зависимость от окружающей среды. К факторам, которые изменяют протекание электротока, относится и температура. В этой статье мы рассмотрим зависимость сопротивления проводника от температуры.

Металлы

Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.

где:

  1. Металлическая проволока
  2. Батарея
  3. Амперметр

Зависимость указывается и обосновывается формулами:

Из этих формул следует, что R проводника определяется по формуле:

Пример зависимости сопротивления металлов от температуры предоставлен на видео:

Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление. График ниже показывает, как зависит температура и удельное сопротивление в ртути.

Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.

Газы

Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.

Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.

Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.

Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ.

Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим.

Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.

Если приложить напряжение между катодом и анодом, то возникает проводимость газов.

Жидкости

Проводники тока в жидкости – это анионы и катионы, которые движутся за счет электрического внешнего поля. Электроны обеспечивают незначительную проводимость. Рассмотрим зависимость сопротивления от температуры в жидкостях.

где:

  1. Электролит
  2. Батарея
  3. Амперметр

Зависимость воздействия электролитов от нагревания прописывает формула:

Где а – отрицательный температурный коэффициент.

Как зависит R от нагрева (t) показано на графике ниже:

Такая зависимость должна учитываться, когда осуществляется зарядка аккумуляторов и батарей.

Полупроводники

А как зависит сопротивление от нагрева в полупроводниках? Для начала поговорим о терморезисторах. Это такие устройства, которые меняют свое электрическое сопротивление под воздействием тепла. У данного полупроводника температурный коэффициент сопротивления (ТКС) на порядок выше металлов. Как положительные, так и отрицательные проводники, они имеют определенные характеристики.

Где: 1 – это ТКС меньше нуля; 2 – ТКС больше нуля.

Чтобы такие проводники, как терморезисторы приступили к работе, за основу берут любую точку на ВАХ:

  • если температура элемента меньше нуля, то такие проводники используются в качестве реле;
  • чтобы контролировать изменяющийся ток, а также, какая температура и напряжение, используют линейный участок.

Терморезисторы применяются, когда осуществляется проверка и замер электромагнитных излучений, что осуществляются на сверхвысоких частотах. Благодаря этому данные проводники используют в таких системах, как пожарной сигнализации, проверке тепла и контроль употребления сыпучих сред и жидкостей. Те терморезисторы, у которых ТКС меньше нуля, применяются в системах охлаждения.

Теперь о термоэлементах. Как влияет явление Зеебека на термоэлементы? Зависимость заключается в том, что такие проводники функционируют на основе данного явления. Когда температура места соединения повышается при нагревании, на стыке замкнутой цепи появляется ЭДС. Таким образом, проявляется их зависимость и тепловая энергия обращается в электричество. Чтобы полностью понять процесс, рекомендую изучить нашу инструкцию о том, как сделать термоэлектрический генератор своими руками.

Такое устройство носит название термопары. Термоэлементы применяются как источники тока малой мощности, а также для измерения температур цифрового вычислительного прибора, у которых размеры должны быть маленькие, а показания точные.

Подробнее о полупроводниках, и влияние нагрева на их сопротивление рассказывается на видео:

Ну и последнее, о чем хотелось бы рассказать — холодильники и полупроводниковые нагреватели. Полупроводниковые спаи обеспечивают в конструкции разность температур до шестидесяти градусов. Благодаря этому и был сконструирован холодильный шкаф. Температура охлаждения в такой камере достигает – 16 градусов. В основу работы элементов лежит применение термоэлементов, через которые проходит электрический ток.

Вот мы и рассмотрели зависимость сопротивления проводника от температуры. Надеемся, предоставленная информация была для вас понятной и полезной!

Наверняка вы не знаете:

Источник: https://samelectrik.ru/kak-zavisit-soprotivlenie-provodnika-ot-temperatury.html

Расчет электрических схем: от чего зависит сопротивление проводника, формулы для расчета

Одним из физических свойств вещества является способность проводить электрический ток. Электропроводимость (сопротивление проводника) зависит от некоторых факторов: длины электрической цепи, особенностей строения, наличия свободных электронов, температуры, тока, напряжения, материала и площади поперечного сечения.

Протекание электрического тока через проводник приводит к направленному движению свободных электронов. Наличие свободных электронов зависит от самого вещества и берется из таблицы Д. И. Менделеева , а именно из электронной конфигурации элемента. Электроны начинают ударяться о кристаллическую решетку элемента и передают энергию последней. В этом случае возникает тепловой эффект при действии тока на проводник.

