Что такое делитель напряжения

Делитель напряжения: как рассчитать формулой на резисторах

что такое делитель напряжения

В электронике, радиотехнике, робототехнике, системотехнике и ещё ряде практических дисциплин важно добиться оптимальных значений для рабочих компонентов. Именно для этого и используются всевозможные элементы, как-то резисторы, транзисторы, тиристоры, конденсаторы и множество подобных им.

Что это

Делитель напряжения — это устройство, позволяющее получать из большего напряжения (как постоянного, так и переменного) меньшее. При построении схемы используется, как минимум, два элемента сопротивления. Если их величины одинаковые, то на выходе полученное значение составит половину значения на входе. В других случаях конечный результат определяется с помощью формул.

Делитель напряжения

Эти устройства особенно необходимы, если проводятся высоковольтные испытания электрооборудования. Дело в том, что большинство измерительных приборов предназначены для использования, если значение не превышает 1000В. Чтобы выполнить поставленную задачу и используется рассматриваемое устройство. Тогда полученное значение умножается на коэффициент и получается фиксируемое значение.

Разновидности

Разным сопротивлением выдерживается разная нагрузка. Но при этом существуют делители, отличающиеся не только по своим основным, но и по дополнительным параметрам. Несмотря на все эти нюансы и тонкости, главным является один — электрическое сопротивление.

Резисторные

Могут использоваться и для постоянного, и для переменного тока. Резисторы предназначены для низкого напряжения. Их нельзя использовать, если речь заходит о питании мощных машин. Самый простой вариант исполнения предусматривает последовательное соединение двух резисторов.

Резисторные делители напряжения

Как рассчитать делитель напряжения на резисторах? Для этого используется первый закон Кирхгофа и положения Ома. Так, величина тока, протекающая через резисторы, будет одинаковой. И для каждого из них необходимо рассчитывать получаемое значение. Падение при этом прямо пропорциональное величинам тока и сопротивления.

Емкостные

Это устройство предусматривает, что решено подключать конденсаторы для деления. Простейшая схема также состоит из двух элементов, соединённых последовательно. Такое решение популярно, если делается многоуровневый инвертор напряжения. Без них немыслимо ни одно направление силовой электроники. Например, работа электроподвижного состава.

Расчёт значения емкостного делителя

Расчет емкостного делителя напряжения в теории является более лёгким делом, нежели его реализация на практике. Ведь на пути стоит сложность невозможности обеспечения ситуации, когда конденсаторы разряжаются равномерно. Из-за этого, как бы не старались, не получиться добиться, чтобы напряжение распределялось поровну. Так, чем сильнее разряжен один конденсатор, тем ощутимее разница будет на другом. Ведь напряжение в этом случае определяется как результат деления заряда на емкость.

Вам это будет интересно  Как работают датчики движения для включения света

Создаваемые с конденсаторами схемы работают очень нестабильно. При их создании всегда должно предусматриваться создание узлов подзарядки. Они используются для выравнивания напряжения на конденсаторах.

Индуктивные

Широко применяются в измерительных устройствах. Являются масштабными электромагнитными преобразователями. В процессе работы могут возникать погрешности.

Их источник — неравенство активных сопротивления и индуктивностей из-за рассеяния разных секций обмоток, переход напряжения на коммутационные и соединительные элементы, шунтирующие взаимовоздействия обмоток, проявление емкости нагрузки и паразитных факторов. Если возникают проблемы с самого начала, вероятнее всего, проблема именно в последнем.

Индуктивные делители

Важно! Дополнительно паразитные емкости являются основной причиной возникновения частотной погрешности, что ограничивается использование индуктивных делителей напряжения на высоких частотах. Самые простейшие варианты имеют довольно много недостатков. Но использование на индуктивных делителях напряжений микропроцессоров позволяет использовать алгоритм уравновешивания.

Формула расчёта делителя напряжения

Самый простой вариант в использовании — схема, построенная на резисторах. Для неё рассчитываются значения по каждому элементу. В таком случае формула расчёта: UR1 = I * R1 и UR2 = I * R2.

UR1 и UR2 показывают, как упадёт напряжение. Их сумма равна параметрам источника питания. Часто необходимо подсчитать ток. Для этого используют формулу: I = Uпит / (R1+R2).

Для лучшего понимания расчета резистивного делителя напряжения подойдёт небольшой пример. Допустим, что создана схема, в которой источник составляет 10 А и используются элементы на 20 000 и 80 000 Ом. В таком случае расчёт будет выглядеть следующим образом: I = 10 / (20 000 + 80 000) = 0,0001 А = 0,1 мА.

Формулы для расчёта значений

Результат этой формулы уже можно подставлять, чтобы узнать требуемые показатели:

  • UR1 = 0,0001 * 20 000 = 2 В;
  • UR2 = 0,0001 * 80 000 = 8 В.

Если немного изменить расчет делителя напряжения, то можно получить универсальную формулу: UR1 / R1 = Uпит / (R1+R2). За рамки был вынесен ток. Из формулы получается, что UR1 равно: = Uпит * R1 / (R1+R2). Как проверить правдивость этих размышлений? А очень просто — необходимо поставить данные и посмотреть, сходятся ли они с уже полученными значениями:

  • UR1 = 10 * 20000 / (20000+80000) = 2 В;
  • UR2 = 10 * 80000 / (20000+80000) = 8 В.

Как видно, получаемые значения совпадают. Это говорит о том, что расчеты правильные.

Как работает

На практике использование устройств несколько сложнее, чем просто рассчитать требуемые значения для элементов. Использование схемы замещения для делителей напряжения усложняет реалистичный учет фазовых и амплитудных характеристик. Эта проблема может быть решена исключительно экспериментальным путём. Затруднительно так сделать только если наблюдаются очень высокие частоты.

Графическое изображение работы

В качестве доступной альтернативы используется экспериментальное определение реакции схемы на прямоугольный импульс. Его суть — наблюдение за состоянием, когда на входе происходит скачкообразное изменение напряжения. При единичном воздействии можно наблюдать особенности работы благодаря переходной функции измерительной схемы.

Реакция определяется двумя способами:

  • Первый предполагает, что на вход полностью собранной схемы подают периодически импульсы с амплитудой в 100В (50 или 100 раз в секунду). Фронт их нарастания должен составлять меньше 10-9 с. Получение таких импульсов не является делом сложным. Для этого можно воспользоваться механическими коммутаторами с герконом или ртутным реле. На выходе схемы измеряется реакция посредством осциллографа, на котором присутствует широкополосной усилитель, величина пропускания которого составляет до 109 Гц.
  • Второй способ используется для схем, у которых напряжение составляет несколько десятков киловольт. В таком случае делают крутой срез посредством малоиндуктивного искрового промежутка, помещенного в условия сжатого газа. На выходе с помощью обычного осциллографа записывается реакция. Также вместо среза часто обращаются к использованию разряда заряженного кабеля и волнового сопротивления через искровой промежуток.

Описывая работу делителей напряжения, нельзя обойти вниманием постоянную времени. Чтобы правильно измерять показатели быстропротекающих процессов, необходимо добиться различия в 5-10 раз. Постоянная времени делителя должна быть меньше характеристического времени процесса. Если не получить разницу в 5-10 раз, то будут фиксироваться различные искажения. Наиболее вероятные — это затягивание фронта вместе с уменьшением амплитуды сигнала на выходе в сравнении с расчетными показателями.

