Закон ома как звучит

Второй закон ома формула – Формула полного расчета закона Ома для цепей постоянного и переменного токов

Закон Ома для полной цепи — физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника.

Закон Ома — сила тока в электрической цепи будет прямо пропорциональна напряжению приложенному к этой цепи, и обратно пропорциональна сумме внутреннего сопротивления источника электропитания и общему сопротивлению всей цепи.

Из закона Ома для полной цепи вытекают следующие следствия:

Следствие 1 : При r < < R Сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения

Следствие 2 : При r > > R Сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Электродвижущая сила в замкнутой цепи, по которой течёт ток равняется:

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

Так же изучите :

Закон Ома в дифференциальной форме :

Закон Ома для переменного тока :

В Формуле мы использовали :

— ЭДС источника напряжения

— Внутреннее сопротивление источника напряжения

— Сила тока в цепи

— Сопротивление

— Напряжение в цепи

— Вектор плотности тока

— Удельная проводимость

— Вектор напряжённости электрического поля

— Сопротивление

— Напряжение в цепи

xn--b1agsdjmeuf9e.xn--p1ai

2. Закон Ома для участка и полной цепи

Закон Ома для участка цепи: сила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлениюR.

Формула закона:I=. Отсюда запишем формулыUIR и R =.

Рис.1.Участок цепи Рис.2.Полная цепь

Закон Ома для полной цепи: сила тока I полной электрической цепи равна ЭДС (электродвижущей силе) источника тока Е, деленной на полное сопротивление цепи (R + r). Полное сопротивление цепи равно сумме сопротивлений внешней цепи R и внутреннего r источника тока.Формула закона I = . На рис. 1 и 2 приведены схемы электрических цепей.

3. Последовательное и параллельное соединение проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно. Смешанное соединение сочетает оба эти соединения.

Сопротивление,при включении которого вместо всех других проводников, находящихся между двумя точками цепи, ток и напряжение остаются неизменными, называют эквивалентным сопротивлениемэтих проводников.

Последовательное соединение

Последовательным называется соединение, при котором каждый проводник соединяется только с одним предыдущим и одним последующим проводниками.

Как следует из первого правила Кирхгофа, при последовательном соединении проводников сила электрического тока, протекающего по всем проводникам, одинакова (на основании закона сохранения заряда).

1. При последовательном соединениипроводников (рис. 1) сила тока во всех проводниках одинакова: I1 = I2 = I3 = I

Рис. 1.Последовательное соединение двух проводников.

2. Согласно закону Ома, напряженияU1иU2на проводниках равны U1 = IR1,  U2 = IR2, U3 = IR3.

Напряжение при последовательном соединении проводников равно сумме напряжений на отдельных участках (проводниках) электрической цепи.

U = U1 +U2 + U3

Позакону Ома, напряжения U1, U2на проводниках равныU1 = IR1,  U2 = IR2, В соответствии вторым правилом Кирхгофа напряжение на всем участке:

U = U1 +U2 = IR1IR2 = I(R1+ R2)= I·R. Получаем: R= R1+R2

Общее напряжение U на проводниках равно сумме напряжений U1, U2 ,U3 равно: U= U1+U2+U3=I·(R1+R2 +R3) =IR

где RЭКВэквивалентное сопротивление всей цепи. Отсюда: RЭКВ = R1 + R2 + R3

При последовательном соединении эквивалентное сопротивление цепи равно сумме сопротивлений отдельных участков цепи: RЭКВ= R1 + R2 + R3+

Этот результат справедлив для любого числа последовательно соединенных проводников.

Из закона Омаследует: при равенстве сил тока при последовательном соединении:

I=,I=. Отсюда =или =, т. е. напряжения на отдельных участках цепи прямо пропорциональны сопротивлениям участков.

При последовательном соединении nодинаковых проводников общее напряжение равно произведению напряжению одного U1 на их количество n:

UПОСЛЕД= n ·U1. Аналогично для сопротивлений: RПОСЛЕД = n· R1

При размыкании цепи одного из последовательно соединенных потребителей ток исчезает во всей цепи, поэтому последовательное соединение на практике не всегда удобно.

Источник: https://csri.ru/raznoe/vtoroj-zakon-oma-formula-formula-polnogo-rascheta-zakona-oma-dlya-cepej-postoyannogo-i-peremennogo-tokov.html

Формула силы тока


Определение

Электрическим током называют упорядоченное движение носителей зарядов. В металлах таковыми являются электроны, отрицательно заряженные частицы с зарядом, равным элементарному заряду. Направлением тока считают направление движения положительно заряженных частиц.

Силой тока (током) через некоторую поверхность S называют скалярную физическую величину, которую обозначают I, равную:

где q – заряд, проходящий сквозь поверхность S, t – время прохождения заряда. Выражение (1) определяет величину силы тока вмомент времени t (мгновенное значение величины силы тока).

Некоторые виды силы тока

Ток носит название постоянного, если его сила и направление с течением времени не изменяются, тогда:

Формула (2) показывает, что сила постоянного тока равна заряду, который проходит сквозь поверхность S в единицу времени.

Если ток является переменным, то выделяют мгновенную силу тока (1), амплитудную силу тока и эффективную силу тока.Эффективной величиной силы переменного тока (Ieff) называют такую силу постоянного тока, которая выполнит работу равнуюработе переменного тока в течение одного периода (T):

Если переменный ток можно представить как синусоидальный:

то Im – амплитуда силы тока ( – частота силы переменного тока).

Плотность тока

Распределение электрического тока по сечению проводника характеризуют при помощи вектора плотности тока(). При этом:

где – угол между векторами и ( – нормаль к элементу поверхности dS),jn – проекция вектора плотности тока на направление нормали ().