При этом взаимодействии они замедляются, но затем под действием электрического поля, которое их ускоряет, начинают двигаться с той же скоростью. Электроны сталкиваются огромное количество раз. Этот процесс и называется сопротивлением проводника.

Следовательно, электрическим сопротивлением проводника считается физическая величина, характеризующая отношение напряжения к силе тока.

Что такое электрическое сопротивление: величина, указывающая на свойство физического тела преобразовывать энергию электрическую в тепловую, благодаря взаимодействию энергии электронов с кристаллической решеткой вещества. По характеру проводимости различаются:

  1. Проводники (способны проводить электрический ток, так как присутствуют свободные электроны).
  2. Полупроводники (могут проводить электрический ток, но при определенных условиях).
  3. Диэлектрики или изоляторы (обладают огромным сопротивлением, отсутствуют свободные электроны, что делает их неспособными проводить ток).

Обозначается эта характеристика буквой R и измеряется в Омах (Ом). Применение этих групп веществ является очень значимым для разработки электрических принципиальных схем приборов.

Для полного понимания зависимости R от чего-либо нужно обратить особое внимание на расчет этой величины.

Расчет электрической проводимости

Для расчета R проводника применяется закон Ома, который гласит: сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению.

Формула нахождения характеристики проводимости материала R (следствие из закона Ома для участка цепи): R = U / I.

Для полного участка цепи эта формула принимает следующий вид: R = (U / I) — Rвн, где Rвн — внутреннее R источника питания.

Зависимость проводимости материала

Способность проводника к пропусканию электрического тока зависит от многих факторов: напряжения, тока, длины, площади поперечного сечения и материала проводника, а также от температуры окружающей среды.

В электротехнике для произведения расчетов и изготовления резисторов учитывается и геометрическая составляющая проводника.

От чего зависит сопротивление: от длины проводника — l, удельного сопротивления — p и от площади сечения (с радиусом r) — S = Пи * r * r.

Формула R проводника: R = p * l / S.

Из формулы видно, от чего зависит удельное сопротивление проводника: R, l, S. Нет необходимости его таким способом рассчитывать, потому что есть способ намного лучше. Удельное сопротивление можно найти в соответствующих справочниках для каждого типа проводника (p — это физическая величина равная R материала длиною в 1 метр и площадью сечения равной 1 м².

Однако этой формулы мало для точного расчета резистора, поэтому используют зависимость от температуры.

Влияние температуры окружающей среды

Доказано, что каждое вещество обладает удельным сопротивлением, зависящим от температуры.

Для демонстрации это можно произвести следующий опыт. Возьмите спираль из нихрома или любого проводника (обозначена на схеме в виде резистора), источник питания и обычный амперметр (его можно заменить на лампу накаливания). Соберите цепь согласно схеме 1.

Схема 1 — Электрическая цепь для проведения опыта

Необходимо запитать потребитель и внимательно следить за показаниями амперметра. Далее следует нагревать R, не отключая, и показания амперметра начнут падать при росте температуры. Прослеживается зависимость по закону Ома для участка цепи: I = U / R. В данном случае внутренним сопротивлением источника питания можно пренебречь: это не отразится на демонстрации зависимости R от температуры. Отсюда следует, что зависимость R от температуры присутствует.

Физический смысл роста значения R обусловлен влиянием температуры на амплитуду колебаний (увеличение) ионов в кристаллической решетке. В результате этого электроны чаще сталкиваются и это вызывает рост R.

Согласно формуле: R = p * l / S, находим показатель, который зависит от температуры (S и l — не зависят от температуры). Остается p проводника. Исходя из это получается формула зависимости от температуры: (R — Ro) / R = a * t, где Ro при температуре 0 градусов по Цельсию, t — температура окружающей среды и a — коэффициент пропорциональности (температурный коэффициент).

Для металлов «a» всегда больше нуля, а для растворов электролитов температурный коэффициент меньше 0.

Формула нахождения p, применяемая при расчетах: p = (1 + a * t) * po, где ро — удельное значение сопротивления, взятое из справочника для конкретного проводника. В этом случае температурный коэффициент можно считать постоянным. Зависимость мощности (P) от R вытекает из формулы мощности: P = U * I = U * U / R = I * I * R. Удельное значение сопротивления еще зависит и от деформаций материала, при котором нарушается кристаллическая решетка.