Важно! При выборе делителя в первую очередь внимание обращают на его возможное влияние, оказываемое на источник напряжения, равно как и искажения основного параметра при измерении. Например, в случае использования обычных ГИН допустимыми считаются резисторные, емкостные и смешанные устройства, но только при соблюдении оговоренных условий. К таковым относятся значения емкости плеча высокого напряжения и сопротивление.

Вам это будет интересно  Все об петли фаза-ноль

Схема

Вот четыре варианта возможного исполнения:

Схема интегрального делителя напряжения

Можно добиться разных значений, изменяя схему подключения и ориентируясь на задачи. Каждый элемент можно использовать как регулятор для напряжения, необходимо только правильно выстроить цепь, чтобы были отображены именно необходимые данные.

Область применения

Делитель очень важен в схемотехнике. Он может использоваться как простейший электрический фильтр или же быть параметрическим стабилизатором напряжения.

Они могут выполнять роль электромеханических запоминающих устройств, которые помнят величину угла поворота реостата.

Особенность делителей напряжения в том, что они могут хранить информацию неограниченное количество времени, хотя и не используются широко, поскольку присутствуют более совершенные средства. Современное использование заключается в следующем:

Коммерческое изделие

  • Создание в усилителях цепей обратной связи. Резистивный делитель напряжения может использоваться для задания коэффициента усиления каскадов.
  • Простейшие электрические фильтры.
  • Усилители напряжения. Это возможно при условии, что второе сопротивление больше или равно первому, которое отрицательное. Подобное используется в туннельных диодах.
  • Параметрический стабилизатор напряжения. Поработать с входным значением можно, если как нижнее плечо делителя используется стабилитрон.

Только перечисленным дело не ограничивается. Возможности применения делителя напряжения придумывает человек, использующий их в рамках доступных физических возможностей.

Делитель напряжения — это простое техническое устройство, что в определённых случаях бывает очень полезным. Выбор и создание конкретного прибора должен отталкиваться от поставленных технических целей.

Источник: https://rusenergetics.ru/ustroistvo/delitel-napryazheniya

Делитель напряжения на резисторах. Формула расчета, онлайн калькулятор

что такое делитель напряжения

Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.

Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Расчет делителя напряжения на резисторах

Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.

Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.

Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:

Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:

Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:

Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:

И, на какое-то время, мы можем упростить схему:

Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:

А так как I1 равно I2, то:

Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.

 Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Источник: http://www.joyta.ru/7328-delitel-napryazheniya-na-rezistorax-raschet-onlajn/

Д-140

что такое делитель напряжения

Руководство из эксплуатации Д-140.00.00.00РЭ предназначено для ознакомления с устройством, техническими данными и принципом работы делителя Д–140 в объеме, необходимом для эксплуатации и поддержания его в постоянной готовности к работе.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение прибора

1. Делитель напряжения Д–140, Д-140.00.00.00, (в дальнейшем — делитель) предназначен для измерения переменного напряжения до 100 кВ и постоянного напряжения до140 кВ совместно с электронным цифровым вольтметром, имеющим входное сопротивление 10 МОм.

Возможно использование цифровых мультиметров типа M890G, DT890B+, DT9207A и т.п.

1.1.2 Делитель предназначен для эксплуатации внутри помещений в диапазоне температур от +10 0С до +35 0С, относительной влажности окружающего воздуха до 80% и давлении от 650 до 800 мм рт.ст.

1.1.3 На месте установки не допускается тряска, вибрации, наличие в воздухе агрессивных жидкостей (кислот, щелочей и т.п.).

1.2 Основные технические данные

Таблица 1

Наименование параметра Величина параметра
1. Коэффициент деления 10000 ± 50
2. Диапазон измеряемых напряжений постоянного тока, кВ 1 – 140
3. Диапазон измеряемых напряжений переменного тока частоты 50 Гц (действующее значение), кВ 1 – 100
4. Габаритные размеры высоковольтного блока, мм Ø200×1000
5. Масса высоковольтного блока, кг, не более 6
6. Приведенная относительная погрешность измерения напряжения постоянного тока (совместно с вольтметром DT890B+ на пределе 20 В) ±1,5%
7. Приведенная относительная погрешность измерения напряжения переменного тока (совместно с вольтметром DT890B+ на пределе 20 В) ±2,5%

Примечание: драгоценные материалы в изделии отсутствуют.

1.3 Комплектность

1.3.1 Комплект поставки делителя приведен в таблице 2.

Таблица 2

Обозначение Наименование Кол. Примечание
Д-140.10.00.00 Блок высоковольтный 1
Д-140.10.80.00 Кабель измерительный 1 Длина 5,5м
DT890B+ Digital multimeter 1
Д-140.00.00.00РЭ Руководство по эксплуатации 1

1.4 Устройство и работа изделия

1.4.1 Принципиальная электрическая схема делителя приведена на рис.1.

Делитель выполнен по схеме омического делителя напряжения, и состоит из блока высоковольтного А1 и измерительного кабеля с встроенной в него переключаемой нагрузкой А2.

Блок высоковольтный состоит из 16 резисторов R1-R16 РЕ-10kV-68M, соединенных последовательно, в высоковольтном плече и резистора R17 (1M) в низковольтном плече. Входное сопротивление высоковольтного блока равно 1088±100 МОм, коэффициент деления -1000±100 (при отключенном измерительном кабеле).

Кабель измерительный ДН.10.80.00 выполнен на основе радиочастотного коаксиального кабеля RG58-C/U. Вмонтированная в него нагрузка содержит резисторы, переключаемые тумблером S1 «НАПРЯЖЕНИЕ». Наличие подстроечных резисторов R20, R21 позволяет настраивать коэффициент деления отдельно на постоянном и переменном напряжении. Настройка производится вращением осей подстроечных резисторов через отверстия в боковой стенке корпуса нагрузки.

Выводы нагрузки оконцованы вилками: Х4 (потенциальный) – красного цвета, Х5 (общий) – черного цвета.

Внешний вид делителя приведен на рисунке 2.

Делитель напряжения Д-140. Схема электрическая принципиальная

1.5 Маркирование

1.5.1 На корпусе делителя прикреплена табличка «Делитель напряжения Д-140. Блок высоковольтный Д-140.10.00.00 », номер, год выпуска.

ЭТО ИНТЕРЕСНО:  Как убрать скачки напряжения

1.5.2 На нагрузке измерительного кабеля нанесена маркировка «Д-140.10.80.00».

2 Указания мер безопасности

2.1 К работе с делителем допускаются лица, имеющие группу по технике безопасности в установках с напряжением выше 1000 В не ниже третьей.

Источник: http://www.molnia.kharkov.ua/d-140-2.html

Делитель напряжения

Для того, чтобы поделить напряжение, нам потребуется два и более резисторов.  Для начала рассмотрим вот такой рисунок:

Наш схема состоит из двух резисторов, подключенных последовательно. На эти резисторы подается напряжение. Оно может быть как переменное, так и постоянное. Назовем его U. Пропуская ток через эти резисторы, у нас сразу же в дело вступит Закон Ома.  Мы знаем, что если резисторы соединены последовательно, то их общее  сопротивление  будет равняться сумме их номиналов. То есть получается, что

Rобщее=R1+R2

I=U/Rобщее

то есть можно написать

I=U/(R1+R2)

При последовательном соединении резисторов, сила тока – I, проходящая через каждый резистор одинакова – это есть закон последовательного соединения резисторов. Так, разобрались. У нас каждый резистор обладает каким-то своим сопротивлением. Отсюда напрашивается вывод из Закона Ома, что на каждом сопротивлении у нас будет какое-то свое напряжение, которое зависит от сопротивления резистора.