Сила тока в проводнике определяется при помощи формулы:

где интегрирование в выражении (6) проводится по всему поперечному сечению проводника S

Для постоянного тока имеем:

Если рассматривать два проводника с сечениями S1 и S2 и постоянными токами, то выполняется соотношение:

Сила тока в соединениях проводников

При последовательном соединении проводников сила тока в каждом из них одинакова:

При параллельном соединении проводников сила тока (I) вычисляется как сумма токов в каждом проводнике (Ii):

Закон Ома

Сила тока входит в один из основных законов постоянного тока – закон Ома (для участка цепи):

где — – разность потенциалов на концах, рассматриваемого участка, — ЭДС источника, который входит в участок цепи, R – сопротивление участка цепи.

Единицы измерения силы тока

Основной единицей измерения силы тока в системе СИ является: [I]=A(ампер)=Кл/с

Примеры решения задач

Пример

Задание. Какой заряд (q) проходит через поперечное сечение проводника за промежуток времени от t1=2c до t2=6c, если сила тока изменяется в соответствии с уравнением: I=2+t, где сила тока в амперах, время в секундах?

Решение. За основу решения задачи примем определение мгновенной силы тока:

В таком случае, заряд, который проходит через поперечное сечение проводника, равен:

Подставим в выражение (1.2) уравнение для силы тока из условий задачи, примем во внимания границы изменения участка времени:

(Кл)

Ответ. q=24 Кл

Пример

Задание. Плоский конденсатор составлен из двух квадратных пластин со стороной A, находящихся на расстоянии dдруг от друга. Этот конденсатор подключен к источнику постоянного напряжения U. Конденсатор погружают в сосуд с керосином (пластины конденсатора вертикальны) со скоростью v=const. Какова сила тока, которая будет течь по подводящим проводам в описанном выше процессе. Считать, что диэлектрическая проницаемость керосина равна .

Решение. Основой для решения задачи станет формул для вычисления силы тока вида:

При погружении в керосин на глубину xописанной выше системы мы получаем два конденсатора, соединенных параллельно (над керосином и в керосине)рис. 2. Для такой системы конденсаторов напряжение на каждом из них одинаково, поэтому уравнение для изменения заряда при движенииудобно искать в виде:

Емкость при параллельном соединении конденсаторов равна:

Формула для расчета емкостей C1 и C2 плоских конденсаторов имеет вид:

где 0 – электрическая постоянная, переменной величиной при погружениисистемы в керосин является площадь обкладок S:

Из выражений (2.4), (2.5) и условий задачи имеем:

Тогда подставив dC в формулу для силы тока (2.1) получаем:

Ответ.

Читать дальше: Формула силы.

Вы поняли, как решать? Нет?

Источник: https://www.webmath.ru/poleznoe/formules_21_18_sila_toka.php

Закон Ома для участка цепи. Расчет электрического сопротивления проводника

Цель Обобщить знания учащихся об электрическом токе и напряжении и установить на опыте зависимость силы тока от напряжения на однородном участке электрической цепи и от сопротивления этого участка, вывести закон Ома для участка цепи. Установить, что электрическое сопротивление зависит от длины проводника, удельного сопротивления и площади поперечного сечения.
Задачи урока
  • обучающие: закрепление понятия сила тока, напряжение, сопротивление; вывести зависимость между силой тока, напряжением и сопротивлением участка цепи. Закон Ома для участка цепи. Примеры на расчёт силы тока, напряжения и сопротивления проводника.
  • развивающие: развивать умения наблюдать, сопоставлять, сравнивать и обобщать результаты экспериментов; продолжить формирование умений пользоваться теоретическими и экспериментальными методами физической науки для обоснования выводов по изучаемой теме и для решения задач.
  • воспитательные: развитие познавательного интереса к предмету, тренировка рационального метода запоминания формул, развитие аккуратности, умения организовывать свою работу в определённом промежутке времени.
Тип урока Урок формирования новых знаний с использованием электронных образовательных ресурсов.
Формы работы учащихся Фронтальная, групповая, индивидуальная.
Используемые приемы обучения проблемный; исследовательский.
Методы Словесный, частично-поисковый, Практический, методы контроля и самоконтроля.
Средства обучения Мел, доска, компьютер, мультимедийный проектор, наличие доступа в Интернет.
Демонстрации 1.Зависимость силы тока от сопротивления проводника при постоянном напряжении;2.Зависимость силы тока от напряжения при постоянном сопротивлении участка цепи.ЦОР Физика.
Формируемые УУД
  • регулятивные: самостоятельность, целеполагание, контроль;
  • познавательные:практическое освоениеоснов проектно-исследовательскойдеятельности, интерес к новому учебному материалу;
  • коммуникативные:организация и планирование учебного сотрудничества с учителем и сверстниками, общительность, умение договариваться, работать в группе, аргументировать, отвечать на поставленные вопросы;
  • личностные: справедливость, формирование адекватнойпозитивной самооценки, оценивание успехов, установка на ЗОЖ.
Ожидаемые результатыУчащиеся научатся:
  • Объяснять зависимость силы тока от напряжения и сопротивления на участке цепи;
  • Строить графики зависимости силы тока от напряжения и сопротивления;
  • Собирать простейшие электрические схемы;
  • Применять закон Ома для решения количественных задач.

Учитель: Ребята, обратите внимание на слайд. Как Вы видите тема нашего сегодняшнего урока звучит как «Закон Ома для участка цепи. Расчет электрического сопротивления».

Но прежде, чем начать изучать новый материал, следует выяснить, к каким из физических явлений относится данная тема? (выслушиваются варианты ответа, возможно, понадобится вспомнить все остальные пять физических явлений). Итак, подведем итог, явления, к которым имеет отношение тема сегодняшнего урока называются электрические . Давайте вспомним, что же такое электрические явления? (выслушиваются предположения детей, далее работа по слайду).

Учитель: замечательно, ребята! Теперь когда мы знаем что такое электрические явления, необходимо поставить цель нашего урока, к которой мы будем стараться прийти в конце.

3. Мотивационный этап

Ребята, прежде чем устанавливать зависимости между физическими величинами, нам необходимо четко усвоить каждую из этих величин. Для этого давайте повторим по слайдам все физические величины, ос которыми нам сегодня придется работать при решении задач, а также повторим составные части электрической цепи, какие приборы помогают нам снимать показания.