ЭТО ИНТЕРЕСНО:  Что такое эффект холла

Деформация и удельное сопротивление

При обработке металла в холодной среде при некотором давлении происходит пластическая деформация. При этом кристаллическая решетка искажается и растет R течения электронов. В этом случае удельное сопротивление также увеличивается. Этот процесс является обратимым и называется рекристаллическим отжигом, благодаря которому часть дефектов уменьшается.

При действии на металл сил растяжения и сжатия последний подвергается деформациям, которые называются упругими. Удельное сопротивление уменьшается при сжатии, так как происходит уменьшение амплитуды тепловых колебаний. Направленным заряженным частицам становится легче двигаться. При растяжении удельное сопротивление увеличивается из-за роста амплитуды тепловых колебаний.

Еще одним фактором, влияющим на проводимость, является вид тока, проходящего по проводнику.

Цепи переменного тока

Сопротивление в сетях с переменным током ведет себя несколько иначе, ведь закон Ома применим только для схем с постоянным напряжением. Следовательно, расчеты следует производить иначе.

Полное сопротивление обозначается буквой Z и состоит из алгебраической суммы активного, емкостного и индуктивного сопротивлений.

При подключении активного R в цепь переменного тока под воздействием разницы потенциалов начинает течь ток синусоидального вида. В этом случае формула выглядит: Iм = Uм / R, где Iм и Uм — амплитудные значения силы тока и напряжения. Формула сопротивления принимает следующий вид: Iм = Uм / ((1 + a * t) * po * l / 2 * Пи * r * r).

Емкостное сопротивление (Xc) обусловлено наличием в схемах конденсаторов. Необходимо отметить, что через конденсаторы проходит переменный ток и, следовательно, он выступает в роли проводника с емкостью.

Вычисляется Xc следующим образом: Xc = 1 / (w * C), где w — угловая частота и C — емкость конденсатора или группы конденсаторов. Угловая частота определяется следующим образом:

  1. Измеряется частота переменного тока (как правило, 50 Гц).
  2. Умножается на 6,283.

Индуктивное сопротивление (Xl) — подразумевает наличие индуктивности в схеме (дроссель, реле, контур, трансформатор и так далее). Рассчитывается следующим образом: Xl = wL, где L — индуктивность и w — угловая частота. Для расчета индуктивности необходимо воспользоваться специализированными онлайн-калькуляторами или справочником по физике. Итак, все величины рассчитаны по формулам и остается всего лишь записать Z: Z * Z = R * R + (Xc — Xl) * (Xc — Xl).

Для определения окончательного значения необходимо извлечь квадратный корень из выражения: R * R + (Xc — Xl) * (Xc — Xl). Из формул следует, что частота переменного тока играет большую роль, например, в схеме одного и того же исполнения при повышении частоты увеличивается и ее Z. Необходимо добавить, что в цепях с переменным напряжением Z зависит от таких показателей:

  1. Длины проводника.
  2. Площади сечения — S.
  3. Температуры.
  4. Типа материала.
  5. Емкости.
  6. Индуктивности.
  7. Частоты.

Следовательно и закон Ома для участка цепи имеет совершенно другой вид: I = U / Z. Меняется и закон для полной цепи.

Измерение электрической проводимости

Расчеты сопротивлений требуют определенного количества времени, поэтому для измерений их величин применяются специальные электроизмерительные приборы, которые называются омметрами. Измерительный прибор состоит из стрелочного индикатора, к которому последовательно включен источник питания.

Измеряют R все комбинированные приборы, такие как тестеры и мультиметры. Обособленные приборы для измерения только этой характеристики применяются крайне редко (мегаомметр для проверки изоляции силового кабеля).

Прибор применяется для прозвонки электрических цепей на предмет повреждения и исправности радиодеталей, а также для прозвонки изоляции кабелей.

При измерении R необходимо полностью обесточить участок цепи во избежание выхода прибора из строя. Для это необходимо предпринять следующие меры предосторожности:

  1. Вытянуть вилку из сети.
  2. Включить прибор, при этом произойдет разрядка конденсаторов.
  3. Приступить к измерению или прозвонке.
  4. Установить переключатель в режим измерения сопротивления.
  5. Закоротить щупы прибора, чтобы удостовериться в его работоспособности (покажет очень малое сопротивление).
  6. Измерить необходимый участок.

В дорогих мультиметрах есть функция прозвонки цепи, дублируемая звуковым сигналом, благодаря чему нет необходимости смотреть на табло прибора.