На сопротивлении R1  у нас будет напряжение U1, а на сопротивлении R2  у нас будет напряжение U2

I=U2/R2=U1/R1=U/(R1+R2)

Давайте найдем значения U1 и U2. Вы все учились в школе и сможете без проблем решить эту уравнение. Умножаем, сокращаем и в конце концов получаем, что

U1=UxR1/(R1+R2)

U2=UxR2/(R1+R2)

А вы знаете, что если сложить правые части уравнения, получим U ? Не верите? Проверьте! Отсюда получаем, что U=U1+U2.

Короче говоря простым языком чайника: если резисторы включены в цепь последовательно, то на каждом резисторе падает напряжение (падает, значит на концах резистора имеется это напряжение) и сумма падений напряжений на всех резисторах будет равняться напряжению источника (батарейки, блока питания или какого-нибудь источника ЭДС). Мы разделили напряжение источника U на два  разных напряжения U1 и U2.

Делитель напряжения из большого количества резисторов

Для лучшего понимания давайте рассмотрим еще одну цепь, состоящую из n резисторов

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

Делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замеряем напряжение с помощью мультиметра (не смотрите на показания блока питания, он обладает бОльшей погрешностью, чем мультиметр).

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять с помощью мультиметра.

Замеряем напряжение на большом резисторе. На нем падает 3,21 Вольт.

Замеряем напряжение на маленьком резисторе. На нем падает 6,77 Вольт

Ну что, с математикой думаю у всех в порядке. Складываем эти два значения напряжения 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения.

Сила тока в цепи при последовательном соединении резисторов

Давайте же убедимся, что сила тока при последовательном соединении резисторов везде одинакова. 0,04 А или 40 мА.

Убедились?

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно делить напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

Принцип такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться  в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая , всего 1 Вт, то не будем нагружать его большим напряжением. Формула мощности P=IU.  Ток потребления из закона Ома I=U/R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого  резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Суммируем напряжение  и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись, скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор может использоваться как делитель напряжения.

Источник: https://www.ruselectronic.com/djelitjel-naprjazhjenija/

Делитель напряжения в цепи обратной связи

Если мы добавим делитель напряжения в схему отрицательной обратной связи так, чтобы на инвертирующий вход подавалась только часть выходного напряжения, а не полная его величина, выходное напряжение будет кратно входному напряжению (помните, схема подключения питания к операционному усилителю снова пропущена для простоты):

Эффект отрицательной обратной связи с делителем напряжения

Если R1 и R2 равны, а Vвх равно 6 вольт, операционный усилитель будет выдавать любое напряжение, необходимое для падения 6 вольт на резисторе R1 (чтобы сделать напряжение на инвертирующем входе равным 6 вольтам, а также сохранить разность напряжений между входами равной нулю). С делителем напряжения 1:2 из резисторов R1 и R2 для выполнения этого условия потребуется напряжение 12 вольт на выходе усилителя.

Другой способ анализа этой схемы – начать с вычисления величины и направления тока через R1, зная напряжение на обеих сторонах (и, следовательно, при помощи вычитания напряжение на R1) и сопротивление R1.

Так как левая сторона R1 связана с землей (0 вольт), а правая сторона имеет потенциал 6 вольт (из-за отрицательной обратной связи, поддерживающей эту точку, равной Vвх), мы видим, что имеем на R1 напряжение 6 вольт. Это дает нам ток 6 мА через R1 слева направо.

Поскольку мы знаем, что оба входа операционного усилителя имеют чрезвычайно высокий импеданс, мы можем с уверенностью предположить, что они не будут добавлять или вычитать какой-либо ток через делитель.

Другими словами, мы можем рассматривать R1 и R2 как включенные последовательно друг с другом: все электроны, протекающие через R1, должны проходить и через R2. Зная ток через R2 и сопротивление R2, мы можем рассчитать напряжение на R2 (6 вольт) и его полярность. Подсчитывая напряжения от земли (0 вольт) до правой стороны R2, мы получаем на выходе 12 вольт.

Исследуя последнюю иллюстрацию, можно задаться вопросом: «Где проходит этот ток 6 мА?». Последняя иллюстрация не показывает весь путь прохождения тока, но на самом деле он начинается с положительного вывода источника питания постоянного напряжения, через выходной транзистор(ы) операционного усилителя, через выходной вывод операционного усилителя, через R2, через R1, через землю, а затем к отрицательному выводу источника питания постоянного напряжения.

Отрицательная обратная связь с делителем напряжения на примере модели операционного усилителя

6-вольтовый источник питания не должен обеспечивать схему каким-либо током: он просто управляет операционным усилителем для баланса напряжения между инвертирующим (-) и неинвертирующим (+) входными выводами и при этом создает выходное напряжение, которое в два раза больше входного сигнала из-за деления на двух резисторах по 1 кОм.

Мы можем изменить коэффициент усиления по напряжению в этой схеме, просто регулируя значения R1 и R2 (изменяя часть выходного напряжения, которая подается обратно на инвертирующий вход). Коэффициент усиления можно рассчитать по следующей формуле:

\[A_V = {R_2 \over R_1} + 1\]

Обратите внимание, что коэффициент усиления по напряжению для этой схемы усилителя никогда не может быть меньше 1.

Если бы мы должны были понизить значение R2 до нуля ом, наша схема была бы идентична повторителю напряжения, при этом выход напрямую подключался бы к инвертирующему входу.

Поскольку повторитель напряжения имеет коэффициент усиления 1, это устанавливает нижний предел коэффициента усиления этого неинвертирующего усилителя. Однако коэффициент усиления может быть увеличен далеко выше 1 с помощью увеличения R2 относительно R1.

Также обратите внимание, что полярность выходного сигнала совпадает с полярностью входного сигнала, как и в повторителе напряжения. Положительное входное напряжение приводит к положительному выходному напряжению и наоборот (относительно земли). По этой причине эта схема называется неинвертирующим усилителем.

Как и с повторителем напряжения, мы видим, что дифференциальный коэффициент усиления ОУ не имеет значения, если он очень велик. Напряжения и токи в этой схеме вряд ли изменились бы вообще, если бы коэффициент усиления ОУ составлял бы 250000 вместо 200000.

Это резко контрастирует со схемами усилителей на отдельных транзисторах, где бета отдельных транзисторов сильно влияла на общий коэффициент усиления усилителя.

С отрицательной обратной связью у нас есть система самокорректирования, которая усиливает напряжение в соответствии с соотношением, установленным резисторами обратной связи, а не коэффициентами усиления, внутренними для операционного усилителя.

Давайте посмотрим, что произойдет, если мы сохраним отрицательную обратную связь через делитель напряжения, но подадим входное напряжение в другое место:

Схема усилителя с отрицательной обратной связью с делителем напряжения и подачей входного сигнала на инвертирующий вход

При соединении неинвертирующего входа с землей отрицательная обратная связь также удерживает напряжение на инвертирующем входе на нуле вольт.