Чтобы было легче понять, что такое сила тока, представьте, что перед Вами вместо провода труба, в которой находится вода, а воде плавают маленькие рыбки. Так вот рыбки, благодаря действию течения потока воды, начинают одновременно плыть в одном направлении.

Если мы представим, что вместо рыбок у нас электроны, а вместо течения воды — электрическое поле, то в таком случае в проводнике возникает электрический ток, то есть упорядоченное движение заряженных частиц.

За направление тока мы принимаем направление движения положительно заряженных частиц, то есть от + к -.

А теперь вспомним, что такое напряжение.

Если мы представим, что под действием течения воды в трубе одна из рыбок переместилась влево на расстояние 1 м, то мы можем сказать, что течение совершило работу по перемещению рыбки. Так и в случае электричества. Электрическое поле, перемещая заряженную частицу совершает работу, и если мы разделим значение этой работы на величину заряда частицы, то получим величину, которая называется электрическое напряжение.

Обратимся к еще одной физической величине

Электроны, передвигаясь вдоль проводника испытывают различные препятствия.

Так, например, хорошими проводниками электрического тока являются металлы, а у них имеется кристаллическая решетка, чем более плотно устроена эта решетка, тем и электронам сложнее перемещаться из одного места проводника в другое, а следовательно электроны встречают некоторое сопротивление.

Я неспроста сказала сопротивление, именно из этого физического смысла и вытекает понятие электрического сопротивления. Чем сложнее электронам передвигаться по проводнику, тем меньшее их количество в единицу времени будет перемещаться сквозь поперечное сечение и следовательно сила тока также будет меньше.

Давайте выясним, от каких параметров зависит электрическое сопротивление

И последнее, что мы сделаем перед изучением нового материала, это повторим, как правильно собираться электрические цепи по схемам, основные составные части электрической цепи.

4. Этап изучения нового материала

Ребята, зависимость этих трех физических величин друг от друга в 1827 году впервые вывел немецкий ученый Георг Ом. Поэтому и формула носит название его фамилии. Закон Ома.

Рассматривая зависимость друг от друга двух величин, третья должна оставаться постоянной. Мы с Вами сейчас опытным путем подтвердим что сила тока на участке цепи действительно будет увеличиваться при увеличении напряжения, но с учетом того, что сопротивление у нас будет величиной постоянной. (обращаемся к ЦОР).

По графику мы видим, что сила тока увеличивалась ровно настолько же, насколько мы увеличивали напряжение, а значит первое утверждение из закона Ома о том, «что сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка,» ВЕРНО!

Теперь выясним, как же сила тока зависит от сопротивления при постоянном напряжении и прав ли бы Георг Ом в своих суждениях.

По графику мы убедились с Вами «Что сила тока обратно пропорциональна сопротивлению».

А теперь предлагаю Вам правило треугольника, для более удобного запоминая данной формулы

5. Этап применения нового знания

Приступим к решению задач. От простого к сложному.

Задача №1

Напряжение на зажимах электрического утюга 220(В), сопротивление нагревательного элемента утюга 50 (Ом). Чему равна сила тока в нагревательном элементе? Рассчитайте величину электрического заряда, проходящего через проводник за время 0,5 сек?

Задача №2

Используя данные предыдущей задачи, рассчитайте длину проводника (спирали в нагревательном элементе утюга), если известно, что площадь поперечного сечения проводника S равна 0,8 кв.мм., и проводник выполнен из меди.

Задача №3

Сборник ОГЭ физика 2017. автор ЗОРИН Н. И.

ЭТО ИНТЕРЕСНО:  Пассатижи что это такое

Вариант 6 № 16

Через поперечное сечение проводника прошел заряд, равный 6 Кл, за время, равное 5 минутам. Сопротивление проводника 5 (Ом). Рассчитайте напряжение проводника.

Задача №5

Вариант 9 № 16

Как изменится сила тока в электрической цепи, если площадь поперечного сечения проводника уменьшить вдвое?

6. Рефлексивный этап

Учитель: А сейчас подведем итог нашего урока. Вспомним цели, которые мы ставили перед собой! Как Вы считаете, удалось ли нам их добиться? Тогда давайте ответим на следующие вопросы: Какую взаимозависимость между силой тока, напряжением и сопротивлением на участке цепи мы раскрыли?

Ученики: Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.(слайд)

Учитель: В какой формуле выражена эта взаимозависимость?

Ученики: Взаимозависимость силы тока, напряжения и сопротивления выражена законом Ома для участка цепи.

Учитель: Кто впервые установил эту зависимость?

Ученики: Георг Ом (немецкий физик) в 1927 году.

Учитель: А как зависит электрическое сопротивление от длины проводника и площади поперечного сечения?

Ученики:Чем больше длина, тем больше сопротивление, чем больше площадь поперечного сечения, тем меньше сопротивление.

Учитель: Замечательно, надеюсь, данное занятие было полезным для Вас и теперь Вы сможете применять полученные знания на практике при решении задач.

Источник: https://rosuchebnik.ru/material/zakon-oma-dlya-uchastka-tsepi-raschet-elektricheskogo-soprotivleniya-provodnika--6374/

Закон Ома для участка цепи

От силы тока в цепи зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока. То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток, в свою очередь – это упорядоченное движение частиц под действием электрического поля.

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением. Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току. Сопротивление связано с силой тока обратно пропорционально.

Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз.

И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

I=U/R,

где I – сила тока,U – напряжение,

R – сопротивление.

Применение закона Ома

Закон Ома – один из основополагающих законов физики. Открытие его в свое время позволило сделать огромный скачок в науке.

В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома.

Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

Из формулы для закона Ома можно рассчитать также величины напряжения и сопротивления участка цепи:

U=IR    и    R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Нужна помощь в учебе?