Таким образом, электрическое сопротивление играет важную роль в электротехнике. Оно зависит в постоянных цепях от температуры, силы тока, длины, типа материала и площади поперечного сечения проводника.

В цепях переменного тока эта зависимость дополняется такими величинами, как частота, емкость и индуктивность. Благодаря этой зависимости существует возможность изменять характеристики электричества: напряжение и силу тока.

Для измерений величины сопротивления применяются омметры, которые используются также и при выявлении неполадок проводки, прозвонки различных цепей и радиодеталей.

Источник: https://220v.guru/elementy-elektriki/provodka/zavisimost-elektricheskogo-soprotivleniya-provodnika-ot-dliny.html

Лекция изучение зависимости сопротивления проводника -ЧИТАЛЬНЫЙ ЗАЛ

Ø Зависимость сопротивления проводника от длины, площади поперечного сечения и материала.

Ø Зависимость сопротивления проводника от температуры.

Ø Сверхпроводимость.

Зависимость сопротивления проводника от длины, площади поперечного сечения и материала

На основании опытов было установлено, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально его поперечному сечению

Где р — коэффициент пропорциональности, или Удельное сопротивление проводника, I — длина проводника, S — поперечное сечение проводника.

Удельным сопротивлением Является сопротивление проводника из данного вещества единичной длины и единичного поперечного сечения. Удельное сопротивление проводника зависит от материала проводника.

В СИ единица измерения удельного сопротивления

Сверхпроводимость

С приближением температуры чистых металлов к абсолютному нулю их сопротивление резким скачком падает до нуля (рис. 77).

Ток, идущий по замкнутому проводнику, при температурах, близких к абсолютному нулю, может циркулировать в нем достаточно долгое время. Такое явление называется Сверхпроводимостью.

Источник: http://chitalky.ru/?p=5652

Температурный коэффициент сопротивления

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Сопротивление проводника (R) (удельное сопротивление) () зависит от температуры. Эту зависимость при незначительных изменениях температуры () представляют в виде функции:

где — удельное сопротивление проводника при температуре равной 0oC; — температурный коэффициент сопротивления.

Величина служит характеристикой связи электросопротивления с температурой.

При температурах, принадлежащих диапазону , у большинства металлов рассматриваемый коэффициент остается постоянным. Для чистых металлов температурный коэффициент сопротивления часто принимают равным

Иногда говорят о среднем температурном коэффициенте сопротивления, определяя его как:

где — средняя величина температурного коэффициента в заданном интервале температур ().

Температурный коэффициент сопротивления для разных веществ

Большая часть металлов имеет температурный коэффициент сопротивления больше нуля. Это означает, что сопротивление металлов с ростом температуры возрастает. Это происходит как результат рассеяния электронов на кристаллической решетке, которая усиливает тепловые колебания.

При температурах близких к абсолютному нулю (-273oС) сопротивление большого числа металлов резко падает до нуля. Говорят, что металлы переходят в сверхпроводящее состояние.

Полупроводники, не имеющие примесей, обладают отрицательным температурным коэффициентом сопротивления. Их сопротивление при увеличении температуры уменьшается. Это происходит вследствие того, что увеличивается количество электронов, которые переходят в зону проводимости, значит, при этом увеличивается число дырок в единице объема полупроводника.

Растворы электролитов имеют . Сопротивление электролитов при увеличении температуры уменьшается. Это происходит потому, что рост количества свободных ионов в результате диссоциации молекул превышает увеличение рассеивания ионов в результате столкновений с молекулами растворителя. Надо сказать, что температурный коэффициент сопротивления для электролитов является постоянной величиной только в малом диапазоне температур.

Единицы измерения

Основной единицей измерения температурного коэффициента сопротивления в системе СИ является:

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/koefficienty/temperaturnyj-koefficient-soprotivleniya/

От чего зависит сопротивление проводника

> Теория > От чего зависит сопротивление проводника

Протекающий в проводящем материале ток пропорционален напряжению на нём. Т.е. при увеличении потенциала объём протекающих электронов также растёт. Правда, при применении различных элементов равнозначное напряжение даёт различное значение у тока. Таким образом, получается правило: при увеличении напряжения проходящий через проводник электрический ток тоже будет расти, но неодинаково, а в зависимости от характеристик элемента.

Определение резистивной составляющей

Электросопротивление материала – это соотношение величины протекающего тока и приложенного к нему напряжения. Для каждого конкретного элемента это соотношение своё. Для обозначения данной физической величины используют букву R. При определении её используют формулу закона Ома для участка цепи:

R=U/I.