По этой причине инвертирующий вход упоминается в этой схеме как виртуальная земля, которая удерживается обратной связью на потенциале земли (0 вольт), но напрямую не соединена (электрически) с землей. Входное напряжение на этот раз снова подается на левый конец делителя напряжения (снова R1 = R2 = 1 кОм), поэтому выходное напряжение должно раскачиваться до -6 вольт, чтобы уравновешивать среднюю точку с потенциалом земли (0 вольт).

Используя те же методы, что и для неинвертирующего усилителя, мы можем проанализировать работу этой схемы, определив величины и направления токов, начиная с R1, и продолжая определением выходного напряжения.

Мы можем изменить общий коэффициент усиления по напряжению этой схемы, просто регулируя значения R1 и R2 (изменяя часть выходного напряжения, которая подается обратно на инвертирующий вход). Коэффициент усиления можно рассчитать по следующей формуле:

\[A_V = -{R_2 \over R_1}\]

Обратите внимание, что коэффициент усиления этой схемы может быть меньше 1, в зависимости от отношения R2 к R1. Также обратите внимание, что выходное напряжение всегда имеет полярность, противоположную полярности входного напряжения.

Положительное входное напряжение приводит к отрицательному выходному напряжению и наоборот (относительно земли). По этой причине данная схема называется инвертирующим усилителем.

Иногда эта формула коэффициента усиления содержит знак минуса (перед дробью R2/R1), чтобы отразить изменение полярности.

Эти две схемы усилителей, которые мы только что исследовали, служат для умножения или деления величины напряжения входного сигнала. Именно так математические операции умножения и деления обычно обрабатываются в аналоговой компьютерной схемотехнике.

Резюме

  • Подключая инвертирующий (-) вход операционного усилителя напрямую к выходу, мы получаем отрицательную обратную связь, которая дает нам схему повторителя напряжения. Подключая эту отрицательную обратную связь через резисторный делитель напряжения (подавая часть выходного напряжения на инвертирующий вход), выходное напряжение становится кратным входному напряжению.
  • Схема операционного усилителя с отрицательной обратной связью и подачей входного сигнала на неинвертирущий (+) вход называется неинвертирующим усилителем. Выходное напряжение будет такой же полярности, как и входное. Коэффициент усиления по напряжению определяется следующей формулой: AV = (R2/R1) + 1.
  • Схема операционного усилителя с отрицательной обратной связью и подачей входного сигнала на «нижнюю часть» резисторного делителя напряжения, с неинвертирующим (+) входом, соединенным с землей, называется инвертирующим усилителем. Его выходное напряжение будет противоположной полярности, чем входное напряжение. Коэффициент усиления по напряжению определяется следующей формулой: AV = -R2/R1.

Оригинал статьи:

Теги

Делитель напряженияИнвертирующий усилительНеинвертирующий усилительОбучениеОтрицательная обратная связьОУ (операционный усилитель)Повторитель напряженияЭлектроника

Источник: https://radioprog.ru/post/525

Делитель напряжения — Основы электроники

Делитель напряжения это цепь или схема соединения резисторов, применяемая для получения разных напряжений от одного источника питания.

Рассмотрим цепь из двух последовательно соединенных резисторов с разными сопротивлениями (рис. 1).

Рисунок 1. Последовательная цепь есть простейший делитель напряжения.

Согласно закону Ома если приложить к такой цепи напряжение, то падение напряжения на этих резисторах будет тоже разным.

UR1=I*R1;

UR2=I*R2.

Схема, изображенная на рисунке 1, и есть простейший делитель напряжения на резисторах. Обычно делитель напряжения изображают, как это показано на рисунке 2.

Рисунок 2. Классическая схема делителя напряжения.

Для примера разберем простейший делитель напряжения, изображенный на рисунке 2. В нем R1 = 2 кОм, R2 = 1 кОм и на­пряжение источника питания, оно же и есть входное напряжения делителя Uвх = 30 вольт. Напряжение в точке А равно полному напряжению источника, т. е. 30 вольт. Напряжение Uвых, то есть в точке В равно напряжению на R2.Определим напряжение Uвых.

Общий ток в цепи равен:

(1)

Для нашего примера I=30 В/ (1 кОм + 2 кОм) = 0,01 А = 10 мА.

Напряжение на R2 будет равно:

(2)

Для нашего примера UR2 = 0,01 А*1000 Ом = 10 В.

Выходное напряжение можно вычислить вторым способом, подставив в выражение (2) значение тока (1), тогда получим:

(3)

UR2 = 30 В*1 кОм/(1 кОм + 2 кОм) = 10 В.

Второй способ применим для любого делителя напряжения, состоящего из двух и более резисторов, включенных последовательно. Напряжение в любой точке схемы можно вычислить с помощью калькулятора за один прием, минуя вычисление тока.

Делитель напряжения из двух последовательно включенных резисторов с равными сопротивлениями

Если делитель напряжения состоит из двух одинаковых резисторов, то приложенное напряжение делится на них пополам.

Uвых = Uвх/2

Делитель напряжения из трех последовательно включенных резисторов с равными сопротивлениями

На рисунке 3 изображен делитель напряжения, состоящий из трех одинаковых резисторов сопротивлением в 1 кОм каждый. Вычислим напряжение в точках А и В относительно точки Е.

Рисунок 3. Делитель напряжения из трех резисторов.

Общее сопротивление R= R1+R2+R3 = 1 кОм + 1 кОм + 1 кОм = 3 кОм

Напряжение в точке А относительно точки Е будет равно:

Тгда Ua-e =30 В/(1 кОм + 1 кОм + 1 кОм)*1 кОм = 10 В.

Напряжение в точке В относительно точки Е будет равно:

Тгда Ub-e =30 В/(1 кОм + 1 кОм + 1 кОм)*(1 кОм + 1 кОм) = 20 В.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

ЭТО ИНТЕРЕСНО:  Как выбрать вытяжку на кухню советы профессионалов

Источник: http://www.sxemotehnika.ru/delitel-napryazheniya.html

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя.

Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала.

Он может пригодиться при работе с сигналами сложной формы.

Расчет резистивного делителя напряжения

[Напряжение на выходе, В] = [Напряжение питания, В] * [Сопротивление резистора R2, Ом] / ([Сопротивление резистора R1, Ом] + [Сопротивление резистора R2, Ом])

Из этой формулы, в частности, видно, что резисторные (резистивные) делители выдают стабильное выходное напряжение, если напряжение питания фиксировано.

[Входное сопротивление делителя, Ом] = [Сопротивление резистора R1, Ом] + [Сопротивление резистора R2, Ом]

Эта формула верна для ненагруженного делителя. Если делитель работает на нагрузку, то [Входное сопротивление делителя, Ом] = [Сопротивление резистора R1, Ом] + 1 / (1 / [Сопротивление резистора R2, Ом] + 1 / [Сопротивление нагрузки, Ом])

[Эквивалентное выходное сопротивление делителя, Ом] = 1 / (1 / [Сопротивление резистора R1, Ом] + 1 / [Сопротивление резистора R2, Ом])

[Коэффициент ослабления сигнала] = [Сопротивление резистора R2, Ом] / ([Сопротивление резистора R1, Ом] + [Сопротивление резистора R2, Ом])

[Действующее / мгновенное / амплитудное напряжение на выходе делителя, В] = [Коэффициент ослабления сигнала] * [Действующее / мгновенное / амплитудное напряжение на входе делителя, В]

Эта формула верна, если ток нагрузки делителя равен нулю.

Пример — делитель для осциллографа

Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.

Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал.

Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг.

Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.