Предыдущая тема: Сопротивление тока: притяжение ядер, проводники и непроводники
Следующая тема:   Расчёт сопротивления проводников и реостаты: формулы

Источник: http://www.nado5.ru/e-book/zakon-oma-dlya-uchastka-cepi

Закон Ома для цепей переменного и постоянного тока

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления  ХL и XC, которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

Где:

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

Источник: https://elenergi.ru/zakon-oma-dlya-cepej-peremennogo-i-postoyannogo-toka.html

Правда или нет? Высокоомные наушники звучат лучше

Любой меломан знает — стоит только натянуть на голову здоровенные высокоомные наушники с огромными «чашками», как окружающие начинают смотреть с нескрываемым уважением, мол, вот кто понимает в звуке! При этом совершенно неважно, откуда этот звук идёт, хоть из дешёвого смартфона. Но то мнение непрофессионалов — а как на самом деле? Чем больше сопротивление, тем лучше звук? А зазвучат ли «тугие» наушники со смартфоном? Разбираемся!

Наушники с высоким сопротивлением действительно дают лучший звук?

Да, правда. Как ни странно, высокоомные наушники — более простая нагрузка для источника звука. Это связано с тем, что на них подаётся меньший ток. (Помните закон Ома? I=U/R, где I — сила тока, U — напряжение на выходе источника звука, R — сопротивление наушников). Чем меньше сила тока, проходящего через усилитель гаджета, тем ниже уровень искажений.

Также высокое сопротивление снижает искажения от мембраны излучателя — она лучше контролируется и быстрее реагирует на изменения аудиосигнала. Такой эффект называется электрическим демпфированием. При его нехватке бас может срываться в гудение, а высокие частоты становиться грязными и сыпучими.

Так что, высокоомные наушники улучшат звук моего смартфона?

Нет, это не так. Чтобы высокоомные наушники раскрыли свои плюсы, им нужен мощный усилитель. Правда, сперва надо выяснить, какие наушники стоит считать высокоомными. Для этого понадобится сравнительная величина, относительно которой можно понять, насколько велико сопротивление наушников. Такой величиной является выходное сопротивление источника.

Любой смартфон или плеер имеет усилитель, через который звук подаётся на наушники. Все компоненты усилителя обладают собственным сопротивлением, а их совокупность образует выходное сопротивление источника.

Чтобы звучание наушников не искажалось, нужно их правильное согласование с источником. В этом нам поможет правило одной восьмой:

Выходное сопротивление источника должно быть менее 1/8 сопротивления наушников. Например, для 32-омных наушников выходное сопротивление должно быть не более 32/8 = 4 Ом. В противном случае в наушниках могут возникать заметные на слух искажения.

У современных смартфонов выходное сопротивление составляет не более 2 Ом. По правилу одной восьмой к ним можно брать наушники с сопротивлением от 16 Ом. Притом мощность их усилителей сильно ограничена, а максимальное выходное напряжение не превышает 1 В. Из-за этого они плохо справляются с нагрузкой выше 50 Ом — ухудшается проработка низких частот, может не хватать громкости. Такое сопротивление уже можно назвать высоким для большинства смартфонов.

Hi-Fi плееры тоже обладают низким выходным сопротивлением, но к ним допустимо брать и более высокоомные наушники — выходного напряжения в 2-4 В хватит, чтобы прокачать модели с сопротивлением до 100-120 Ом.

Очень высокое сопротивление (250/300/600 Ом) обычно встречается у студийных мониторов. Оно необходимо, потому что выходы студийного оборудования имеют сопротивление 20-50 Ом.

Что ещё учитывать при выборе: чувствительность

Обычно чем выше сопротивление наушников, тем ниже их чувствительность. Следовательно, требуется более высокое напряжение, чтобы вывести наушники на рабочую громкость. Маломощный усилитель тут не справится, а значит, добиться от такой связки достаточной громкости не получится. Для смартфонов лучше брать наушники с высокой чувствительностью (от 100 дБ/мВт). Если она ниже 95 дБ/мВт, скорее всего, наушникам потребуется мощный усилитель.

Однако низкое сопротивление не всегда означает, что наушники лёгкие на раскачку. Например, некоторые модели с планарно-магнитными излучателями могут быть низкоомными, но при этом чрезвычайно тугими. Так, MyST Ortophones при сопротивлении 18 Ом имеют чувствительность всего 77 дБ/мВт.

MyST Ortophones

Есть также исключения, когда высокоомные наушники обладают достаточной чувствительностью для использования со смартфоном. Пожалуй, самый «народный» пример — Koss Porta Pro. При довольно высоком сопротивлении в 60 Ом их чувствительность составляет 101 дБ/мВт, чего достаточно для современного смартфона. Но даже если громкости хватает, звучание всё ещё страдает от нехватки усиления, что в первую очередь сказывается на низких частотах — с более мощным источником их проработка будет лучше.

Koss Porta Pro

Что ещё учитывать при выборе: импеданс и конструкция наушников

На самом деле, вопрос сопротивления наушников сложнее, чем кажется на первый взгляд. Часто вообще нельзя точно сказать, низкое оно или высокое. И вот почему.

Наушники не работают на одной частоте, а воспроизводят весь слышимый человеком спектр. Поэтому у них сложное сопротивление, значение которого зависит от частоты — такая характеристика называется импедансом. Именно его указывают на коробках с наушниками, беря сопротивление для частоты 1 кГц.

В разных наушниках характеристика импеданса отличается. Например, в динамических и планарно-магнитных моделях импеданс линейный. То есть если на коробке написано, что он равен 32 Ом, то это справедливо для всего диапазона частот. Следовательно, снижается зависимость от источника, поскольку падение напряжения на всех частотах примерно одинаковое — АЧХ не будет искажаться от разного выходного сопротивления.

Источник: http://4pda.ru/2018/07/02/352154/

Электрический ток и закон Ома

Определение 1

Электрический ток характеризуется упорядоченным (направленным) передвижением заряженных частиц под влиянием электрического поля. Такими частицами выступают ионы, протоны и электроны.