Из представленного выражения видно, что резистивная составляющая – это отношение потенциала на проводнике к силе тока на нём же. Таким образом, чем выше величина тока, тем слабее резистивная составляющая у проводника, при большем напряжении – большая.

Дополнительная информация. Часто в обиходе говорят, что резистивная величина «мешает» напряжению бесконечно наращивать силу тока.

У любого резистора, выпускаемого в промышленных условиях, существует порядка десяти параметров, на которые необходимо обращать внимание при его выборе. Главный его параметр –  сопротивление. Это статическая характеристика для любого проводника, заданная при его производстве. Т.е. при подаче большего потенциала на проводящий элемент изменится только ток, проходящий сквозь него, но не его резистивная составляющая. Т.е. соотношение U/I остаётся неизменным.

От чего зависит сопротивление

От чего зависит индуктивность

Необходимо рассмотреть, от каких факторов зависит электрическое сопротивление проводника. Основных параметров четыре:

  • Длина кабеля – l;
  • Площадь поперечного сечения проводящего элемента – S;
  • Металл, использованный в производстве кабеля;
  • Температура окружающей среды – t.

Важно! Удельное сопротивление детали – это используемое в физике понятие, показывающее способность элемента задерживать проведение электричества.

Для состыковки детали и ее резистивной составляющей в физической науке введено понятие удельного сопротивления. Этот показатель характеризует величину резистивной составляющей кабеля при единичной длине в 1 метр и единичной площадью 1 м².

Детали указанной протяжённости и толщины, произведённые из различного сырья, будут показывать различные значения резистивной величины. Это связано с физическими свойствами металлов. Именно из них в основном изготавливают провода и кабели.

У каждого металлического материала своя величина элементов в кристаллической решётке.

Самыми безупречно проводящими электричество деталями являются те, у которых значение резистивной составляющей наименьшее. Примером металлов с небольшой указанной величиной являются алюминий и медь.

Подавляющее большинство проводов и кабелей для передачи электрической энергии изготавливаются из них. Также из них изготавливают шины в трансформаторных подстанциях и главных распределительных щитах любых зданий.

Примером металлов, обладающих большой величиной удельного сопротивления, можно указать железо и всевозможные сплавы. Зачастую резистивную составляющую элемента указывают резистором.

При увеличении длины проводящего материала увеличивается и сопротивление металлического проводника. Это связано с физическими процессами, происходящими в нём при прохождении электрического тока.

Суть их такова: электроны движутся по проводящему слою, в котором присутствуют ионы, из которых состоит кристаллическая решётка любого металла.

Чем больше длина проводника, тем большее количество мешающих движению электронов присутствует ионов кристаллической решётки. Тем больше они создают препятствия для проведения электричества.

Для возможности наращивания протяжённости проводника производители увеличивают площадь материалов. Это даёт возможность расширить «автостраду» для электрического тока. Т.е. электроны меньше пересекаются с деталями решетки металла. Отсюда следует, что более толстый кабель имеет меньшее сопротивление.

Из всего вышесказанного вытекает формула для определения сопротивления проводника, выраженная через его длину (l), площадь поперечного сечения (S) и удельного сопротивления металла (ρ):

R = ρl/S.

В представленном выражении определения данного параметра отсутствует температура окружающей среды. Однако резистивная величина элемента меняется при достижении определенной температуры. Обычно эта температура составляет 20-25 °С. Поэтому не учитывать температуру окружающей среды при выборе детали нельзя. Это может привести к перегреву проводника и его воспламенению. Для выбора используют специализированные таблицы, значения которых используют в вычислениях.

Обычно увеличение температуры ведёт к увеличению резистивной составляющей металлического элемента. С физической точки зрения это связано с тем, что при увеличении температуры кристаллической решётки ионы в ней выходят из состояния покоя и начинают производить колебательные движения. Данный процесс замедляет электроны, т.к. столкновения между ними происходят чаще.

Выбор проводника – это достаточно сложный процесс, который лучше доверить профессионалам. При неправильной оценке всех факторов работы детали можно получить множество негативных последствий, вплоть до пожара. Поэтому понимание, от чего может зависеть сопротивление проводника, должно присутствовать.

Источник: https://elquanta.ru/teoriya/zavisit-soprotivlenie-provodnika.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Для любых предложений по сайту: [email protected]