Емкость шунтирующего конденсатора определяется исходя из того соображения, что отношение модуля сопротивления переменному току шунтирующего конденсатора к модулю сопротивления переменному току входной емкости осциллографа должно быть равно отношению сопротивлений резисторов R1 и R2. А модуль сопротивления переменному току обратно пропорционален емкости конденсатора.

[Емкость шунтирующего конденсатора, пФ] = [Входная емкость осциллографа, пФ] * [Сопротивление резистора R2, Ом] / [Сопротивление резистора R1, Ом]

(читать дальше) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник: https://gyrator.ru/voltage-divider

Пять схем делителя напряжения предназначенных не только для деления напряжения

Делитель напряжения в классическом варианте представляет собой очень простую схему, состоящую из двух резисторов и предназначенную для уменьшения напряжения до нужных значений.

Но делитель напряжения с некоторыми изменениями можно использовать не только лишь для деления напряжения. В данном материале мы рассмотрим пять несложных схем, которые могут быть полезны на практике для решения тех или иных схемотехнических задач.

Для чего нужен делитель напряжения

Делитель напряжения для измерения напряжения батареи

Есть несколько разных случаев, когда вам может потребоваться «понизить» напряжение аккумулятора или батареи. В этом случае делитель не заменяет понижающий регулятор. Так, вам может потребоваться понизить напряжение аккумулятора, чтобы измерить его.

Предположим, вы используете микропроцессор с 3.3 В (как у Raspberry Pi, например) или микроконтроллер (к примеру, ESP8266). Ваша плата питается от двух последовательно соединенных литий-полимерных аккумуляторов. Вместе эти батареи создают питание 7.

4 вольта.

Два резистора сопротивлением 100 кОм уменьшают напряжение с 7.4 до 3.7 вольт. Хотя это уже немного, оно все еще слишком высоко для систем с напряжением 3.3 В. Когда деление напряжения пополам не работает, можно посчитать делитель напряжения с разными сопротивлениями. Взяв R1 равным 100 кОм и R2 равным 68 кОм делитель выдает около 3.0 вольта. Этого достаточно, правда?

Но здесь есть две проблемы. Во-первых, подключение этих двух резисторов последовательно к батарее создаст ток утечки. Независимо от того, что еще происходит в цепи, через делитель будет проходить 44 мкА. Вроде бы мало, но это означает, что мы тратим 325 мкВт энергии впустую.

С питанием от USB не стоит беспокоиться о такой большой утечке. Однако при питании от батарей эта утечка означает меньшее время автономной работы. Во-вторых, существует проблема обратного питания, от чего тоже надо избавиться. Для этого желательно реализовать мониторинг напряжения.

Тем не менее, в большинстве приложений не требуется постоянный мониторинг напряжения батареи. Например, вы можете просто включить делитель напряжения, когда вы делаете измерение, как это показано на схеме ниже.

Добавьте PNP-транзистор с высокой стороны к простому делителю напряжения. При этом цифровая линия ввода/вывода будет управлять NPN-транзистором, который включает и выключает PNP-транзистор.

При такой конфигурации ни один ток не может прокрасться через защитные диоды аналогового вывода. И у вас есть полный контроль над работой делителя.

Делитель напряжения для смещения уровня напряжения

Современные микроконтроллеры основаны на 3.3-вольтовой логике с использованием в некоторых случаях 1.8 В. Использование более старого стандарта напряжения 5.0 В означает, что вам нужны сигналы ввода-вывода с изменением напряжения. Например, подключение выхода Arduino Uno непосредственно к входу ESP8266 может привести к повреждению последнего.

Конечно, для целей согласования уровней напряжения можно использовать специальные микросхемы, например, TXB0108. Но гораздо проще и дешевле воспользоваться делителем напряжения, как показано на схеме ниже, в которой напряжение с вывода Arduino Uno преобразуется для приема на вывод Raspberry Pi. Только следует учитывать, что такая схема справедлива в отношении однонаправленных сигналов.

Делитель напряжения для опорного напряжения

Не все цепи делителя напряжения используют только резисторы. Один пример, полезный для формирования опорного напряжение, содержит резистор и диод.

В данном случае применяется стабилитрон (зенеровский диод) на 3.3 В. Используя стабильный источник питания на 5.0 В, резистор на 340 Ом можно получить стабильное напряжение 3.0 вольта. Имейте в виду, что это не регулятор напряжения. Ну, по крайней мере, не тот, который может обеспечить много тока.

Делитель напряжения для формирования лесенки сопротивлений R-2R

Лестница R-2R представляет собой кучу повторяющихся резисторов или сеть резисторов. Идея состоит в том, что при включении большего количества выходов это влияет на выходное напряжение. Эта схема является одним из способов сделать цифро-аналоговый преобразователь (ЦАП).

Вы активируете цифровые линии и получаете аналоговое напряжение. Поскольку это форма делителя тока, эффективность зависит от того, насколько хорошо резисторы согласованы друг с другом.

Поэтому вы должны использовать прецизионные компоненты или измерять каждый, чтобы они соответствовали друг другу.

Добавьте больше резисторов в строку для большего разрешения. Используйте более подходящие резисторы для большей точности. В этом примере с резисторами 1 кОм и 2 кОм каждый бит по напряжению составляет 313 мВ. Максимальное выходное напряжение составляет 4.68 В.

Делитель напряжения для управления несколькими кнопками с помощью одного вывода

Для работы с сетью кнопок и резисторов, вы можете использовать один аналоговый вывод микроконтроллера. Между каждой кнопкой находится значение резистора. В этом примере используются резисторы 470 Ом. Когда вы нажимаете кнопку, R1 (1 кОм) образует делитель с остальной частью сети.

В данном случае мы нажимаем кнопку два (2), в итоге мы получаем напряжение делителя, состоящего из резисторов 1 кОм и 1.4 кОм. Вам не нужно использовать равные значения резисторов. Вы выбираете значения, которые дают вам широкий диапазон между кнопками. Таким образом, ваш код, считывающий аналоговый сигнал, может иметь широкий диапазон ввода.

digitrode.ru

Источник: http://digitrode.ru/articles/1318-pyat-shem-delitelya-napryazheniya-prednaznachennyh-ne-tolko-dlya-deleniya-napryazheniya.html

Что такое делитель напряжения и как он используется на резисторах?

Существуют два вида сопротивления – переменное и постоянное, а делитель напряжения на резисторах нужен для защиты электроприборов. Например, светодиодам необходим небольшой ток, в противном случае они могут перегореть. Для ограничения тока в электрическую цепь вставляется резистор, следовательно ток уменьшается и светодиоды работают в штатном режиме. Резистор – радиоэлемент для увеличения сопротивления электрической цепи. Его ставят с целью понижения напряжения или тока.

Постоянное сопротивление – резисторы, которые не изменяют свой номинал. Если подобное происходит, значит резистор вышел из строя. Переменные резисторы могут менять свое сопротивление в процессе своей работы. Они оснащены специальный бегунок, который и регулирует сопротивление. На основе их изготавливают самые различные регуляторы.

В статье будут подробно рассмотрены типы подключения и что такое делитель напряжения. Также в статье содержится видеоролик на данную тему и скачиваемый файл с дополнительной информацией.

Соединение резисторов

Соединение резисторов в различные конфигурации очень часто применяются в электротехнике и электронике. Здесь мы будем рассматривать только участок цепи, включающий в себя соединение резисторов. Соединение резисторов может производиться последовательно, параллельно и смешанно.