При помещении изолированного проводника в электрическое поле $\vec{E}$ произойдет воздействие на свободные заряды $q$ силы:

$\vec{E}=q\vec{E}$

Результатом такого воздействия становится возникновение в проводнике кратковременного перемещения свободных зарядов. Данный процесс завершится, если собственное электрическое поле возникших на поверхности проводника зарядов полностью компенсирует внешнее поле. При этом внутри проводника результирующее электростатическое поле будет иметь нулевое значение.

В проводниках при определенном условии становится возможным возникновение непрерывного упорядоченного движения свободных носителей электрозаряда. Это движение называют электрическим током. В качестве направления электрического тока принимается направление движения свободных положительных зарядов.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Существование электрического тока в проводнике требует создания в нем электрического поля. В качестве количественной меры электрического тока выступает сила тока $I$:

$I=\frac{\Delta q}{\Delta t}$

При условии неизменности силы тока и его направления, он будет называться постоянным. При этом возникновение постоянного электротока становится возможным только в замкнутой цепи. В различных точках такой цепи электрическое поле будет неизменным во времени.

Существование постоянного тока требует наличия в электрической цепи устройства, которое способно создавать и поддерживать на участках цепи разности потенциалов. Это происходит благодаря работе сил неэлектростатического происхождения.

Определение 2

Сторонними называются те силы неэлектростатического происхождения, которые действуют со стороны источников тока. их воздействие осуществляется на свободные носители заряда.

Движение электрических зарядов под воздействием сторонних сил происходит внутри источника тока в противодействие силам электростатического поля. Благодаря этому в замкнутой цепи поддерживается постоянный электроток. При перемещающихся электрозарядах по цепи постоянного тока, воздействующие сторонние силы совершают работу. Электродвижущая сила источника (ЭДС) рассчитывается по формуле:

$\delta=\frac{A_ст}{q}$

ЭДС, таким образом, ЭДС определяется работой, которая совершается сторонними силами при перемещении положительного единичного заряда. Электродвижущая сила, подобно разности потенциалов, измеряется в вольтах(В).

Замечание 1

Работа сторонних сил (при перемещении положительного единичного заряда по замкнутой цепи постоянного тока) характеризуется суммой ЭДС, действующих в данной цепи. Работа электростатического поля при этом будет иметь нулевое значение.

Цепь постоянного тока возможно разбить на отдельные участки. Те участки, на которых сторонние силы не действуют (не содержащие источников тока), считаются однородными. Участки, которые включают источники тока, считаются неоднородными.

При условии перемещения единичного положительного заряда по определенному участку цепи, работа будет совершаться не только электростатическими (кулоновскими) силами, но и сторонними.

Работа электростатических сил характеризуется разностью потенциалов $\Delta ф_12=φ_1-φ_2$ между начальной (1) и конечной (2) точками на неоднородном участке.

Работа сторонних сил равнозначна электродвижущей силе $\delta_12$, которая действует на отдельном участке. Таким образом, полная работа определяется формулой:

$U_12=ф_1-ф_2+\delta_12$

Величину $U_12$ принято считать напряжением на участке цепи (1-2). В случае с однородным участком, напряжение будет определяться разностью потенциалов:

ЭТО ИНТЕРЕСНО:  Что такое электроемкость уединенного проводника

$U_12=ф_1-ф_2$

Сопротивление и закон Ома

В 1826 г. физик Г. Ом экспериментальным способом установил пропорциональность силы тока, текущего по однородному металлопроводнику, напряжению на его концах.

$I=\frac{1}{R}U$

$RI=U$

Величину $R$ называют в физике электрическим сопротивлением. Проводник с таким сопротивлением называется резистором. Вышеприведенная формула характеризует закон Ома при однородном участке цепи. Согласно этому закону, в проводнике сила тока будет прямо пропорциональной напряжению с обратной пропорциональностью сопротивлению проводника.

Проводники, которые подчиняются закону Ома, называют линейными. Графически зависимость силы тока и напряжения изображается в виде прямой линии через начало координат.

Многие устройства и материалы не подчиняются закону Ома. К таковым относятся:

  • газоразрядная лампа;
  • полупроводниковый диод.

Отклонение от закона Ома наблюдается и у металлических проводников при токах довольно большой силы. Это объясняется усилением электрического сопротивления при увеличении температуры. Данный закон для участка цепи с ЭДС записывается в такой форме:

$IR=U-12=ф_1-ф_2+\delta=\delta ф_12+\delta$

Это соотношение называется обобщенным (для неоднородного участка цепи).

Закон Ома для полной цепи

Для полной цепи закон Ома звучит так: сила тока в ней равнозначна электродвижущей силе источника, деленной на сумму сопротивлений в однородном и неоднородном участках.

Сопротивление для неоднородного участка характеризуется внутренним сопротивлением источника тока. Сила тока при коротком замыкании считается максимально возможной силой, которая может быть получена от данного источника с внутренним сопротивлением и электродвижущей силой.

При малом внутреннем сопротивлении ток короткого замыкания может оказаться очень большим, что спровоцирует разрушение источника или электрической цепи. У свинцовых аккумуляторов, например, задействованных в автомобилях, сила тока такого замыкания может составить несколько сотен ампер.

Особо опасными короткие замыкания будут в осветительных сетях, которые питаются от подстанций (тысячи ампер). Во избежание разрушительного воздействия таких токов в цепь включают специальные предохранители.

В определенных случаях с целью предотвращения опасности силы тока короткого замыкания, к источнику подсоединяют в последовательном порядке внешнее сопротивление. При разомкнутости внешней цепи, разность потенциалов на полюсах батареи равнозначна ее ЭДС.

В ситуации, если внешнее нагрузочное включено, а через батарею течет ток, на ее полюсах разность потенциалов определяется формулой:

$\Delta ф_ba=\delta-Ir$

Источник: https://spravochnick.ru/koncepciya_sovremennogo_estestvoznaniya/elektricheskiy_tok_i_zakon_oma/

Закон ома для переменных токов. Закон Ома

Закон Ома был открыт немецким физиком Георгом Омом в 1826 году и с тех пор начал широко применяться в электротехнической области в теории и на практике. Он выражается известной формулой, с посредством которой можно выполнить расчеты практически любой электрической цепи.

Тем не менее, закон Ома для переменного тока имеет свои особенности и отличия от подключений с постоянным током, определяемые наличием реактивных элементов.

Чтобы понять суть его работы, нужно пройти по всей цепочке, от простого к сложному, начиная с отдельного участка электрической цепи.

Закон ома для участка цепи

Закон Ома считается рабочим для различных вариантов электрических цепей. Более всего он известен по формуле I = U/R, применяемой в отношении отдельного отрезка цепи постоянного или переменного тока.

В ней присутствуют такие определения, как сила тока (I), измеряемая в амперах, напряжение (U), измеряемое в вольтах и сопротивление (R), измеряемое в Омах.

Широко распространенное определение этой формулы выражается известным понятием: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению на конкретном отрезке цепи. Если увеличивается напряжение, то возрастает и сила тока, а рост сопротивления, наоборот, снижает ток. Сопротивление на этом отрезке может состоять не только из одного, но и из нескольких элементов, соединенных между собой .

Формулу закона Ома для постоянного тока можно легко запомнить с помощью специального треугольника, изображенного на общем рисунке. Он разделяется на три секции, в каждой из которых помещен отдельно взятый параметр. Такая подсказка дает возможность легко и быстро найти нужное значение. Искомый показатель закрывается пальцем, а действия с оставшимися выполняются в зависимости от их положения относительно друг друга.

Если они расположены на одном уровне, то их нужно перемножить, а если на разных — верхний параметр делится на нижний. Данный способ поможет избежать путаницы в расчетах начинающим электротехникам.

Закон ома для полной цепи

Между отрезком и целой цепью существуют определенные различия. В качестве участка или отрезка рассматривается часть общей схемы, расположенная в самом источнике тока или напряжения. Она состоит из одного или нескольких элементов, соединенных с источником тока разными способами.

Система полной цепи представляет собой общую схему, состоящую из нескольких цепочек, включающую в себя батареи, разные виды нагрузок и соединяющие их провода. Она также работает по закону Ома и широко используется в практической деятельности, в том числе и для переменного тока.

Источник: https://gtavrl.ru/zakon-oma-dlya-peremennyh-tokov-zakon-oma-dlya-cepei-i-toka/

Ответы на экзаменационные билеты № 1-20 по курсу

Постоянный электрический ток-ток, не изменяющийся по величине и понаправлению.

Электрический ток получают от специальных источников:гальванических элементов, аккумуляторов, генераторов. Электрический токнепосредственно наблюдать нельзя. О прохождении тока можно судить только по темдействиям, которые он производит.

Признаки наличия электрического тока:

а) ток, проходя через растворы солей, щелочей, кислот, такжечерез расплавленные соли, разлагает их на составные части.

б) проводник, по которому проходит электрический ток,нагревается.

в) электрический ток, проходя по проводнику, создаёт вокругнего магнитное поле.

Постоянныйэлектрический ток может протекать только по замкнутой электрической цепи.Разрыв цепи в любом месте вызывает прекращение электрического тока. Электрическиезаряды возбуждают электрическое поле.

Билет №15

Напряжение, сила тока и сопротивление — физическиевеличины, характеризующие явления, происходящие в электрических цепях. Этивеличины связаны между собой. Эту связь впервые изучил немецкий физик 0м.

Закон Ома звучит так: силатока на участке цепи прямо пропорциональна напряжению на этом участке (призаданном сопротивлении) и обратно пропорциональна сопротивлению участка(при заданном напряжении). Так как сопротивление данного проводника не зависит ни от напряжения, ни от силытока, то последнюю формулу надо читать так: сопротивление данного проводникаравно отношению напряжения на его концах к силе протекающего по нему тока.

При замыкании электрической цепи, на зажимах которойимеется разность потенциалов, возникает электрический ток. Свободные электроныпод влиянием электрических сил поля перемещаются вдоль проводника. В своёмдвижении электроны наталкиваются на атомы проводника и отдают им запас своейкинетической энергии.

Скорость движения электронов непрерывно изменяется: пристолкновении электронов с атомами, молекулами и другими электронами онауменьшается, потом под действием электрического поля увеличивается и сновауменьшается при новом столкновении.

Следовательно, электроны, проходя попроводнику, всегда встречают с его стороны сопротивление своему движению.

Электрическое сопротивление проводника – свойство тела или среды превращать электрическуюэнергию в тепловую при прохождении по нему электрического тока.

Длинный проводник малого поперечного сечения создаёттоку большое сопротивление. Короткий проводник большого поперечного сеченияоказывает току малое сопротивление.

Если взять два проводника из разного материала, ноодинаковой длины и сечения, то проводники будут проводить ток по-разному. Этопоказывает, что сопротивление проводника зависит от материала самогопроводника. Температура проводника тоже оказывает влияние на его сопротивление.С повышением температуры сопротивление металлов увеличивается, а сопротивлениежидкостей и угля уменьшается.

Электрическое сопротивление проводника зависит отдлины проводника, поперечного сечения, материала и температуры проводника.

Сопротивление в омах проводника длиной 1м, сечением 1кв. мм называется удельным сопротивлением проводника.

Билет №16

Магнитное поле проявляется около постоянных магнитови проводников, по которым идет электрический ток. Широко распространенныминдикатором магнитного поля является магнитная стрелка (компас).

Спомощью этого индикатора можно обнаружить, что разноименные магнитные полюсапритягиваются, а одноименные — отталкиваются. Это взаимодействие описываетсяпо схеме: магнит — поле — магнит.

Иначе говоря, вокруг магнита существуетмагнитное поле, которое действует на другие магниты, в частности на магнитныестрелки или намагничивающиеся частицы железа. Как и электрическое поле,магнитное поле материально.

Магнитные поля играют исключительно важную роль вприроде и технике. Магнитные поля проявляют себя во многих космическихявлениях. В технике магнитные поля применяются в электромагнитах, электрическихгенераторах и двигателях.