Последовательное соединение резисторов

Последовательное соединение резисторов это такое соединение, в котором конец одного резистора соединен с началом второго резистора, конец второго резистора с началом третьего и так далее.

То есть при последовательном соединении резисторы подключатся друг за другом. При таком соединении через резисторы будет протекать один общий ток.

Следовательно, для последовательного соединения резисторов будет справедливо сказать, что между точками А и Б есть только один единственный путь протекания тока.

Таким образом, чем больше число последовательно соединенных резисторов, тем большее сопротивление они оказывают протеканию тока, то есть общее сопротивление Rобщ возрастает. Рассчитывается общее сопротивление последовательно соединенных резисторов по следующей формуле: Rобщ = R1 + R2 + R3++ Rn.

Параллельное соединение резисторов

Параллельное соединение резисторов это соединение, в котором начала всех резисторов соединены в одну общую точку (А), а концы в другую общую точку. При этом по каждому резистору течет свой ток. При параллельном соединении при протекании тока из точки А в точку Б, он имеет несколько путей.

Таким образом, увеличение числа параллельно соединенных резисторов ведет к увеличению путей протекания тока, то есть к уменьшению противодействия протеканию тока.

А это значит, чем большее количество резисторов соединить параллельно, тем меньше станет значение общего сопротивления такого участка цепи (сопротивления между точкой А и Б.)

Общее сопротивление параллельно соединенных резисторов определяется следующим отношением: 1/Rобщ= 1/R1+1/R2+1/R3++1/Rn. Следует отметить, что здесь действует правило «меньше – меньшего». Это означает, что общее сопротивление всегда будет меньше сопротивления любого параллельно включенного резистора.
Общее сопротивление для двух параллельно соединенных резисторов рассчитывается по следующей формуле Rобщ= R1*R2/R1+R2

Если имеет место два параллельно соединенных резистора с одинаковыми сопротивлениями, то их общее сопротивление будет равно половине сопротивления одного из них. Данный вид подключения характерен тем, что все элементы цепи соединяется выводами в одной точке друг другу, т.е. точка входа и выхода всех нагрузок сходятся в одну точку (или еще одно обозначение на схемах — //). Электроток, двигаясь по проводнику, дойдя до общего соединения делится на количество имеющихся веток.

Каждый вид соединения находится под одинаковым напряжением:

U = U1 = U2; Суммарная сила тока равняется суммарному значению тока каждого участка

I = I1 + I2; Сопротивление цепи равно сумме величина обратных сопротивлению участка:

1/R = 1/R1 + 17R2 + . . . + 1/Rn; Сила тока пропорциональна сопротивлению каждого участка

I1/I2=R2/R1.

Примеры расчета

Давайте рассмотрим пример. Цепь представлена на рисунке выше. Есть источник тока и два сопротивления. Пусть R1=1,2 кОм, R2= 800 Ом, а ток в цепи 2 А. По закону Ома U = I * R. Подставляем наши значения:

  • U1 = R1 * I = 1200 Ом * 2 А = 2400 В;
  • U2 = R2 * I = 800 Ом * 2А = 1600 В.

Общее напряжение цепи считается как сумма напряжений на резисторах: U = U1 + U2 = 2400 В + 1600 В = 4000 В. Полученную цифру можно проверить. Для этого найдем суммарное сопротивление цепи и умножим его на ток. R = R1 + R2 = 1200 Ом + 800 Ом = 2000 Ом.

Если подставить в формулу напряжения при последовательном соединении сопротивлений, получаем: U = R * I = 2000 Ом * 2 А = 4000 В. Получаем, что общее напряжение данной цепи 4000 В. А теперь посмотрите на схему. На первом вольтметре (возле резистора R1) показания будут 2400 В, на втором — 1600 В.

При этом напряжение источника питания — 4000 В.

Смешанное соединение резисторов

Смешанное соединение резисторов является комбинацией последовательного и параллельного соединения. Иногда подобную комбинацию называют последовательно-параллельным соединением. На этом рисунке видно, что резисторы R2 R3 соединены параллельно, а R1, комбинация R2 R3 и R4 последовательно.

Для расчета сопротивления таких соединений, всю цепь разбивают на простейшие участки, из параллельно или последовательно соединенных резисторов. Далее следуют следующему алгоритму:

  • Определяют эквивалентное сопротивление участков с параллельным соединением резисторов.
  • Если эти участки содержат последовательно соединенные резисторы, то сначала вычисляют их сопротивление.
  • После расчета эквивалентных сопротивлений резисторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных сопротивлений.
  • Рассчитывают сопротивления полученной схемы.

Первый закон

Ещё один очень важный закон — это закон Кирхгофа. Для участка цепи постоянного тока их два. Первый закон имеет формулировку: Сумма всех токов, входящих в узел и выходящих из него равна нулю.

Если посмотреть на схему, I1 — это ток, который заходит в узел, I2 и I3 — это электроны, которые вытекают из него. Применяя формулировку первого закона можно записать формулу по-другому: I1-I2+I3=0.

В этой формуле знаки плюс имеют значения, которые прибывают в узел, минус, который отходит от него.

Второй закон Кирхгофа

Если к цепи с включенными сопротивлениями подключен один источник ЭДС (батарея питания) тогда всё понятно, можно обойтись законом Ома. А, если, источников несколько и схема с различным схемным расположением элементов, тогда вступает в силу второй закон, который гласит: сумма токов всех источников питания для замкнутого контура, равна сумме падений напряжения на всех сопротивлениях участка в этом контуре.

Параллельное и последовательное соединение резисторов, решение задач

Алгоритм расчёта смешанных подключений находится в тех же правилах, что и в элементарных схемах расчета последовательного и параллельного соединения резисторов. Ничего нового нет: нужно правильно разбить предложенную схему на пригодные для расчета участки. Участки, с элементами, подключены поочередно либо параллельно.

ЭТО ИНТЕРЕСНО:  Что такое реостат в физике

Для решения задачи на последовательное и параллельное соединение резисторов необходимо правильно оценить цепи элементов. На схеме присутствует параллельная и последовательная часть соединения элементов. Для расчета очень важно аккуратно, шаг за шагом упрощать цепи и не брать сразу всю схему (рис.1).

Как же правильно определить параллельное и последовательное соединение резисторов?

Для примера расчета возьмем резисторы R3, R4, которые подключены параллельно. Эквивалентный резистор этих элементов, будет равенRэ. = 1/R34 =1/R3 + 1/R4, после преобразования формулы и приведения к одному знаменателю получим R34 = R3 · R4 / (R3 + R4). Э. = 1/3+1/4 /(3+4) =1,7 Ом.

Далее видно, что приведённая эквивалентное R эк и R6 соединены последовательно, чтобы узнать сопротивление их необходимо сложить, тогда общее сопротивление будет равно R346 = R34 + R6, тогда Rэк346 = 1,7 + 6 = 7, 7 Ом.

Заменяем на схеме одним общим элементом, теперь, позиция упрощается еще больше. Теперь образовалась ситуация — включение трех элементов в //. Как вычисляется такое соединение нам уже известно, 1/ R23465 = 1/ R2 +1/R346 + 1/R5 после вычисления правой части получаем 0,82 Ом.

После окончательного вычисления получаем R23465 = 2,1 Ом. Здесь следует обратить внимание, что общее сопротивление получилось меньше самого меньшего из трех. Заменяем эти сопротивление одним эквивалентным R23465. В конечном итоге все выглядит уже намного проще. Rц = Rэк + R1+ R2. R об.