Магнитное поле оказывает влияние на движущиесязаряженные частицы и на проводники с током, находящиеся в магнитном поле. Впроводниках, движущихся в магнитном поле, или в неподвижных проводниках,находящихся в магнитном поле, возникает индуктивная электродвижущая сила.

Магнитным полем называется одна из двух сторонэлектромагнитного поля, возбуждаемая электрическими зарядами движущихся частици изменением электрического поля и характеризующаяся силовым воздействием надвижущиеся заряженные частицы, а стало быть, и на электрические токи.

Источник: https://vunivere.ru/work59331/page5

Все виды законов Ома

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

I = U/ R

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

U = I*R

R = U / I

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

I = E/ Rвн+r

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

I = U/ Z

  где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют специальные средства защиты.

Источник: http://infoelectrik.ru/nemnogo-osnov-elektrotehniki/obobshhennyj-zakon-oma.html

Закон Ома для полной электрической цепи: разница с выражением для участка контура, определение, формула

Среди известных широкой общественности физических формул лидирует E=mc2. По популярности с ней может соперничать только U=IR. Это простое выражение имеет фундаментальное значение для электротехники и описывает математически соотношение между параметрами участка электрической цепи. Менее известен закон Ома для полной цепи, который рассматривает нагрузку неотделимо от источника напряжения.

Основные понятия

Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:

  • напряжение;
  • сила тока;
  • сопротивление проводника, по которому движутся электроны.

Сила и напряжение

Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении.

Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I.

Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC).

Вольт — единица измерения, применяемая для электрической разницы потенциалов, самого потенциала и электродвижущей силы. Термин напряжение (U) относится к электрической разности потенциалов между точками. Любые статические заряды имеют значение в Вольтах, а величина их разности определяется как U.

Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации.

Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах.

Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.

ЭТО ИНТЕРЕСНО:  Как рассчитать световой поток

Сопротивление проводников

Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным.

Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе.

Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.

Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:

Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.

Закон для участка цепи

Существует фундаментальная связь между напряжением, током и проводимостью. Это знаменитое уравнение называется законом Ома, и его можно отобразить тремя эквивалентными способами:

Выраженный в словах он звучит так: ток, протекающий через проводник между двумя контактами, прямо пропорционален напряжению на этих контактах. Первые два выражения фиксируют константу пропорциональности между током и напряжением. Последнее можно рассматривать как определение для единичного резистора — элемента, позволяющего протекать единице тока под единичным напряжением.

Приведённые математические соотношения — основа для электротехники и электроники. Закон был назван в честь немецкого физика Георга Симона Ома, который в монографии, опубликованной в 1827 г., описал измерения приложенного напряжения и тока с помощью простых электрических цепей, состоящих из проводов различной длины.

Исследователь объяснил свои экспериментальные результаты несколько сложнее, чем отражено в приведённых уравнениях, известных в современной физике как неполный закон Ома. Для того чтобы сформулировать закон Ома для полной электрической цепи, необходимо оперировать понятиями внутреннего сопротивления источника тока и электродвижущей силы.

Электродвижущая сила

Источник: https://rusenergetics.ru/novichku/smysl-polnogo-zakona-oma

Закон Ома для «чайников»: понятие, формула, объяснение

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

Памятник Георгу Симону Ому

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть  у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе.  Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Источник: https://zaochnik-com.ru/blog/zakon-oma-dlya-chajnikov/

Определение от чего зависит сопротивление. Физика: формула удельного сопротивления и закон Ома

Физика полна понятий, которые сложно представить. Яркий пример этого — тема про электричество. Почти все встречающиеся там явления и термины сложно увидеть или представить.

Что такое электрическое сопротивление? Откуда оно появляется? Почему возникает напряжение? И почему у тока есть сила? Вопросов бесконечное количество. Стоит разобраться во всем по порядку. И начать хорошо бы с сопротивления.

Что происходит в проводнике, когда по нему идет ток?

Бывают ситуации, когда материал, который обладает проводящей способностью, оказывается между двумя полюсами электрического поля: положительным и отрицательным. И тогда по нему идет электрический ток. Это проявляется в том, что свободные электроны начинают направленное движение. Поскольку они имеют отрицательный заряд, то их перемещение осуществляется в одну сторону — к плюсу. Интересно, что за направление электрического тока принято указывать другое — от плюса к минусу.

Во время движения электроны ударяются об атомы вещества и передают им часть своей энергии. Этим объясняется то, что включенный в сеть проводник нагревается. А сами электроны замедляют свое движение.

Но электрическое поле их снова ускоряет, поэтому они вновь устремляются к плюсу. Этот процесс происходит бесконечно, пока вокруг проводника имеется электрическое поле. Получается, что именно электроны испытывают сопротивление электрического тока.

То есть чем больше препятствий они встречают, тем выше значение этой величины.

Что такое электрическое сопротивление?

Ему можно дать определение исходя из двух позиций. Первая связана с формулой для закона Ома. И звучит оно так: электрическое сопротивление — это физическая величина, которая определяется как отношение напряжения в проводнике к силе тока, протекающего в нем. Математическая запись приведена немного ниже.

Вторая основывается на свойствах тела. Электрическое сопротивление проводника — это физическая величина, которая указывает на свойство тела преобразовывать энергию электричества в тепло. Оба этих утверждения верны. Только в школьном курсе чаще всего останавливаются на запоминании первого. Обозначается изучаемая величина буквой R. Единицы, в которых измеряется электрическое сопротивление, — Ом.

По каким формулам его можно найти?

Самая известная вытекает из закона Ома для участка цепи. Она объединяет электрический ток, напряжение, сопротивление. Выглядит так:

Это формула под номером 1. Вторая учитывает то, что сопротивление зависит от параметров проводника:

Эта формула имеет номер 2. В ней введены такие обозначения:

Удельное электрическое сопротивление — это физическая величина, которая равна сопротивлению материала длиной в 1 м и с площадью сечения в 1 м 2 .