= R ц = 1,21 +1 =9,21 Ом.

При параллельном соединении приемников, все они находятся под одним и тем же напряжением, и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными.

Поэтому параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение.

В частности, электрические лампы и двигатели, предназначенные для работы при определенном (номинальном) напряжении, всегда включают параллельно.

На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Возможно, вам будет проще, если знать, что соединив два одинаковых резистора параллельно, получим результат в два раза меньше. Например, соединив параллельно два резистора по 100 Ом получим составное сопротивление 50 Ом. Проверим? Считаем: 100*100 / (100+100) = 10000 / 200 = 50 Ом.

Давайте сначала рассчитаем параллельное соединение двух резисторов разного номинала и посмотрим что получится.

  • Соединили параллельно 150 Ом и 100 Ом. Считаем результирующее: 150*100 / (150+100) = 15000/250 = 60 Ом.
  • Если соединить 150 Ом и 50 Ом, получим: 150*50 / (150+50) = 7500 / 200 = 37,5 Ом.

Как видим, в обоих случаях результат оказывается меньше чем самый низкий номинал соединенных деталей. Этим и пользуются, если в наличии нет сопротивления небольшого номинала. Проблема только в том, что подбирать сложновато: надо каждый раз считать используя калькулятор.

Источник: https://vk.com/@chinagreat-chto-takoe-delitel-napryazheniya-i-kak-on-ispolzuetsya-na-re?ref=group_block

Что такое делитель напряжения и для чего он используется

Часто при проектировании электронной схемы возникает необходимость получить точку с определенным уровнем сигнала. Например, создать опорную точку или смещение напряжения, запитать маломощный потребитель, понизив его уровень и ограничить ток. Именно в таких случаях нужно использовать делитель напряжения. Что это такое и как его рассчитать мы расскажем в этой статье.

Определение

Делителем напряжения называется прибор или устройство, которое понижает уровень выходного напряжения относительно входного, пропорционально коэффициенту передачи (он будет всегда ниже нуля). Такое название он получил, потому что представляет собой два и более последовательно соединенных участка цепи.

Они бывают линейными и нелинейными. При этом первые представляют собой активное или реактивное сопротивление, в которых коэффициент передачи определяется соотношением из закона Ома. К ярко выраженным нелинейным делителям относят параметрические стабилизаторы напряжения. Давайте разберемся как устроен это прибор и зачем он нужен.

Виды и принцип действия

Сразу стоит отметить, что принцип работы делителя напряжения в общем одинаков, но зависит от элементов, из которых он состоит. Различают три основных вида линейных схем:

  • резистивные;
  • емкостные;
  • индуктивные.

Наиболее распространен делитель на резисторах, из-за своей простоты и легкости расчетов. На его примере и рассмотрим основные сведения об этом устройстве.

У любого делителя напряжения есть Uвходное и Uвыходное, если он состоит из двух резисторов, если резисторов три, то выходных напряжений будет два, и так далее. Можно сделать любое количество ступеней деления.

Uвходное равно напряжению питания, Uвыходное зависит от соотношения резисторов в плечах делителя. Если рассматривать схему на двух резисторах, то верхним, или как его еще называют, гасящим плечом будет R1. Нижним или выходным плечом будет R2.

Допустим у нас Uпитания 10В, сопротивление R1 — 85 Ом, а сопротивление R2 — 15 Ом. Нужно рассчитать Uвыходное.

Тогда:

U=I*R

Так как они соединены последовательно, то:

U1=I*R1

U2=I*R2

Тогда если сложить выражения:

U1+U2=I(R1+R2)

Если выразить отсюда ток, получится:

Подставив предыдущее выражение, имеем следующую формулу:

Посчитаем для нашего примера:

Делитель напряжения может быть выполнен и на реактивных сопротивлениях:

  • на конденсаторах (емкостной);
  • на катушках индуктивности (индуктивный).

Тогда расчеты будут аналогичны, но сопротивления рассчитывают по нижеприведенным формулам.

Для конденсаторов:

Для индуктивности:

Особенностью и различием этих видов делителей является то, что резистивный делитель может использоваться в цепях переменного и в цепях постоянного тока, а емкостной и индуктивный только в цепях переменного тока, потому что только тогда будет работать их реактивное сопротивление.

Интересно! В некоторых случаях емкостной делитель будет работать в цепях постоянного тока, хорошим примером является использование такого решения во входной цепи компьютерных блоков питания.

Использование реактивного сопротивления обусловлено тем, что при их работе не выделяется такого количества тепла, как при использовании в конструкциях активных сопротивлений (резисторов)

Примеры использования в схеме

Есть масса схем, где используются делители напряжения. Поэтому мы приведем сразу несколько примеров.

Допустим мы проектируем усилительный каскад, на транзисторе, который работает в классе А. Исходя из его принципа действия, нам нужно задать на базе транзистора такое напряжение смещения (U1), чтобы его рабочая точка была на линейном отрезке ВАХ, при этом чтобы ток через транзистор не был чрезмерным. Допустим нам нужно обеспечить ток базы в 0,1 мА при U1 в 0,6 Вольта.

Тогда нам нужно рассчитать сопротивления в плечах делителя, а это обратный расчет относительно того, что мы привели выше. В первую очередь находят ток через делитель. Чтобы ток нагрузки не сильно влиял на напряжения на его плечах, зададим ток через делитель на порядок выше тока нагрузки в нашем случае 1 мА. Uпитания пусть будет 12 Вольт.

Тогда общее сопротивление делителя равняется:

Rд=Uпитания/I=12/0.001=12000 Ом

R2/R=U2/U

Или:

R2/(R1+R2)=U2/Uпитания

10/20=3/6

20*3/6=60/6/10

R2=(R1+R2)*U1/Uпитания=12000*0.6/12=600

R1=12000-600=11400

Проверим расчеты:

U2=U*R2/(R1+R2)=12*600/12000=7200/12000=0,6 Вольт.

Соответственное верхнее плече погасит

U2=U*R2/(R1+R2)=12*11400/12000=136800/12000=11,4 Вольт.

Но это еще не весь расчет. Для полного расчета делителя нужно определить и мощность резисторов, чтобы они не сгорели. При токе 1 мА на R1 выделится мощность:

P1=11,4*0,001=0,0114 Ватт

А на R2:

P2=0,6*0,001=0,000006 Ватт

Здесь она ничтожно мала, но представьте какой мощности нужны были бы резисторы, если бы ток делителя составлял 100 мА или 1 А?

Для первого случая:

P1=11,4*0,1=1,14 Ватт

P2=0,6*0,1=0,06 Ватт

Для второго случая:

P1=11,4*1=11,4 Ватт

P2=0,6*1=0,6 Ватт

Что уже немалые для электроники цифры, в том числе и для использования в усилителях. Это не эффективно, поэтому в настоящее время используют импульсные схемы, хотя и линейные продолжают использоваться либо в любительских конструкциях, либо в специфичном оборудовании с особыми требованиями.

Второй пример – это делитель для формирования Uопорного для регулируемого стабилитрона TL431. Они применяются в большинстве недорогих блоков питания и зарядных устройств для мобильных телефонов. Схема подключения и расчетные формулы вы видите ниже. С помощью двух резисторов здесь создается точка с Uопорным в 2.5 вольта.

Еще один пример — это подключение всевозможных датчиков к микроконтроллерам. Рассмотрим несколько схем подключения датчиков к аналоговому входу популярного микроконтроллера AVR, на примере семейства плат Arduino.

В измерительных приборах есть разные пределы измерения. Такая функция реализуется также с помощью группы резисторов.

Но на этом область применения делителей напряжения не заканчивается. Именно таким образом гасятся лишние вольты при ограничении тока через светодиод, также распределяется напряжение на лампочках в гирлянде, и также вы можете запитать маломощную нагрузку.

Нелинейные делители

Мы упомянули, что к нелинейным делителям относится параметрический стабилизатор. В простейшем виде он состоит из резистора и стабилитрона. У стабилитрона условное обозначение на схеме похоже на обычный полупроводниковый диод. Разница лишь в наличии дополнительной черты на катоде.

Расчет происходит, отталкиваясь от Uстабилизации стабилитрона. Тогда если у нас есть стабилитрон на 3.3 вольта, а Uпитания равно 10 вольт, то ток стабилизации берут из даташита на стабилитрон. Например, пусть он будет равен 20 мА (0.02 А), а ток нагрузки 10 мА (0.01 А).

Тогда:

R=12-3,3/0,02+0,01=8,7/0,03=290 Ом

Разберемся как работает такой стабилизатор. Стабилитрон включается в цепь в обратном включении, то есть если Uвыходное ниже Uстабилизации – ток через него не протекает.

Когда Uпитания повышается до Uстабилизации, происходит лавинный или туннельный пробой PN-перехода и через него начинает протекать ток, который называется током стабилизации. Он ограничен резистором R1, на котором гасится разница между Uвходным и Uстабилизации.

При превышении максимального тока стабилизации происходит тепловой пробой и стабилитрон сгорает.

Кстати иногда можно реализовать стабилизатор на диодах. Напряжение стабилизации тогда будет равно прямому падению диодов или сумме падений цепи диодов. Ток задаете подходящий под номинал диодов и под нужды вашей схемы. Тем не менее такое решение используется крайне редко. Но такое устройство на диодах лучше назвать ограничителем, а не стабилизатором. И вариант такой же схемы для цепей переменного тока. Так вы ограничите амплитуду переменного сигнала на уровне прямого падения — 0,7В.

Вот мы и разобрались что это такое делитель напряжения и для чего он нужен. Примеров, где применяется любой из вариантов рассмотренных схем можно привести еще больше, даже потенциометр в сущности является делителем с плавной регулировкой коэффициента передачи, и часто используется в паре с постоянным резистором. В любом случае принцип действия, подбора и расчетов элементов остается неизменным.

Напоследок рекомендуем посмотреть видео, на котором более подробно рассматривается, как работает данный элемент и из чего состоит:

Материалы по теме:

Источник: https://samelectrik.ru/chto-takoe-delitel-napryazheniya.html

Делитель напряжения на резисторах ⋆ diodov.net

Рассмотрим, как рассчитать практически любой делитель напряжения на резисторах. Преимущественное большинство радиоэлектронных элементов и микросхем питаются относительно низким напряжением – 35 В. А многие блоки питания выдают U = 9 В, 12 В или 24 В.

Поэтому для надежной и стабильной работы различных электронных элементов необходимо снижать величину напряжения до приемлемого уровня. В противном случае может наступить пробой радиоэлектронных элементов.

Особенно следует уделять внимание микросхемам – наиболее чувствительным элементам к повышенному напряжению.

Существуют много способов, как снизить напряжение. Выбор того или другого способа зависит от конкретной задачи, что в целом определяет эффективность всего устройства. Мы рассмотрим самый простой способ – делитель напряжения на резисторах, который, тем не менее, довольно часто применяется на практике, но исключительно в маломощных цепях, что поясняется далее.

Расчет делителя напряжения на резисторах

Чтобы сделать и рассчитать простейший делитель напряжения достаточно соединить последовательно два резистора и подключить их источнику питания. Такая схема очень распространенная и применяется более чем в 90 % случаев.

Вход схемы имеет два вывода, а выход – три. При одинаковых значения сопротивлений R1 и R2 выходные напряжения Uвых1 и Uвых2 также равны и по величине вдвое меньше входного Uвх. Причем выходное U можно сниматься с любого из резисторов – R1 или R2. Если сопротивления не равны, то выходное U будет на резисторе большего номинала.

Точное соотношение Uвых1 к Uвых2 рассчитаем, обратившись к закону Ома. Резисторы вместе с источником питания образуют последовательную цепь, поэтому величина электрического тока, протекающего через R1 и R2 определяется отношением напряжения источника питания Uвх к сумме сопротивлений:

Следует обратить внимание, чем больше сумма сопротивлений, тем меньший ток I при том же значении Uвх.

Далее, согласно закону Ома, подставив значение тока, находим Uвых1 и Uвых2:

Путем подстановки в две последние формулы значение из самой первой формулы, находим значение выходного U в зависимости от входного и сопротивлений двух резисторов:

Применяя  делитель напряжения на резисторах, необходимо понимать и помнить следующее:

    1. Коэффициент полезного действия такой схемы довольно низкий, поскольку только часть мощности источника питания поступает к нагрузке, а остальная мощность преобразуется в тепло, выделяемое на резисторах. Чем больше понижается напряжение, тем меньше мощности от источника питания поступит к нагрузке.
  1. Так как нагрузка подключается параллельно к одному из резисторов делителя, то есть шунтирует его, то общее сопротивление цепи снижается и происходит перераспределение падений напряжений. Поэтому сопротивление нагрузки должно быть гораздо больше сопротивления резистора делителя. В противном случае схема будет работать нестабильно с отклонением от заданных параметров.
  2. Распределение U между R1 и R2 определяется исключительно их относительными значениями, а не абсолютными величинами. В данном случае неважно, будут ли R1 и R2 иметь значение 2 кОм и 1 кОм или 200 кОм и 100 кОм.

    Однако при более низких значениях сопротивлений можно получить большую мощность на нагрузке, но следует помнить, что и больше мощности преобразуется в тепло, то есть израсходуется невозвратно впустую.

Также иногда находят применение и более сложные делители напряжений, состоящие из нескольких последовательно соединенных резисторов.

Делитель напряжения на переменном резисторе

Схему делителя напряжения на переменном резисторе называют схемой потенциометра. Вращая рукоятку громкости музыкального центра или автомагнитолы, вы таким действием плавно изменяете напряжение, подаваемое на усилитель модности звуковой частоты. Принцип работы и сборка простейшего усилителя мощности уже были ранее рассмотрены здесь.

При перемещении (вращении) ручки переменного резистора сверху вниз по чертежу происходит плавное изменение U от значения источника питания до нуля.

В звуковой технике главным образом применяются переменные резисторы с логарифмической зависимостью, поскольку слуховой аппарат человек воспринимает звуки с данной зависимостью. Для регулирования уровня звука одновременно по двум каналам используют сдвоенные переменные резисторы.

В качестве делителя напряжения находят применение переменные резисторы, имеющие следующие зависимости сопротивления от угла поворота ручки: логарифмическую, линейную и экспоненциальную. Конкретный тип зависимости применяется для решения отдельной задачи.

Источник: https://diodov.net/delitel-napryazheniya-na-rezistorah/

Понравилась статья? Поделиться с друзьями:
220 вольт
Как найти энергию конденсатора

Закрыть