В таблице указана системная единица измерения удельного сопротивления. В реальных ситуациях не бывает такого, чтобы сечение измерялось в квадратных метрах. Почти всегда это квадратные миллиметры. Поэтому и удельное электрическое сопротивление удобнее брать в Ом * мм 2 / м, а площадь подставлять в мм 2 .

От чего и как зависит сопротивление?

Во-первых, от вещества, из которого изготовлен проводник. Чем больше значение, которое имеет удельное электрическое сопротивление, тем хуже он будет проводить ток.

Во-вторых, от длины провода. И здесь зависимость прямая. С увеличением длины сопротивление возрастает.

В-третьих, от толщины. Чем толще проводник, тем меньше у него сопротивление.

И наконец, в-четвертых, от температуры проводника. И здесь все не так однозначно. Если речь идет о металлах, то их электрическое сопротивление возрастает по мере нагревания. Исключение составляют некоторые специальные сплавы — их сопротивление практически не изменяется при нагревании. К ним относятся: константан, никелин и манганин. Когда же нагреваются жидкости, то их сопротивление уменьшается.

Какие существуют резисторы?

Это элемент, который включается в электрическую цепь. Он имеет вполне конкретное сопротивление. Именно это и используется в схемах. Принято разделять резисторы на два вида: постоянные и переменные. Их название связано с тем, можно ли изменить их сопротивление.

Первые — постоянные — не позволяют каким-либо образом изменить номинальное значение сопротивления. Оно остается неизменным. Вторые — переменные — дают возможность производить регулировку, изменяя сопротивление в зависимости от потребностей конкретной схемы. В радиоэлектронике выделяют еще один вид — подстроечные.

Их сопротивление изменяется только в тот момент, когда нужно настроить прибор, а потом остается постоянным.

Как на схемах выглядит резистор?

Прямоугольник с двумя выходами из узких его сторон. Это постоянный резистор. Если с третьей стороны к нему пририсована стрелка, то он уже переменный. К тому же на схемах еще подписывается и электрическое сопротивление резистора. Прямо внутри этого прямоугольника. Обычно просто цифры или с наименованием, если они очень большие.

Для чего существует изоляция и зачем ее нужно измерять?

Ее назначение — обеспечение электрической безопасности. Электрическое сопротивление изоляции является главной характеристикой. Оно не позволяет протекать через тело человека опасному значению тока.

Выделяют четыре вида изоляции:

  • рабочая — ее назначение в том, чтобы обеспечить нормальное функционирование оборудования, поэтому она не всегда обладает достаточным уровнем защиты человека;
  • дополнительная является дополнением к первому виду и защищает людей;
  • двойная объединяет два первых вида изоляции;
  • усиленная, которая представляет собой усовершенствованный вид рабочей, она так же надежна, как дополнительная.

Все устройства, которые имеют бытовое назначение, обязаны быть оборудованы двойной или усиленной изоляцией. Причем она должна обладать такими характеристиками, чтобы выдерживать любые механические, электрические и тепловые нагрузки.

С течением времени изоляция стареет, и ее параметры ухудшаются. Этим объясняется то, что она требует регулярного профилактического осмотра. Его целью является устранение дефектов, а также измерение ее активного сопротивления. Для этого используется специальный прибор — мегаомметр.

Примеры задач с решениями

Условие 1: требуется определить электрическое сопротивление железной проволоки, которая имеет длину, равную 200 м, и площадь поперечного сечения в 5 мм².

Решение. Нужно воспользоваться второй формулой. В ней неизвестно только удельное сопротивление. Но его можно посмотреть в таблице. Оно равно 0,098 Ом * мм / м 2 . Теперь нужно только подставить значения в формулу и сосчитать:

R = 0,098 * 200 / 5 = 3,92 Ом.

Ответ: сопротивление приблизительно равно 4 Ом.

Условие 2: вычислить электрическое сопротивление проводника, изготовленного из алюминия, если его длина равна 2 км, а площадь сечения — 2,5 мм².

Решение. Аналогично первой задаче, удельное сопротивление — 0,028 Ом * мм / м 2 . Чтобы получить верный ответ, потребуется перевести километры в метры: 2 км = 2000 м. Теперь можно считать:

R = 0,028 * 2000 / 2,5 = 22,4 Ом.

Ответ: R = 22,4 Ом.

Условие 3: какой длины потребуется проволока, если ее сопротивление должно быть равно 30 Ом? Известна площадь ее сечения — 0,2 мм², и материал — никелин.

Решение. Из той же формулы сопротивления можно получить выражение для длины проволоки:

l = (R * S) / ρ. Известно все, кроме удельного сопротивления, которое нужно взять из таблицы: 0,45 Ом * мм 2 / м. После подстановки и расчетов получается, что l = 13,33 м.

Ответ: приблизительное значение длины равно 13 м.

Условие 4: определить материал, из которого изготовлен резистор, если его длина равна 40 м, сопротивление — 16 Ом, сечение — 0,5 мм².

Решение. Аналогично третьей задаче, выражается формула для удельного сопротивления:

ρ = (R * S) / l. Подстановка значений и расчеты дают такой результат: ρ = 0,2 Ом * мм 2 / м. Данное значение удельного сопротивления характерно для свинца.

Ответ: свинец.

§ 15. Электрическое сопротивление

Направленному движению электрических зарядов в любом проводнике препятствуют молекулы и атомы этого проводника. Поэтому как внешний участок цепи, так и внутренний (внутри самого источника энергии) оказывают препятствие прохождению тока. Величина, характеризующая противодействие электрической цепи прохождению электрического тока, называется электрическим сопротивлением

Источник: https://ik-ptz.ru/diktanty-po-russkomu-yazyku--5-klass/opredelenie-ot-chego-zavisit-soprotivlenie-fizika-formula-udelnogo-soprotivleniya-i-zakon-oma-zavi.html

Понравилась статья? Поделиться с друзьями:
220 вольт
Как подключить люстру к двойному выключателю

Закрыть
Для любых предложений по сайту: [email protected]